Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Physiol ; 194(1): 209-228, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37073485

RESUMEN

Expansins facilitate cell expansion by mediating pH-dependent cell wall (CW) loosening. However, the role of expansins in controlling CW biomechanical properties in specific tissues and organs remains elusive. We monitored hormonal responsiveness and spatial specificity of expression and localization of expansins predicted to be the direct targets of cytokinin signaling in Arabidopsis (Arabidopsis thaliana). We found EXPANSIN1 (EXPA1) homogenously distributed throughout the CW of columella/lateral root cap, while EXPA10 and EXPA14 localized predominantly at 3-cell boundaries in the epidermis/cortex in various root zones. EXPA15 revealed cell-type-specific combination of homogenous vs. 3-cell boundaries localization. By comparing Brillouin frequency shift and AFM-measured Young's modulus, we demonstrated Brillouin light scattering (BLS) as a tool suitable for non-invasive in vivo quantitative assessment of CW viscoelasticity. Using both BLS and AFM, we showed that EXPA1 overexpression upregulated CW stiffness in the root transition zone (TZ). The dexamethasone-controlled EXPA1 overexpression induced fast changes in the transcription of numerous CW-associated genes, including several EXPAs and XYLOGLUCAN:XYLOGLUCOSYL TRANSFERASEs (XTHs), and associated with rapid pectin methylesterification determined by in situ Fourier-transform infrared spectroscopy in the root TZ. The EXPA1-induced CW remodeling is associated with the shortening of the root apical meristem, leading to root growth arrest. Based on our results, we propose that expansins control root growth by a delicate orchestration of CW biomechanical properties, possibly regulating both CW loosening and CW remodeling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fenómenos Biomecánicos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/metabolismo , Hormonas/metabolismo , Pared Celular/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216343

RESUMEN

In plants, salicylic acid (SA) is a hormone that mediates a plant's defense against pathogens. SA also takes an active role in a plant's response to various abiotic stresses, including chilling, drought, salinity, and heavy metals. In addition, in recent years, numerous studies have confirmed the important role of SA in plant morphogenesis. In this review, we summarize data on changes in root morphology following SA treatments under both normal and stress conditions. Finally, we provide evidence for the role of SA in maintaining the balance between stress responses and morphogenesis in plant development, and also for the presence of SA crosstalk with other plant hormones during this process.


Asunto(s)
Desarrollo de la Planta/fisiología , Raíces de Plantas/metabolismo , Plantas/metabolismo , Ácido Salicílico/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo
3.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012247

RESUMEN

(1) Background: The widespread application of ChIP-seq technology requires annotation of cis-regulatory modules through the search of co-occurred motifs. (2) Methods: We present the web server Motifs Co-Occurrence Tool (Web-MCOT) that for a single ChIP-seq dataset detects the composite elements (CEs) or overrepresented homo- and heterotypic pairs of motifs with spacers and overlaps, with any mutual orientations, uncovering various similarities to recognition models within pairs of motifs. The first (Anchor) motif in CEs respects the target transcription factor of the ChIP-seq experiment, while the second one (Partner) can be defined either by a user or a public library of Partner motifs being processed. (3) Results: Web-MCOT computes the significances of CEs without reference to motif conservation and those with more conserved Partner and Anchor motifs. Graphic results show histograms of CE abundance depending on orientations of motifs, overlap and spacer lengths; logos of the most common CE structural types with an overlap of motifs, and heatmaps depicting the abundance of CEs with one motif possessing higher conservation than another. (4) Conclusions: Novel capacities of Web-MCOT allow retrieving from a single ChIP-seq dataset with maximal information on the co-occurrence of motifs and potentiates planning of next ChIP-seq experiments.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Factores de Transcripción , Sitios de Unión , Inmunoprecipitación de Cromatina/métodos , Factores de Transcripción/genética
4.
J Exp Bot ; 72(19): 6746-6754, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34111279

RESUMEN

As plants are sessile organisms unable to escape from environmental hazards, they need to adapt for survival. The stem cell niche in the root apical meristem is particularly sensitive to DNA damage induced by environmental stresses such as chilling, flooding, wounding, UV, and irradiation. DNA damage has been proven to cause stem cell death, with stele stem cells being the most vulnerable. Stress also induces the division of quiescent center cells. Both reactions disturb the structure and activity of the root stem cell niche temporarily; however, this preserves root meristem integrity and function in the long term. Plants have evolved many mechanisms that ensure stem cell niche maintenance, recovery, and acclimation, allowing them to survive in a changing environment. Here, we provide an overview of the cellular and molecular aspects of stress responses in the root stem cell niche.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Meristema , Raíces de Plantas , Nicho de Células Madre
5.
Int J Mol Sci ; 19(12)2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30558241

RESUMEN

The auxin and ethylene pathways cooperatively regulate a variety of developmental processes in plants. Growth responses to ethylene are largely dependent on auxin, the key regulator of plant morphogenesis. Auxin, in turn, is capable of inducing ethylene biosynthesis and signaling, making the interaction of these hormones reciprocal. Recent studies discovered a number of molecular events underlying auxin-ethylene crosstalk. In this review, we summarize the results of fine-scale and large-scale experiments on the interactions between the auxin and ethylene pathways in Arabidopsis. We integrate knowledge on molecular crosstalk events, their tissue specificity, and associated phenotypic responses to decipher the crosstalk mechanisms at a systems level. We also discuss the prospects of applying systems biology approaches to study the mechanisms of crosstalk between plant hormones.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal , Biología de Sistemas/métodos
6.
Front Plant Sci ; 13: 942710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061801

RESUMEN

Having DNA-binding profiles for a sufficient number of genome-encoded transcription factors (TFs) opens up the perspectives for systematic evaluation of the upstream regulators for the gene lists. Plant Cistrome database, a large collection of TF binding profiles detected using the DAP-seq method, made it possible for Arabidopsis. Here we re-processed raw DAP-seq data with MACS2, the most popular peak caller that leads among other ones according to quality metrics. In the benchmarking study, we confirmed that the improved collection of TF binding profiles supported a more precise gene list enrichment procedure, and resulted in a more relevant ranking of potential upstream regulators. Moreover, we consistently recovered the TF binding profiles that were missing in the previous collection of DAP-seq peak sets. We developed the CisCross web service (https://plamorph.sysbio.ru/ciscross/) that gives more flexibility in the analysis of potential upstream TF regulators for Arabidopsis thaliana genes.

7.
Curr Opin Plant Biol ; 63: 102058, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34098218

RESUMEN

Innovative omics technologies, advanced bioinformatics, and machine learning methods are rapidly becoming integral tools for plant functional genomics, with tremendous recent advances made in this field. In transcriptional regulation, an initial lag in the accumulation of plant omics data relative to that of animals stimulated the development of computational methods capable of extracting maximum information from the available data sets. Recent comprehensive studies of transcription factor-binding profiles in Arabidopsis and maize and the accumulation of uniformly processed omics data in public databases have brought plant biologists into the big leagues, with many cutting-edge methods available. Here, we summarize the state-of-the-art bioinformatics approaches used to predict or infer the cis-regulatory code behind transcriptional gene regulation, focusing on their plant research applications.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica , Animales , Arabidopsis/genética , Biología Computacional
8.
Front Microbiol ; 12: 689929, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276622

RESUMEN

BisI is a sequence-specific and 5-methylcytosine (m5C)-dependent restriction endonuclease (REase), that cleaves the modified DNA sequence Gm5CNGC (G indicates that the cytosine opposite to G is modified). We expressed and purified a number of BisI homologs from sequenced bacterial genomes and used Illumina sequencing to determine the Pam7902I (Esp638I-like) cleavage sites in phage Xp12 DNA. One BisI homolog KpnW2I is EcoBLMcrX-like, cleaving GCNGC/RCNGY/RCNRC sites with m5C. We also cloned and expressed three BisI homologs from metagenome sequences derived from thermophilic sources. One enzyme EsaTMI is active at 37 to 65°C. EsaHLI cleaves GCNGC sites with three to four m5C and is active up to 50°C. In addition, we determined the number and position of m5C in BisI sites for efficient cleavage. BisI cleavage efficiency of GCNGC site is as following: Gm5CNGC (two internal m5C) > Gm5CNGC (one internal m5C) > GCNGm5C (one external m5C) > > GCNGC (unmodified). Three or four m5C in GCNGC site also supports BisI cleavage although partial inhibition was observed on duplex oligos with four m5C. BisI can be used to partially cleave a desired GCNGC site targeted with a complementary oligonucleotide (hemi-methylated). The m5C-dependent BisI variants will be useful for epigenetic research.

9.
Genes (Basel) ; 11(4)2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316383

RESUMEN

Gene expression profiling data contains more information than is routinely extracted with standard approaches. Here we present Fold-Change-Specific Enrichment Analysis (FSEA), a new method for functional annotation of differentially expressed genes from transcriptome data with respect to their fold changes. FSEA identifies Gene Ontology (GO) terms, which are shared by the group of genes with a similar magnitude of response, and assesses these changes. GO terms found by FSEA are fold-change-specifically (e.g., weakly, moderately, or strongly) affected by a stimulus under investigation. We demonstrate that many responses to abiotic factors, mutations, treatments, and diseases occur in a fold-change-specific manner. FSEA analyses suggest that there are two prevailing responses of functionally-related gene groups, either weak or strong. Notably, some of the fold-change-specific GO terms are invisible by classical algorithms for functional gene enrichment, Singular Enrichment Analysis (SEA), and Gene Set Enrichment Analysis (GSEA). These are GO terms not enriched compared to the genome background but strictly regulated by a factor within specific fold-change intervals. FSEA analysis of a cancer-related transcriptome suggested that the gene groups with a tightly coordinated response can be the valuable source to search for possible regulators, markers, and therapeutic targets in oncogenic processes. Availability and Implementation: FSEA is implemented as the FoldGO Bioconductor R package and a web-server.


Asunto(s)
Algoritmos , Biomarcadores/análisis , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Transcriptoma , Bases de Datos Genéticas , Humanos
10.
Front Plant Sci ; 10: 1030, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507622

RESUMEN

EIN3/EIL1 transcription factors are the key regulators of ethylene signaling that sustain a variety of plant responses to ethylene. Since ethylene regulates multiple aspects of plant development and stress responses, its signaling outcome needs proper modulation depending on the spatiotemporal and environmental conditions. In this review, we summarize recent advances on the molecular mechanisms that underlie EIN3/EIL1-directed ethylene signaling in Arabidopsis. We focus on the role of EIN3/EIL1 in tuning transcriptional regulation of ethylene response in time and space. Besides, we consider the role of EIN3/EIL1-independent regulation of ethylene signaling.

11.
Front Plant Sci ; 7: 2044, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28119721

RESUMEN

The plant hormone ethylene regulates numerous developmental processes and stress responses. Ethylene signaling proceeds via a linear pathway, which activates transcription factor (TF) EIN3, a primary transcriptional regulator of ethylene response. EIN3 influences gene expression upon binding to a specific sequence in gene promoters. This interaction, however, might be considerably affected by additional co-factors. In this work, we perform whole genome bioinformatics study to identify the impact of epigenetic factors in EIN3 functioning. The analysis of publicly available ChIP-Seq data on EIN3 binding in Arabidopsis thaliana showed bimodality of distribution of EIN3 binding regions (EBRs) in gene promoters. Besides a sharp peak in close proximity to transcription start site, which is a common binding region for a wide variety of TFs, we found an additional extended peak in the distal promoter region. We characterized all EBRs with respect to the epigenetic status appealing to previously published genome-wide map of nine chromatin states in A. thaliana. We found that the implicit distal peak was associated with a specific chromatin state (referred to as chromatin state 4 in the primary source), which was just poorly represented in the pronounced proximal peak. Intriguingly, EBRs corresponding to this chromatin state 4 were significantly associated with ethylene response, unlike the others representing the overwhelming majority of EBRs related to the explicit proximal peak. Moreover, we found that specific EIN3 binding sequences predicted with previously described model were enriched in the EBRs mapped to the chromatin state 4, but not to the rest ones. These results allow us to conclude that the interplay of genetic and epigenetic factors might cause the distinct modes of EIN3 regulation.

12.
J Bioinform Comput Biol ; 14(2): 1641009, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27122321

RESUMEN

Auxin is the major regulator of plant growth and development. It regulates gene expression via a family of transcription factors (ARFs) that bind to auxin responsive elements (AuxREs) in the gene promoters. The canonical AuxREs found in regulatory regions of many auxin responsive genes contain the TGTCTC core motif, whereas ARF binding site is a degenerate TGTCNN with TGTCGG strongly preferred. Thereby two questions arise: which TGTCNN variants are functional AuxRE cores and whether different TGTCNN variants have distinct functional roles? In this study, we performed meta-analysis of microarray data to reveal TGTCNN variants essential for auxin response and to characterize their functional features. Our results indicate that four TGTCNN motifs (TGTCTC, TGTCCC, TGTCGG, and TGTCTG) are associated with auxin up-regulation and two (TGTCGG, TGTCAT) with auxin down-regulation, but to a lesser extent. The genes having some of these motifs in their regulatory regions showed time-specific auxin response. Functional annotation of auxin up- and down-regulated genes also revealed GO terms specific for the auxin-regulated genes with certain TGTCNN variants in their promoters. Our results provide an idea that various TGTCNN motifs may play distinct roles in the auxin regulation of gene expression.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Elementos de Respuesta , Regiones no Traducidas 5' , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Regulación de la Expresión Génica de las Plantas , Motivos de Nucleótidos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA