Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 557(7706): 503-509, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29769716

RESUMEN

One-third of all protein-coding genes from bacterial genomes cannot be annotated with a function. Here, to investigate the functions of these genes, we present genome-wide mutant fitness data from 32 diverse bacteria across dozens of growth conditions. We identified mutant phenotypes for 11,779 protein-coding genes that had not been annotated with a specific function. Many genes could be associated with a specific condition because the gene affected fitness only in that condition, or with another gene in the same bacterium because they had similar mutant phenotypes. Of the poorly annotated genes, 2,316 had associations that have high confidence because they are conserved in other bacteria. By combining these conserved associations with comparative genomics, we identified putative DNA repair proteins; in addition, we propose specific functions for poorly annotated enzymes and transporters and for uncharacterized protein families. Our study demonstrates the scalability of microbial genetics and its utility for improving gene annotations.


Asunto(s)
Bacterias/genética , Genes Bacterianos/genética , Anotación de Secuencia Molecular , Mutación , Fenotipo , Incertidumbre , Bacterias/citología , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Secuencia Conservada , Reparación del ADN/genética , Aptitud Genética , Genoma Bacteriano/genética , Proteínas Mutantes/clasificación , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología
2.
J Virol ; 96(13): e0010622, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35674430

RESUMEN

Recombinant forms of adeno-associated virus (rAAV) are vectors of choice in the development of treatments for a number of genetic dispositions. Greater understanding of AAV's molecular virology is needed to underpin needed improvements in efficiency and specificity. Recent advances have included identification of a near-universal entry receptor, AAVR, and structures detected by cryo-electron microscopy (EM) single particle analysis (SPA) that revealed, at high resolution, only the domains of AAVR most tightly bound to AAV. Here, cryogenic electron tomography (cryo-ET) is applied to reveal the neighboring domains of the flexible receptor. For AAV5, where the PKD1 domain is bound strongly, PKD2 is seen in three configurations extending away from the virus. AAV2 binds tightly to the PKD2 domain at a distinct site, and cryo-ET now reveals four configurations of PKD1, all different from that seen in AAV5. The AAV2 receptor complex also shows unmodeled features on the inner surface that appear to be an equilibrium alternate configuration. Other AAV structures start near the 5-fold axis, but now ß-strand A is the minor conformer and, for the major conformer, partially ordered N termini near the 2-fold axis join the canonical capsid jellyroll fold at the ßA-ßB turn. The addition of cryo-ET is revealing unappreciated complexity that is likely relevant to viral entry and to the development of improved gene therapy vectors. IMPORTANCE With 150 clinical trials for 30 diseases under way, AAV is a leading gene therapy vector. Immunotoxicity at high doses used to overcome inefficient transduction has occasionally proven fatal and highlighted gaps in fundamental virology. AAV enters cells, interacting through distinct sites with different domains of the AAVR receptor, according to AAV clade. Single domains are resolved in structures by cryogenic electron microscopy. Here, the adjoining domains are revealed by cryo-electron tomography of AAV2 and AAV5 complexes. They are in flexible configurations interacting minimally with AAV, despite measurable dependence of AAV2 transduction on both domains.


Asunto(s)
Dependovirus , Parvovirinae , Dependovirus/metabolismo , Tomografía con Microscopio Electrónico , Parvovirinae/química , Parvovirinae/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos
3.
PLoS Genet ; 15(4): e1008106, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30943208

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1007147.].

4.
PLoS Genet ; 14(1): e1007147, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29324779

RESUMEN

For many bacteria with sequenced genomes, we do not understand how they synthesize some amino acids. This makes it challenging to reconstruct their metabolism, and has led to speculation that bacteria might be cross-feeding amino acids. We studied heterotrophic bacteria from 10 different genera that grow without added amino acids even though an automated tool predicts that the bacteria have gaps in their amino acid synthesis pathways. Across these bacteria, there were 11 gaps in their amino acid biosynthesis pathways that we could not fill using current knowledge. Using genome-wide mutant fitness data, we identified novel enzymes that fill 9 of the 11 gaps and hence explain the biosynthesis of methionine, threonine, serine, or histidine by bacteria from six genera. We also found that the sulfate-reducing bacterium Desulfovibrio vulgaris synthesizes homocysteine (which is a precursor to methionine) by using DUF39, NIL/ferredoxin, and COG2122 proteins, and that homoserine is not an intermediate in this pathway. Our results suggest that most free-living bacteria can likely make all 20 amino acids and illustrate how high-throughput genetics can uncover previously-unknown amino acid biosynthesis genes.


Asunto(s)
Aminoácidos/biosíntesis , Aminoácidos/genética , Bacterias/genética , Proteínas Bacterianas/genética , Procesos Heterotróficos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Histidina/biosíntesis , Metionina/biosíntesis , Análisis de Secuencia de ADN/métodos , Serina/biosíntesis , Treonina/biosíntesis
5.
Environ Microbiol ; 21(1): 152-163, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30289197

RESUMEN

Anthropogenic nitrate contamination is a serious problem in many natural environments. Nitrate removal by microbial action is dependent on the metal molybdenum (Mo), which is required by nitrate reductase for denitrification and dissimilatory nitrate reduction to ammonium. The soluble form of Mo, molybdate (MoO4 2- ), is incorporated into and adsorbed by iron (Fe) and aluminium (Al) (oxy) hydroxide minerals. Herein we used Oak Ridge Reservation (ORR) as a model nitrate-contaminated acidic environment to investigate whether the formation of Fe- and Al-precipitates could impede microbial nitrate removal by depleting Mo. We demonstrate that Fe and Al mineral formation that occurs as the pH of acidic synthetic groundwater is increased, decreases soluble Mo to low picomolar concentrations, a process proposed to mimic environmental diffusion of acidic contaminated groundwater. Analysis of ORR sediments revealed recalcitrant Mo in the contaminated core that co-occurred with Fe and Al, consistent with Mo scavenging by Fe/Al precipitates. Nitrate removal by ORR isolate Pseudomonas fluorescens N2A2 is virtually abolished by Fe/Al precipitate-induced Mo depletion. The depletion of naturally occurring Mo in nitrate- and Fe/Al-contaminated acidic environments like ORR or acid mine drainage sites has the potential to impede microbial-based nitrate reduction thereby extending the duration of nitrate in the environment.


Asunto(s)
Aluminio/química , Ambiente , Hierro/química , Molibdeno/química , Ciclo del Nitrógeno , Contaminantes Ambientales/química , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/farmacología , Sedimentos Geológicos/química , Agua Subterránea/química , Microbiota/efectos de los fármacos , Molibdeno/metabolismo , Molibdeno/farmacología , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Pseudomonas fluorescens/efectos de los fármacos , Pseudomonas fluorescens/metabolismo
6.
Mol Syst Biol ; 13(3): 919, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28320772

RESUMEN

Managing trade-offs through gene regulation is believed to confer resilience to a microbial community in a fluctuating resource environment. To investigate this hypothesis, we imposed a fluctuating environment that required the sulfate-reducer Desulfovibrio vulgaris to undergo repeated ecologically relevant shifts between retaining metabolic independence (active capacity for sulfate respiration) and becoming metabolically specialized to a mutualistic association with the hydrogen-consuming Methanococcus maripaludis Strikingly, the microbial community became progressively less proficient at restoring the environmentally relevant physiological state after each perturbation and most cultures collapsed within 3-7 shifts. Counterintuitively, the collapse phenomenon was prevented by a single regulatory mutation. We have characterized the mechanism for collapse by conducting RNA-seq analysis, proteomics, microcalorimetry, and single-cell transcriptome analysis. We demonstrate that the collapse was caused by conditional gene regulation, which drove precipitous decline in intracellular abundance of essential transcripts and proteins, imposing greater energetic burden of regulation to restore function in a fluctuating environment.


Asunto(s)
Desulfovibrio vulgaris/crecimiento & desarrollo , Methanococcus/crecimiento & desarrollo , Biología de Sistemas/métodos , Desulfovibrio vulgaris/genética , Evolución Molecular Dirigida , Perfilación de la Expresión Génica , Methanococcus/genética , Oxidación-Reducción , Fenotipo , Proteómica , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Sulfatos/metabolismo
7.
Appl Microbiol Biotechnol ; 102(6): 2839-2850, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29429007

RESUMEN

Desulfovibrio spp. are capable of heavy metal reduction and are well-studied systems for understanding metal fate and transport in anaerobic environments. Desulfovibrio vulgaris Hildenborough was grown under environmentally relevant conditions (i.e., temperature, nutrient limitation) to elucidate the impacts on Cr(VI) reduction on cellular physiology. Growth at 20 °C was slower than 30 °C and the presence of 50 µM Cr(VI) caused extended lag times for all conditions, but once growth resumed the growth rate was similar to that without Cr(VI). Cr(VI) reduction rates were greatly diminished at 20 °C for both 50 and 100 µM Cr(VI), particularly for the electron acceptor limited (EAL) condition in which Cr(VI) reduction was much slower, the growth lag much longer (200 h), and viability decreased compared to balanced (BAL) and electron donor limited (EDL) conditions. When sulfate levels were increased in the presence of Cr(VI), cellular responses improved via a shorter lag time to growth. Similar results were observed between the different resource (donor/acceptor) ratio conditions when the sulfate levels were normalized (10 mM), and these results indicated that resource ratio (donor/acceptor) impacted D. vulgaris response to Cr(VI) and not merely sulfate limitation. The results suggest that temperature and resource ratios greatly impacted the extent of Cr(VI) toxicity, Cr(VI) reduction, and the subsequent cellular health via Cr(VI) influx and overall metabolic rate. The results also emphasized the need to perform experiments at lower temperatures with nutrient limitation to make accurate predictions of heavy metal reduction rates as well as physiological states in the environment.


Asunto(s)
Carcinógenos Ambientales/metabolismo , Carcinógenos Ambientales/toxicidad , Cromo/metabolismo , Cromo/toxicidad , Desulfovibrio vulgaris/efectos de los fármacos , Desulfovibrio vulgaris/metabolismo , Anaerobiosis , Desulfovibrio vulgaris/crecimiento & desarrollo , Viabilidad Microbiana/efectos de los fármacos , Oxidación-Reducción , Sulfatos/metabolismo , Temperatura
8.
Proc Natl Acad Sci U S A ; 111(41): 14822-7, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25267659

RESUMEN

Many species have evolved to function as specialized mutualists, often to the detriment of their ability to survive independently. However, there are few, if any, well-controlled observations of the evolutionary processes underlying the genesis of new mutualisms. Here, we show that within the first 1,000 generations of initiating independent syntrophic interactions between a sulfate reducer (Desulfovibrio vulgaris) and a hydrogenotrophic methanogen (Methanococcus maripaludis), D. vulgaris frequently lost the capacity to grow by sulfate respiration, thus losing the primary physiological attribute of the genus. The loss of sulfate respiration was a consequence of mutations in one or more of three key genes in the pathway for sulfate respiration, required for sulfate activation (sat) and sulfate reduction to sulfite (apsA or apsB). Because loss-of-function mutations arose rapidly and independently in replicated experiments, and because these mutations were correlated with enhanced growth rate and productivity, gene loss could be attributed to natural selection, even though these mutations should significantly restrict the independence of the evolved D. vulgaris. Together, these data present an empirical demonstration that specialization for a mutualistic interaction can evolve by natural selection shortly after its origin. They also demonstrate that a sulfate-reducing bacterium can readily evolve to become a specialized syntroph, a situation that may have often occurred in nature.


Asunto(s)
Desulfovibrio vulgaris/genética , Evolución Molecular Dirigida , Methanococcus/genética , Técnicas de Cocultivo , Mutación/genética , Oxidación-Reducción , Fenotipo , Sulfatos/metabolismo , Simbiosis
9.
Appl Environ Microbiol ; 82(19): 6046-56, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27474723

RESUMEN

UNLABELLED: Metal ion transport systems have been studied extensively, but the specificity of a given transporter is often unclear from amino acid sequence data alone. In this study, predicted Cu(2+) and Zn(2+) resistance systems in Pseudomonas stutzeri strain RCH2 are compared with those experimentally implicated in Cu(2+) and Zn(2+) resistance, as determined by using a DNA-barcoded transposon mutant library. Mutant fitness data obtained under denitrifying conditions are combined with regulon predictions to yield a much more comprehensive picture of Cu(2+) and Zn(2+) resistance in strain RCH2. The results not only considerably expand what is known about well-established metal ion exporters (CzcCBA, CzcD, and CusCBA) and their accessory proteins (CzcI and CusF), they also reveal that isolates with mutations in some predicted Cu(2+) resistance systems do not show decreased fitness relative to the wild type when exposed to Cu(2+) In addition, new genes are identified that have no known connection to Zn(2+) (corB, corC, Psest_3226, Psest_3322, and Psest_0618) or Cu(2+) resistance (Mrp antiporter subunit gene, Psest_2850, and Psest_0584) but are crucial for resistance to these metal cations. Growth of individual deletion mutants lacking corB, corC, Psest_3226, or Psest_3322 confirmed the observed Zn-dependent phenotypes. Notably, to our knowledge, this is the first time a bacterial homolog of TMEM165, a human gene responsible for a congenital glycosylation disorder, has been deleted and the resulting strain characterized. Finally, the fitness values indicate Cu(2+)- and Zn(2+)-based inhibition of nitrite reductase and interference with molybdenum cofactor biosynthesis for nitrate reductase. These results extend the current understanding of Cu(2+) and Zn(2+) efflux and resistance and their effects on denitrifying metabolism. IMPORTANCE: In this study, genome-wide mutant fitness data in P. stutzeri RCH2 combined with regulon predictions identify several proteins of unknown function that are involved in resisting zinc and copper toxicity. For zinc, these include a member of the UPF0016 protein family that was previously implicated in Ca(2+)/H(+) antiport and a human congenital glycosylation disorder, CorB and CorC, which were previously linked to Mg(2+) transport, and Psest_3322 and Psest_0618, two proteins with no characterized homologs. Experiments using mutants lacking Psest_3226, Psest_3322, corB, corC, or czcI verified their proposed functions, which will enable future studies of these little-characterized zinc resistance determinants. Likewise, Psest_2850, annotated as an ion antiporter subunit, and the conserved hypothetical protein Psest_0584 are implicated in copper resistance. Physiological connections between previous studies and phenotypes presented here are discussed. Functional and mechanistic understanding of transport proteins improves the understanding of systems in which members of the same protein family, including those in humans, can have different functions.


Asunto(s)
Cobre/metabolismo , Aptitud Genética , Pseudomonas stutzeri/fisiología , Zinc/metabolismo , Cationes/metabolismo , Cobre/farmacología , Mutación , Pseudomonas stutzeri/efectos de los fármacos , Pseudomonas stutzeri/genética , Zinc/farmacología
10.
J Bacteriol ; 197(21): 3400-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26283774

RESUMEN

UNLABELLED: Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness at low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. We discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. IMPORTANCE: The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB.


Asunto(s)
Desulfovibrio vulgaris/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitratos/metabolismo , Nitrito Reductasas/metabolismo , Sulfatos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citocromos a1/genética , Citocromos a1/metabolismo , Citocromos c1/genética , Citocromos c1/metabolismo , Desulfovibrio vulgaris/enzimología , Desulfovibrio vulgaris/genética , Nitrato Reductasas/genética , Nitrato Reductasas/metabolismo , Nitrito Reductasas/genética , Operón , Oxidación-Reducción
11.
Appl Environ Microbiol ; 81(8): 2676-89, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25662968

RESUMEN

Dissimilatory sulfate reduction is a microbial catabolic pathway that preferentially processes less massive sulfur isotopes relative to their heavier counterparts. This sulfur isotope fractionation is recorded in ancient sedimentary rocks and generally is considered to reflect a phenotypic response to environmental variations rather than to evolutionary adaptation. Modern sulfate-reducing microorganisms isolated from similar environments can exhibit a wide range of sulfur isotope fractionations, suggesting that adaptive processes influence the sulfur isotope phenotype. To date, the relationship between evolutionary adaptation and isotopic phenotypes has not been explored. We addressed this by studying the covariation of fitness, sulfur isotope fractionation, and growth characteristics in Desulfovibrio vulgaris Hildenborough in a microbial evolution experiment. After 560 generations, the mean fitness of the evolved lineages relative to the starting isogenic population had increased by ∼ 17%. After 927 generations, the mean fitness relative to the initial ancestral population had increased by ∼ 20%. Growth rate in exponential phase increased during the course of the experiment, suggesting that this was a primary influence behind the fitness increases. Consistent changes were observed within different selection intervals between fractionation and fitness. Fitness changes were associated with changes in exponential growth rate but changes in fractionation were not. Instead, they appeared to be a response to changes in the parameters that govern growth rate: yield and cell-specific sulfate respiration rate. We hypothesize that cell-specific sulfate respiration rate, in particular, provides a bridge that allows physiological controls on fractionation to cross over to the adaptive realm.


Asunto(s)
Desulfovibrio vulgaris/fisiología , Aptitud Genética , Sulfatos/metabolismo , Evolución Biológica , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/crecimiento & desarrollo , Oxidación-Reducción , Isótopos de Azufre/metabolismo
12.
J Bacteriol ; 195(19): 4466-75, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23913324

RESUMEN

The trace elements molybdenum and tungsten are essential components of cofactors of many metalloenzymes. However, in sulfate-reducing bacteria, high concentrations of molybdate and tungstate oxyanions inhibit growth, thus requiring the tight regulation of their homeostasis. By a combination of bioinformatic and experimental techniques, we identified a novel regulator family, tungstate-responsive regulator (TunR), controlling the homeostasis of tungstate and molybdate in sulfate-reducing deltaproteobacteria. The effector-sensing domains of these regulators are similar to those of the known molybdate-responsive regulator ModE, while their DNA-binding domains are homologous to XerC/XerD site-specific recombinases. Using a comparative genomics approach, we identified DNA motifs and reconstructed regulons for 40 TunR family members. Positional analysis of TunR sites and putative promoters allowed us to classify most TunR proteins into two groups: (i) activators of modABC genes encoding a high-affinity molybdenum and tungsten transporting system and (ii) repressors of genes for toluene sulfonate uptake (TSUP) family transporters. The activation of modA and modBC genes by TunR in Desulfovibrio vulgaris Hildenborough was confirmed in vivo, and we discovered that the activation was diminished in the presence of tungstate. A predicted 30-bp TunR-binding motif was confirmed by in vitro binding assays. A novel TunR family of bacterial transcriptional factors controls tungstate and molybdate homeostasis in sulfate-reducing deltaproteobacteria. We proposed that TunR proteins participate in protection of the cells from the inhibition by these oxyanions. To our knowledge, this is a unique case of a family of bacterial transcriptional factors evolved from site-specific recombinases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Desulfovibrio/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Factores de Transcripción/metabolismo , Compuestos de Tungsteno/farmacología , Proteínas Bacterianas/genética , Evolución Biológica , Clonación Molecular , Desulfovibrio/genética , Molibdeno , Filogenia , Regiones Promotoras Genéticas , Transporte de Proteínas , Factores de Transcripción/genética
13.
Appl Environ Microbiol ; 79(23): 7510-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24077707

RESUMEN

Whole-genome fitness analysis in microbes that uses saturating transposon mutagenesis combined with massively parallel sequencing (Tn-seq) is providing a measure of the contribution of each gene to a given growth condition. With this technique, gene fitness profiles and essential genes are discovered by simultaneous analyses of whether the absence of each gene product alters the growth kinetics of the bacterium. Here we modify the standard Tn-seq procedure to simplify and shorten the process by including delivery of the transposon through conjugation and liquid culture enrichment of the mutant pool, creating transposon liquid enrichment sequencing (TnLE-seq). To illustrate the success of these modifications and the robustness of the procedure, analyses of gene fitness of two cultures of the strictly anaerobic bacterium Desulfovibrio vulgaris Hildenborough were performed, with growth on lactate as the electron donor and sulfate as the electron acceptor. These data demonstrate reproducibility and provide a base condition for analysis of fitness changes in deletion mutants and in various growth conditions. The procedural modifications will facilitate the application of this powerful genetic analysis to microbes lacking a facile genetic system. Pilot studies produced 2.5×10(5) and 3.4×10(5) unique insertion mutants in the anaerobe Desulfovibrio vulgaris Hildenborough grown under typical laboratory conditions in rich medium. These analyses provided two similar high-resolution maps of gene fitness across the genome, and the method was also applied to growth in minimal medium. These results were also compared to the coverage obtained with a ca. 13,000-member cataloged transposon library constructed by sequencing transposon insertion sites in individual mutants.


Asunto(s)
Elementos Transponibles de ADN , Desulfovibrio vulgaris/crecimiento & desarrollo , Desulfovibrio vulgaris/genética , Mutagénesis Insercional/métodos , Análisis de Secuencia de ADN/métodos , Anaerobiosis , Conjugación Genética , Eliminación de Gen , Genética Microbiana/métodos , Lactatos/metabolismo , Biología Molecular/métodos , Selección Genética , Sulfatos/metabolismo
14.
Front Microbiol ; 14: 1095191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065130

RESUMEN

Sulfate-reducing bacteria (SRB) are obligate anaerobes that can couple their growth to the reduction of sulfate. Despite the importance of SRB to global nutrient cycles and their damage to the petroleum industry, our molecular understanding of their physiology remains limited. To systematically provide new insights into SRB biology, we generated a randomly barcoded transposon mutant library in the model SRB Desulfovibrio vulgaris Hildenborough (DvH) and used this genome-wide resource to assay the importance of its genes under a range of metabolic and stress conditions. In addition to defining the essential gene set of DvH, we identified a conditional phenotype for 1,137 non-essential genes. Through examination of these conditional phenotypes, we were able to make a number of novel insights into our molecular understanding of DvH, including how this bacterium synthesizes vitamins. For example, we identified DVU0867 as an atypical L-aspartate decarboxylase required for the synthesis of pantothenic acid, provided the first experimental evidence that biotin synthesis in DvH occurs via a specialized acyl carrier protein and without methyl esters, and demonstrated that the uncharacterized dehydrogenase DVU0826:DVU0827 is necessary for the synthesis of pyridoxal phosphate. In addition, we used the mutant fitness data to identify genes involved in the assimilation of diverse nitrogen sources and gained insights into the mechanism of inhibition of chlorate and molybdate. Our large-scale fitness dataset and RB-TnSeq mutant library are community-wide resources that can be used to generate further testable hypotheses into the gene functions of this environmentally and industrially important group of bacteria.

15.
J Bacteriol ; 194(21): 5783-93, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22904289

RESUMEN

The carbon monoxide-sensing transcriptional factor CooA has been studied only in hydrogenogenic organisms that can grow using CO as the sole source of energy. Homologs for the canonical CO oxidation system, including CooA, CO dehydrogenase (CODH), and a CO-dependent Coo hydrogenase, are present in the sulfate-reducing bacterium Desulfovibrio vulgaris, although it grows only poorly on CO. We show that D. vulgaris Hildenborough has an active CO dehydrogenase capable of consuming exogenous CO and that the expression of the CO dehydrogenase, but not that of a gene annotated as encoding a Coo hydrogenase, is dependent on both CO and CooA. Carbon monoxide did not act as a general metabolic inhibitor, since growth of a strain deleted for cooA was inhibited by CO on lactate-sulfate but not pyruvate-sulfate. While the deletion strain did not accumulate CO in excess, as would have been expected if CooA were important in the cycling of CO as a metabolic intermediate, global transcriptional analyses suggested that CooA and CODH are used during normal metabolism.


Asunto(s)
Proteínas Bacterianas/genética , Monóxido de Carbono/metabolismo , Desulfovibrio vulgaris/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/genética , Aldehído Oxidorreductasas/metabolismo , Desulfovibrio vulgaris/crecimiento & desarrollo , Desulfovibrio vulgaris/metabolismo , Lactatos/metabolismo , Complejos Multienzimáticos/metabolismo , Ácido Pirúvico/metabolismo , Sulfatos/metabolismo
16.
Appl Environ Microbiol ; 78(4): 1168-77, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22156435

RESUMEN

Crp/Fnr-type global transcriptional regulators regulate various metabolic pathways in bacteria and typically function in response to environmental changes. However, little is known about the function of four annotated Crp/Fnr homologs (DVU0379, DVU2097, DVU2547, and DVU3111) in Desulfovibrio vulgaris Hildenborough. A systematic study using bioinformatic, transcriptomic, genetic, and physiological approaches was conducted to characterize their roles in stress responses. Similar growth phenotypes were observed for the crp/fnr deletion mutants under multiple stress conditions. Nevertheless, the idea of distinct functions of Crp/Fnr-type regulators in stress responses was supported by phylogeny, gene transcription changes, fitness changes, and physiological differences. The four D. vulgaris Crp/Fnr homologs are localized in three subfamilies (HcpR, CooA, and cc). The crp/fnr knockout mutants were well separated by transcriptional profiling using detrended correspondence analysis (DCA), and more genes significantly changed in expression in a ΔDVU3111 mutant (JW9013) than in the other three paralogs. In fitness studies, strain JW9013 showed the lowest fitness under standard growth conditions (i.e., sulfate reduction) and the highest fitness under NaCl or chromate stress conditions; better fitness was observed for a ΔDVU2547 mutant (JW9011) under nitrite stress conditions and a ΔDVU2097 mutant (JW9009) under air stress conditions. A higher Cr(VI) reduction rate was observed for strain JW9013 in experiments with washed cells. These results suggested that the four Crp/Fnr-type global regulators play distinct roles in stress responses of D. vulgaris. DVU3111 is implicated in responses to NaCl and chromate stresses, DVU2547 in nitrite stress responses, and DVU2097 in air stress responses.


Asunto(s)
Proteína Receptora de AMP Cíclico/metabolismo , Desulfovibrio vulgaris/fisiología , Regulación Bacteriana de la Expresión Génica , Estrés Fisiológico , Factores de Transcripción/metabolismo , Transcripción Genética , Aire , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromatos/metabolismo , Cromatos/toxicidad , Biología Computacional , Proteína Receptora de AMP Cíclico/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/crecimiento & desarrollo , Desulfovibrio vulgaris/metabolismo , Eliminación de Gen , Datos de Secuencia Molecular , Nitritos/metabolismo , Nitritos/toxicidad , Análisis de Secuencia de ADN , Cloruro de Sodio/metabolismo , Cloruro de Sodio/toxicidad , Factores de Transcripción/genética , Transcriptoma
17.
Viruses ; 13(7)2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34372542

RESUMEN

Human gene therapy has advanced from twentieth-century conception to twenty-first-century reality. The recombinant Adeno-Associated Virus (rAAV) is a major gene therapy vector. Research continues to improve rAAV safety and efficacy using a variety of AAV capsid modification strategies. Significant factors influencing rAAV transduction efficiency include neutralizing antibodies, attachment factor interactions and receptor binding. Advances in understanding the molecular interactions during rAAV cell entry combined with improved capsid modulation strategies will help guide the design and engineering of safer and more efficient rAAV gene therapy vectors.


Asunto(s)
Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/metabolismo , Internalización del Virus , Animales , Terapia Genética/métodos , Vectores Genéticos/genética , Células HeLa , Humanos , Ratones , Receptores Virales/genética , Transducción Genética
18.
Front Microbiol ; 12: 757856, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956122

RESUMEN

Pseudomonas species are ubiquitous in nature and include numerous medically, agriculturally and technologically beneficial strains of which the interspecific interactions are of great interest for biotechnologies. Specifically, co-cultures containing Pseudomonas stutzeri have been used for bioremediation, biocontrol, aquaculture management and wastewater denitrification. Furthermore, the use of P. stutzeri biofilms, in combination with consortia-based approaches, may offer advantages for these processes. Understanding the interspecific interaction within biofilm co-cultures or consortia provides a means for improvement of current technologies. However, the investigation of biofilm-based consortia has been limited. We present an adaptable and scalable method for the analysis of macroscopic interactions (colony morphology, inhibition, and invasion) between colony-forming bacterial strains using an automated printing method followed by analysis of the genes and metabolites involved in the interactions. Using Biofilm Interaction Mapping and Analysis (BIMA), these interactions were investigated between P. stutzeri strain RCH2, a denitrifier isolated from chromium (VI) contaminated soil, and 13 other species of pseudomonas isolated from non-contaminated soil. One interaction partner, Pseudomonas fluorescens N1B4 was selected for mutant fitness profiling of a DNA-barcoded mutant library; with this approach four genes of importance were identified and the effects on interactions were evaluated with deletion mutants and mass spectrometry based metabolomics.

19.
Microbiol Resour Announc ; 10(11)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737356

RESUMEN

The dissimilatory sulfate-reducing deltaproteobacterium Desulfovibrio vulgaris Hildenborough (ATCC 29579) was chosen by the research collaboration ENIGMA to explore tools and protocols for bringing this anaerobe to model status. Here, we describe a collection of genetic constructs generated by ENIGMA that are available to the research community.

20.
Appl Environ Microbiol ; 76(16): 5500-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20581180

RESUMEN

The pathway of electrons required for the reduction of sulfate in sulfate-reducing bacteria (SRB) is not yet fully characterized. In order to determine the role of a transmembrane protein complex suggested to be involved in this process, a deletion in Desulfovibrio vulgaris Hildenborough was created by marker exchange mutagenesis that eliminated four genes putatively encoding the QmoABC complex and a hypothetical protein (DVU0851). The Qmo (quinone-interacting membrane-bound oxidoreductase) complex is proposed to be responsible for transporting electrons to the dissimilatory adenosine-5'-phosphosulfate reductase in SRB. In support of the predicted role of this complex, the deletion mutant was unable to grow using sulfate as its sole electron acceptor with a range of electron donors. To explore a possible role for the hypothetical protein in sulfate reduction, a second mutant was constructed that had lost only the gene that codes for the DVU0851 protein. The second constructed mutant grew with sulfate as the sole electron acceptor; however, there was a lag that was not present with the wild-type or complemented strain. Neither deletion strain was significantly impaired for growth with sulfite or thiosulfate as the terminal electron acceptor. Complementation of the Delta(qmoABC-DVU0851) mutant with all four genes or only the qmoABC genes restored its ability to grow by sulfate respiration. These results confirmed the prediction that the Qmo complex is in the electron pathway for sulfate reduction and revealed that no other transmembrane complex could compensate when Qmo was lacking.


Asunto(s)
Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Sulfatos/metabolismo , Desulfovibrio vulgaris/crecimiento & desarrollo , Transporte de Electrón , Prueba de Complementación Genética , Operón , Oxidación-Reducción , Eliminación de Secuencia , Sulfitos/metabolismo , Tiosulfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA