Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 14(2): e1007224, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29432416

RESUMEN

Stem cells are defined by their capacities to self-renew and generate progeny of multiple lineages. The transcription factor SOX2 has key roles in the regulation of stem cell characteristics, but whether SOX2 achieves these functions through similar mechanisms in distinct stem cell populations is not known. To address this question, we performed RNA-seq and SOX2 ChIP-seq on embryonic mouse cortex, spinal cord, stomach and lung/esophagus. We demonstrate that, although SOX2 binds a similar motif in the different cell types, its target regions are primarily cell-type-specific and enriched for the distinct binding motifs of appropriately expressed interacting co-factors. Furthermore, cell-type-specific SOX2 binding in endodermal and neural cells is most often found around genes specifically expressed in the corresponding tissue. Consistent with this, we demonstrate that SOX2 target regions can act as cis-regulatory modules capable of directing reporter expression to appropriate tissues in a zebrafish reporter assay. In contrast, SOX2 binding sites found in both endodermal and neural tissues are associated with genes regulating general stem cell features, such as proliferation. Notably, we provide evidence that SOX2 regulates proliferation through conserved mechanisms and target genes in both germ layers examined. Together, these findings demonstrate how SOX2 simultaneously regulates cell-type-specific, as well as core transcriptional programs in neural and endodermal stem cells.


Asunto(s)
Sistema Nervioso Central/embriología , Endodermo/citología , Endodermo/embriología , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/fisiología , Células-Madre Neurales/fisiología , Organogénesis/genética , Factores de Transcripción SOXB1/fisiología , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Sistema Nervioso Central/citología , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción SOXB1/genética
2.
EMBO Rep ; 19(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30166336

RESUMEN

SOX transcription factors have important roles during astrocyte and oligodendrocyte development, but how glial genes are specified and activated in a sub-lineage-specific fashion remains unknown. Here, we define glial-specific gene expression in the developing spinal cord using single-cell RNA-sequencing. Moreover, by ChIP-seq analyses we show that these glial gene sets are extensively preselected already in multipotent neural precursor cells through prebinding by SOX3. In the subsequent lineage-restricted glial precursor cells, astrocyte genes become additionally targeted by SOX9 at DNA regions strongly enriched for Nfi binding motifs. Oligodendrocyte genes instead are prebound by SOX9 only, at sites which during oligodendrocyte maturation are targeted by SOX10. Interestingly, reporter gene assays and functional studies in the spinal cord reveal that SOX3 binding represses the synergistic activation of astrocyte genes by SOX9 and NFIA, whereas oligodendrocyte genes are activated in a combinatorial manner by SOX9 and SOX10. These genome-wide studies demonstrate how sequentially expressed SOX proteins act on lineage-specific regulatory DNA elements to coordinate glial gene expression both in a temporal and in a sub-lineage-specific fashion.


Asunto(s)
Astrocitos/fisiología , Oligodendroglía/fisiología , Factor de Transcripción SOX9/genética , Factores de Transcripción SOXB1/genética , Médula Espinal/citología , Animales , Diferenciación Celular/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Ratones , Células-Madre Neurales , Neuroglía/citología , Neuroglía/fisiología , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXB1/metabolismo , Médula Espinal/crecimiento & desarrollo
3.
Genome Res ; 26(7): 908-17, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27197220

RESUMEN

Spatially distinct gene expression profiles in neural stem cells (NSCs) are a prerequisite to the formation of neuronal diversity, but how these arise from the regulatory interactions between chromatin accessibility and transcription factor activity has remained unclear. Here, we demonstrate that, despite their distinct gene expression profiles, NSCs of the mouse cortex and spinal cord share the majority of their DNase I hypersensitive sites (DHSs). Regardless of this similarity, domain-specific gene expression is highly correlated with the relative accessibility of associated DHSs, as determined by sequence read density. Notably, the binding pattern of the general NSC transcription factor SOX2 is also largely cell type specific and coincides with an enrichment of LHX2 motifs in the cortex and HOXA9 motifs in the spinal cord. Interestingly, in a zebrafish reporter gene system, these motifs were critical determinants of patterned gene expression along the rostral-caudal axis. Our findings establish a predictive model for patterned NSC gene expression, whereby domain-specific expression of LHX2 and HOX proteins act on their target motifs within commonly accessible cis-regulatory regions to specify SOX2 binding. In turn, this binding correlates strongly with these DHSs relative accessibility-a robust predictor of neighboring gene expression.


Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/fisiología , Animales , Células Cultivadas , Corteza Cerebral/citología , Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Ratones , Unión Proteica , Factores de Transcripción SOXB1/metabolismo , Médula Espinal/citología , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
4.
Genes Dev ; 25(23): 2453-64, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22085726

RESUMEN

Pluripotent embryonic stem (ES) cells can generate all cell types, but how cell lineages are initially specified and maintained during development remains largely unknown. Different classes of Sox transcription factors are expressed during neurogenesis and have been assigned important roles from early lineage specification to neuronal differentiation. Here we characterize the genome-wide binding for Sox2, Sox3, and Sox11, which have vital functions in ES cells, neural precursor cells (NPCs), and maturing neurons, respectively. The data demonstrate that Sox factor binding depends on developmental stage-specific constraints and reveal a remarkable sequential binding of Sox proteins to a common set of neural genes. Interestingly, in ES cells, Sox2 preselects for neural lineage-specific genes destined to be bound and activated by Sox3 in NPCs. In NPCs, Sox3 binds genes that are later bound and activated by Sox11 in differentiating neurons. Genes prebound by Sox proteins are associated with a bivalent chromatin signature, which is resolved into a permissive monovalent state upon binding of activating Sox factors. These data indicate that a single key transcription factor family acts sequentially to coordinate neural gene expression from the early lineage specification in pluripotent cells to later stages of neuronal development.


Asunto(s)
Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Factores de Transcripción SOX/genética , Animales , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Genoma , Ratones , Neurogénesis/genética , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción SOX/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXC/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA