Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Am Soc Nephrol ; 29(10): 2482-2492, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30185468

RESUMEN

BACKGROUND: The major form of autosomal dominant polycystic kidney disease is caused by heterozygous mutations in PKD1, the gene that encodes polycystin-1 (PC1). Unlike PKD1 genes in the mouse and most other mammals, human PKD1 is unusual in that it contains two long polypyrimidine tracts in introns 21 and 22 (2.5 kbp and 602 bp, respectively; 97% cytosine and thymine). Although these polypyrimidine tracts have been shown to form thermodynamically stable segments of triplex DNA that can cause DNA polymerase stalling and enhance the local mutation rate, the efficiency of transcription and splicing across these cytosine- and thymine-rich introns has been unexplored. METHODS: We used RT-PCR and Western blotting (using an mAb to the N terminus) to probe splicing events over exons 20-24 in the mouse and human PKD1 genes as well as Nanopore sequencing to confirm the presence of multiple splice forms. RESULTS: Analysis of PC1 indicates that humans, but not mice, have a smaller than expected protein product, which we call Trunc_PC1. The findings show that Trunc_PC1 is the protein product of abnormal differential splicing across introns 21 and 22 and that 28.8%-61.5% of PKD1 transcripts terminate early. CONCLUSIONS: The presence of polypyrimidine tracts decreases levels of full-length PKD1 mRNA from normal alleles. In heterozygous individuals, low levels of full-length PC1 may reduce polycystin signaling below a critical "cystogenic" threshold.


Asunto(s)
Empalme Alternativo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/biosíntesis , Canales Catiónicos TRPP/genética , Adulto , Animales , Secuencia de Bases , Exones , Femenino , Humanos , Intrones , Masculino , Ratones , Persona de Mediana Edad , Mutación , Terminación de la Cadena Péptídica Traduccional/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Especificidad de la Especie , Canales Catiónicos TRPP/química , Adulto Joven
2.
Am J Physiol Renal Physiol ; 309(9): F764-9, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26336161

RESUMEN

Nephrogenic systemic fibrosis (NSF) is a devastating condition associated with gadolinium (Gd3+)-based contrast agents (GBCAs) in patients with kidney disease. The release of toxic Gd3+ from GBCAs likely plays a major role in NSF pathophysiology. The cause and etiology of Gd3+ release from GBCAs is unknown. Increased Acidic Serine Aspartate Rich MEPE-associated peptides (ASARM peptides) induce bone mineralization abnormalities and contribute to renal phosphate-handling defects in inherited hypophosphatemic rickets and tumor-induced osteomalacia. The proteolytic cleavage of related bone matrix proteins with ASARM motifs results in release of ASARM peptide into bone and circulation. ASARM peptides are acidic, reactive, phosphorylated inhibitors of mineralization that bind Ca2+ and hydroxyapatite. Since the ionic radius of Gd3+ is close to that of Ca2+, we hypothesized that ASARM peptides increase the risk of NSF by inducing release of Gd3+ from GBCAs. Here, we show 1) ASARM peptides bind and induce release of Gd3+ from GBCAs in vitro and in vivo; 2) A bioengineered peptide (SPR4) stabilizes the Gd3+-GBCA complex by specifically binding to ASARM peptide in vitro and in vivo; and 3) SPR4 peptide infusion prevents GBCA-induced NSF-like pathology in a murine model with increased ASARM peptide (Hyp mouse). We conclude ASARM peptides may play a role in NSF and SPR4 peptide is a candidate adjuvant for preventing or reducing risk of disease.


Asunto(s)
Medios de Contraste , Proteínas de la Matriz Extracelular/metabolismo , Gadolinio DTPA , Glicoproteínas/metabolismo , Riñón/metabolismo , Meglumina/análogos & derivados , Dermopatía Fibrosante Nefrogénica/prevención & control , Compuestos Organometálicos , Endopeptidasa Neutra Reguladora de Fosfato PHEX/farmacología , Fragmentos de Péptidos/farmacología , Fosfoproteínas/metabolismo , Animales , Citoprotección , Modelos Animales de Enfermedad , Estabilidad de Medicamentos , Raquitismo Hipofosfatémico Familiar/complicaciones , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Riñón/diagnóstico por imagen , Riñón/patología , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Dermopatía Fibrosante Nefrogénica/inducido químicamente , Dermopatía Fibrosante Nefrogénica/diagnóstico , Dermopatía Fibrosante Nefrogénica/genética , Dermopatía Fibrosante Nefrogénica/metabolismo , Endopeptidasa Neutra Reguladora de Fosfato PHEX/metabolismo , Fragmentos de Péptidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Microtomografía por Rayos X
3.
Bone ; 72: 23-33, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25460577

RESUMEN

CONTEXT: ASARM-peptides are substrates and ligands for PHEX, the gene responsible for X-linked hypophosphatemic rickets (HYP). PHEX binds to the DMP1-ASARM-motif to form a trimeric-complex with α5ß3-integrin on the osteocyte surface and this suppresses FGF23 expression. ASARM-peptide disruption of this complex increases FGF23 expression. We used a 4.2kDa peptide (SPR4) that binds to ASARM-peptide and ASARM-motif to study DMP1-PHEX interactions and to assess SPR4 for treating inherited hypophosphatemic rickets. DESIGN: Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle into wild-type mice (WT) and HYP-mice for 4 weeks. RESULTS: Asymmetrically distributed mineralization defects occurred with WT-SPR4 femurs. Specifically, SPR4 induced negative effects on trabecular bone and increased bone volume and mineralization in cortical-bone. Markedly increased sclerostin and reduced active ß-catenin occurred with HYP mice. SPR4-infusion suppressed sclerostin and increased active ß-catenin in WT and HYP mice and improved HYP-mice trabecular mineralization defects but not cortical mineralization defects. CONCLUSIONS: SPR4-peptide has bimodal activity and acts by: (1) preventing DMP1 binding to PHEX and (2) sequestering an inhibitor of DMP1-PHEX binding, ASARM-peptide. In PHEX defective HYP-mice the second pathway predominates. Although SPR4-peptide improved trabecular calcification defects, decreased sclerostin and increased active ß-catenin it did not correct HYP-mice cortical mineralization defects on a normal phosphate diet. Thus, for inherited hypophosphatemic rickets patients on a normal phosphate diet, SPR4-peptide is not a useful therapeutic.


Asunto(s)
Huesos/metabolismo , Raquitismo Hipofosfatémico Familiar/fisiopatología , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Glicoproteínas/metabolismo , Péptidos/química , beta Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Dieta , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/metabolismo , Raquitismo Hipofosfatémico Familiar/genética , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular , Riñón/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Endopeptidasa Neutra Reguladora de Fosfato PHEX/metabolismo , Fosfatos/química , Unión Proteica , ARN Mensajero/metabolismo , Microtomografía por Rayos X
4.
Bone ; 79: 131-42, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26051469

RESUMEN

CONTEXT: Mice with null mutations in matrix extracellular phosphoglycoprotein (MEPE) have increased bone mass, increased trabecular density and abnormal cancellous bone (MN-mice). These defects worsen with age and MEPE overexpression induces opposite effects. Also, genome wide association studies show that MEPE plays a major role in bone mass. We hypothesized that the conserved C-terminal MEPE ASARM-motif is chiefly responsible for regulating bone mass and trabecular structure. DESIGN: To test our theory we overexpressed C-terminal ASARM-peptide in MN-mice using the Col1α1 promoter (MNAt-mice). We then compared the bone and renal phenotypes of the MNAt-mouse with the MN-mouse and the X-linked hypophosphatemic rickets mouse (HYP). The HYP mouse overexpresses ASARM-peptides and is defective for the PHEX gene. RESULTS: The MN-mouse developed increased bone mass, bone strength and trabecular abnormalities that worsened markedly with age. Defects in bone formation were chiefly responsible with suppressed sclerostin and increased active ß-catenin. Increased uric acid levels also suggested that abnormalities in purine-metabolism and a reduced fractional excretion of uric acid signaled additional renal transport changes. The MN mouse developed a worsening hyperphosphatemia and reduced FGF23 with age. An increase in the fractional excretion of phosphate (FEP) despite the hyperphosphatemia confirms an imbalance in kidney-intestinal phosphate regulation. Also, the MN mice showed an increased creatinine clearance suggesting hyperfiltration. A reversal of the MN bone-renal phenotype changes occurred with the MNAt mice including the apparent hyperfiltration. The MNAt mice also developed localized hypomineralization, hypophosphatemia and increased FGF23. CONCLUSIONS: The C-terminal ASARM-motif plays a major role in regulating bone-mass and cancellous structure as mice age. In healthy mice, the processing and release of free ASARM-peptide are chiefly responsible for preserving normal bone and renal function. Free ASARM-peptide also affects renal mineral phosphate handling by influencing FGF23 expression. These findings have implications for understanding age-dependent osteoporosis, unraveling drug-targets and developing treatments.


Asunto(s)
Huesos/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Riñón/metabolismo , Osteoporosis/metabolismo , Fosfoproteínas/metabolismo , Absorciometría de Fotón , Animales , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/genética , Factor-23 de Crecimiento de Fibroblastos , Glicoproteínas/genética , Immunoblotting , Inmunohistoquímica , Pruebas de Función Renal , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoporosis/genética , Fosfoproteínas/genética , Reacción en Cadena de la Polimerasa
5.
PLoS One ; 9(5): e97326, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24839967

RESUMEN

CONTEXT: PHEX or DMP1 mutations cause hypophosphatemic-rickets and altered energy metabolism. PHEX binds to DMP1-ASARM-motif to form a complex with α5ß3 integrin that suppresses FGF23 expression. ASARM-peptides increase FGF23 by disrupting the PHEX-DMP1-Integrin complex. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide/motif to study the DMP1-PHEX interaction and to assess SPR4 for the treatment of energy metabolism defects in HYP and potentially other bone-mineral disorders. DESIGN: Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle (VE) into wild-type mice (WT) and HYP-mice (PHEX mutation) for 4 weeks. RESULTS: SPR4 partially corrected HYP mice hypophosphatemia and increased serum 1.25(OH)2D3. Serum FGF23 remained high and PTH was unaffected. WT-SPR4 mice developed hypophosphatemia and hypercalcemia with increased PTH, FGF23 and 1.25(OH)2D3. SPR4 increased GAPDH HYP-bone expression 60× and corrected HYP-mice hyperglycemia and hypoinsulinemia. HYP-VE serum uric-acid (UA) levels were reduced and SPR4 infusion suppressed UA levels in WT-mice but not HYP-mice. SPR4 altered leptin, adiponectin, and sympathetic-tone and increased the fat mass/weight ratio for HYP and WT mice. Expression of perlipin-2 a gene involved in obesity was reduced in HYP-VE and WT-SPR4 mice but increased in HYP-SPR4 mice. Also, increased expression of two genes that inhibit insulin-signaling, ENPP1 and ESP, occurred with HYP-VE mice. In contrast, SPR4 reduced expression of both ENPP1 and ESP in WT mice and suppressed ENPP1 in HYP mice. Increased expression of FAM20C and sclerostin occurred with HYP-VE mice. SPR4 suppressed expression of FAM20C and sclerostin in HYP and WT mice. CONCLUSIONS: ASARM peptides and motifs are physiological substrates for PHEX and modulate osteocyte PHEX-DMP1-α5ß3-integrin interactions and thereby FGF23 expression. These interactions also provide a nexus that regulates bone and energy metabolism. SPR4 suppression of sclerostin and/or sequestration of ASARM-peptides improves energy metabolism and may have utility for treating familial rickets, osteoporosis, obesity and diabetes.


Asunto(s)
Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Endopeptidasa Neutra Reguladora de Fosfato PHEX/química , Péptidos/uso terapéutico , Animales , Metabolismo Energético/efectos de los fármacos , Proteínas de la Matriz Extracelular/metabolismo , Raquitismo Hipofosfatémico Familiar/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA