Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Traffic ; 22(8): 274-283, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34101314

RESUMEN

African trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association. However, recent reports that the MITat1.3 (M1.3) VSG N-terminal domain (NTD) behaves as a monomer in solution and in a crystal structure challenge this model. We now show that the behavior of intact M1.3 VSG in standard in vivo trafficking assays is consistent with an oligomer. Nevertheless, Blue Native Gel electrophoresis and size exclusion chromatography-multiangle light scattering chromatography of purified full length M1.3 VSG indicates a monomer in vitro. However, studies with additional VSGs show that multiple oligomeric states are possible, and that for some VSGs oligomerization is concentration dependent. These data argue that individual VSG monomers possess different propensities to self-oligomerize, but that when constrained at high density to the cell surface, oligomeric species predominate. These results resolve the apparent conflict between the valence hypothesis and the M1.3 NTD VSG crystal structure.


Asunto(s)
Trypanosoma brucei brucei , Glicoproteínas Variantes de Superficie de Trypanosoma , Membrana Celular , Glicosilfosfatidilinositoles , Glicoproteínas de Membrana , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
2.
PLoS Negl Trop Dis ; 17(2): e0011093, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36780870

RESUMEN

During infection of mammalian hosts, African trypanosomes thwart immunity using antigenic variation of the dense Variant Surface Glycoprotein (VSG) coat, accessing a large repertoire of several thousand genes and pseudogenes, and switching to antigenically distinct copies. The parasite is transferred to mammalian hosts by the tsetse fly. In the salivary glands of the fly, the pathogen adopts the metacyclic form and expresses a limited repertoire of VSG genes specific to that developmental stage. It has remained unknown whether the metacyclic VSGs possess distinct properties associated with this particular and discrete phase of the parasite life cycle. We present here three novel metacyclic form VSG N-terminal domain crystal structures (mVSG397, mVSG531, and mVSG1954) and show that they mirror closely in architecture, oligomerization, and surface diversity the known classes of bloodstream form VSGs. These data suggest that the mVSGs are unlikely to be a specialized subclass of VSG proteins, and thus could be poor candidates as the major components of prophylactic vaccines against trypanosomiasis.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Trypanosoma brucei brucei/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Moscas Tse-Tse/parasitología , Mamíferos , Tripanosomiasis Africana/parasitología
3.
PLoS Negl Trop Dis ; 17(9): e0011621, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656766

RESUMEN

Long-term immune evasion by the African trypanosome is achieved through repetitive cycles of surface protein replacement with antigenically distinct versions of the dense Variant Surface Glycoprotein (VSG) coat. Thousands of VSG genes and pseudo-genes exist in the parasite genome that, together with genetic recombination mechanisms, allow for essentially unlimited immune escape from the adaptive immune system of the host. The diversity space of the "VSGnome" at the protein level was thought to be limited to a few related folds whose structures were determined more than 30 years ago. However, recent progress has shown that the VSGs possess significantly more architectural variation than had been appreciated. Here we combine experimental X-ray crystallography (presenting structures of N-terminal domains of coat proteins VSG11, VSG21, VSG545, VSG558, and VSG615) with deep-learning prediction using Alphafold to produce models of hundreds of VSG proteins. We classify the VSGnome into groups based on protein architecture and oligomerization state, contextualize recent bioinformatics clustering schemes, and extensively map VSG-diversity space. We demonstrate that in addition to the structural variability and post-translational modifications observed thus far, VSGs are also characterized by variations in oligomerization state and possess inherent flexibility and alternative conformations, lending additional variability to what is exposed to the immune system. Finally, these additional experimental structures and the hundreds of Alphafold predictions confirm that the molecular surfaces of the VSGs remain distinct from variant to variant, supporting the hypothesis that protein surface diversity is central to the process of antigenic variation used by this organism during infection.


Asunto(s)
Variación Antigénica , Glicoproteínas de Membrana , Proteínas Protozoarias , Trypanosoma , Proteínas de la Membrana
4.
Cell Rep ; 42(2): 112049, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36719797

RESUMEN

Poorly immunogenic small molecules pose challenges for the production of clinically efficacious vaccines and antibodies. To address this, we generate an immunization platform derived from the immunogenic surface coat of the African trypanosome. Through sortase-based conjugation of the target molecules to the variant surface glycoprotein (VSG) of the trypanosome surface coat, we develop VSG-immunogen array by sortase tagging (VAST). VAST elicits antigen-specific memory B cells and antibodies in a murine model after deploying the poorly immunogenic molecule fentanyl as a proof of concept. We also develop a single-cell RNA sequencing (RNA-seq)-based computational method that synergizes with VAST to specifically identify memory B cell-encoded antibodies. All computationally selected antibodies bind to fentanyl with picomolar affinity. Moreover, these antibodies protect mice from fentanyl effects after passive immunization, demonstrating the ability of these two coupled technologies to elicit therapeutic antibodies to challenging immunogens.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Tripanosomiasis Africana , Animales , Ratones , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/tratamiento farmacológico , Analgésicos Opioides , Fentanilo/farmacología , Fentanilo/uso terapéutico , Glicoproteínas Variantes de Superficie de Trypanosoma , Inmunoterapia
5.
Nat Microbiol ; 6(3): 392-400, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462435

RESUMEN

Suramin has been a primary early-stage treatment for African trypanosomiasis for nearly 100 yr. Recent studies revealed that trypanosome strains that express the variant surface glycoprotein (VSG) VSGsur possess heightened resistance to suramin. Here, we show that VSGsur binds tightly to suramin but other VSGs do not. By solving high-resolution crystal structures of VSGsur and VSG13, we also demonstrate that these VSGs define a structurally divergent subgroup of the coat proteins. The co-crystal structure of VSGsur with suramin reveals that the chemically symmetric drug binds within a large cavity in the VSG homodimer asymmetrically, primarily through contacts of its central benzene rings. Structure-based, loss-of-contact mutations in VSGsur significantly decrease the affinity to suramin and lead to a loss of the resistance phenotype. Altogether, these data show that the resistance phenotype is dependent on the binding of suramin to VSGsur, establishing that the VSG proteins can possess functionality beyond their role in antigenic variation.


Asunto(s)
Resistencia a Medicamentos/inmunología , Suramina/metabolismo , Trypanosoma brucei rhodesiense/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/química , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Variación Antigénica/efectos de los fármacos , Variación Antigénica/inmunología , Sitios de Unión , Cristalografía por Rayos X , Resistencia a Medicamentos/genética , Endocitosis/genética , Evasión Inmune , Mutación , Unión Proteica , Conformación Proteica , Suramina/toxicidad , Tripanocidas/metabolismo , Tripanocidas/toxicidad , Trypanosoma brucei rhodesiense/química , Trypanosoma brucei rhodesiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/metabolismo , Tripanosomiasis Africana/parasitología , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
6.
Cell Rep ; 37(5): 109923, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731611

RESUMEN

The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host's antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells.


Asunto(s)
Membrana Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Anticuerpos de Dominio Único/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , Animales , Especificidad de Anticuerpos , Sitios de Unión de Anticuerpos , Camélidos del Nuevo Mundo/inmunología , Línea Celular , Membrana Celular/inmunología , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Endocitosis/efectos de los fármacos , Epítopos , Exocitosis/efectos de los fármacos , Unión Proteica , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Tripanocidas/inmunología , Tripanocidas/metabolismo , Trypanosoma brucei brucei/inmunología , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestructura , Tripanosomiasis Africana/inmunología , Tripanosomiasis Africana/metabolismo , Tripanosomiasis Africana/parasitología , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
7.
Science ; 297(5587): 1692-6, 2002 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-12169656

RESUMEN

Proton pumps in the plasma membrane of plants and yeasts maintain the intracellular pH and membrane potential. To gain insight into the molecular mechanisms of proton pumping, we built an atomic homology model of the proton pump based on the 2.6 angstrom x-ray structure of the related Ca2+ pump from rabbit sarcoplasmic reticulum. The model, when fitted to an 8 angstrom map of the Neurospora proton pump determined by electron microscopy, reveals the likely path of the proton through the membrane and shows that the nucleotide-binding domain rotates by approximately 70 degrees to deliver adenosine triphosphate (ATP) to the phosphorylation site. A synthetic peptide corresponding to the carboxyl-terminal regulatory domain stimulates ATPase activity, suggesting a mechanism for proton transport regulation.


Asunto(s)
Neurospora/enzimología , ATPasas de Translocación de Protón/química , Secuencia de Aminoácidos , Membrana Celular/química , Membrana Celular/enzimología , Microscopía por Crioelectrón , Activación Enzimática , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , ATPasas de Translocación de Protón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA