Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0303697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843225

RESUMEN

Two common approaches to study the composition of environmental protist communities are metabarcoding and metagenomics. Raw metabarcoding data are usually processed into Operational Taxonomic Units (OTUs) or amplicon sequence variants (ASVs) through clustering or denoising approaches, respectively. Analogous approaches are used to assemble metagenomic reads into metagenome-assembled genomes (MAGs). Understanding the correspondence between the data produced by these two approaches can help to integrate information between the datasets and to explain how metabarcoding OTUs and MAGs are related with the underlying biological entities they are hypothesised to represent. MAGs do not contain the commonly used barcoding loci, therefore sequence homology approaches cannot be used to match OTUs and MAGs. We made an attempt to match V9 metabarcoding OTUs from the 18S rRNA gene (V9 OTUs) and MAGs from the Tara Oceans expedition based on the correspondence of their relative abundances across the same set of samples. We evaluated several metrics for detecting correspondence between features in these two datasets and developed controls to filter artefacts of data structure and processing. After selecting the best-performing metrics, ranking the V9 OTU/MAG matches by their proportionality/correlation coefficients and applying a set of selection criteria, we identified candidate matches between V9 OTUs and MAGs. In some cases, V9 OTUs and MAGs could be matched with a one-to-one correspondence, implying that they likely represent the same underlying biological entity. More generally, matches we observed could be classified into 4 scenarios: one V9 OTU matches many MAGs; many V9 OTUs match many MAGs; many V9 OTUs match one MAG; one V9 OTU matches one MAG. Notably, we found some instances in which different OTU-MAG matches from the same taxonomic group were not classified in the same scenario, with all four scenarios possible even within the same taxonomic group, illustrating that factors beyond taxonomic lineage influence the relationship between OTUs and MAGs. Overall, each scenario produces a different interpretation of V9 OTUs, MAGs and how they compare in terms of the genomic and ecological diversity they represent.


Asunto(s)
Código de Barras del ADN Taxonómico , Metagenoma , Código de Barras del ADN Taxonómico/métodos , Eucariontes/genética , Eucariontes/clasificación , ARN Ribosómico 18S/genética , Metagenómica/métodos
2.
Curr Biol ; 32(23): 5057-5068.e5, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36347252

RESUMEN

The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT). The newly assigned enzymes connect to the glycine cleavage system (GCS) and produce folate derivatives with one-carbon units and formate. These are likely to be used by the cytosolic methionine cycle involved in S-adenosyl methionine recycling. The data provide consistency with the presence of the GCS in MROs of free-living species and its absence in most endobionts, which typically lose the methionine cycle and, in the case of oxymonads, the mitochondria.


Asunto(s)
Metionina , Mitocondrias , Mitocondrias/metabolismo , Eucariontes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA