Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nano Lett ; 24(8): 2473-2480, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38252466

RESUMEN

Two-dimensional materials (2DMs) have gained significant interest for resistive-switching memory toward neuromorphic and in-memory computing (IMC). To achieve atomic-level miniaturization, we introduce vertical hexagonal boron nitride (h-BN) memristors with graphene edge contacts. In addition to enabling three-dimensional (3D) integration (i.e., vertical stacking) for ultimate scalability, the proposed structure delivers ultralow power by isolating single conductive nanofilaments (CNFs) in ultrasmall active areas with negligible leakage thanks to atomically thin (∼0.3 nm) graphene edge contacts. Moreover, it facilitates studying fundamental resistive-switching behavior of single CNFs in CVD-grown 2DMs that was previously unattainable with planar devices. This way, we studied their programming characteristics and observed a consistent single quantum step in conductance attributed to unique atomically constrained nanofilament behavior in CVD-grown 2DMs. This resistive-switching property was previously suggested for h-BN memristors and linked to potential improvements in stability (robustness of CNFs), and now we show experimental evidence including superior retention of quantized conductance.

2.
Nat Mater ; 22(1): 92-99, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36280702

RESUMEN

Electrochemical phase transformation in ion-insertion crystalline electrodes is accompanied by compositional and structural changes, including the microstructural development of oriented phase domains. Previous studies have identified prevailingly transformation heterogeneities associated with diffusion- or reaction-limited mechanisms. In comparison, transformation-induced domains and their microstructure resulting from the loss of symmetry elements remain unexplored, despite their general importance in alloys and ceramics. Here, we map the formation of oriented phase domains and the development of strain gradient quantitatively during the electrochemical ion-insertion process. A collocated four-dimensional scanning transmission electron microscopy and electron energy loss spectroscopy approach, coupled with data mining, enables the study. Results show that in our model system of cubic spinel MnO2 nanoparticles their phase transformation upon Mg2+ insertion leads to the formation of domains of similar chemical identity but different orientations at nanometre length scale, following the nucleation, growth and coalescence process. Electrolytes have a substantial impact on the transformation microstructure ('island' versus 'archipelago'). Further, large strain gradients build up from the development of phase domains across their boundaries with high impact on the chemical diffusion coefficient by a factor of ten or more. Our findings thus provide critical insights into the microstructure formation mechanism and its impact on the ion-insertion process, suggesting new rules of transformation structure control for energy storage materials.

3.
Inorg Chem ; 63(18): 8131-8141, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38639743

RESUMEN

Mixed metal oxyhalides are an exciting class of photocatalysts, capable of the sustainable generation of fuels and remediation of pollutants with solar energy. Bismuth oxyhalides of the types Bi4MO8X (M = Nb and Ta; X = Cl and Br) and Bi2AO4X (A = most lanthanides; X = Cl, Br, and I) have an electronic structure that imparts photostability, as their valence band maxima (VBM) are composed of O 2p orbitals rather than X np orbitals that typify many other bismuth oxyhalides. Here, flux-based synthesis of intergrowth Bi4NbO8Cl-Bi2GdO4Cl is reported, testing the hypothesis that both intergrowth stoichiometry and M identity serve as levers toward tunable optoelectronic properties. X-ray scattering and atomically resolved electron microscopy verify intergrowth formation. Facile manipulation of the Bi4NbO8Cl-to-Bi2GdO4Cl ratio is achieved with the specific ratio influencing both the crystal and electronic structures of the intergrowths. This compositional flexibility and crystal structure engineering can be leveraged for photocatalytic applications, with comparisons to the previously reported Bi4TaO8Cl-Bi2GdO4Cl intergrowth revealing how subtle structural and compositional features can impact photocatalytic materials.

4.
J Am Chem Soc ; 145(25): 13957-13967, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37335563

RESUMEN

Harvesting recyclable ammonia (NH3) from the electrocatalytic reduction of nitrate (NO3RR) offers a sustainable strategy to close the ecological nitrogen cycle from nitration contamination in an energy-efficient and environmentally friendly manner. The emerging intermetallic single-atom alloys (ISAAs) are recognized to achieve the highest site density of single atoms by isolating contiguous metal atoms into single sites stabilized by another metal within the intermetallic structure, which holds promise to couple the catalytic benefits from intermetallic nanocrystals and single-atom catalysts for promoting NO3RR. Herein, ISAA In-Pd bimetallene, in which the Pd single atoms are isolated by surrounding In atoms, is reported to boost neutral NO3RR with a NH3 Faradaic efficiency (FE) of 87.2%, a yield rate of 28.06 mg h-1 mgPd-1, and an exceptional electrocatalytic stability with increased activity/selectivity over 100 h and 20 cycles. The ISAA structure induces substantially diminished overlap of Pd d-orbitals and narrowed p-d hybridization of In-p and Pd-d states around the Fermi level, resulting in a stronger NO3- adsorption and a depressed energy barrier of the potential-determining step for NO3RR. Further integrating the NO3RR catalyst into a Zn-NO3- flow battery as the cathode delivers a power density of 12.64 mW cm-2 and a FE of 93.4% for NH3 production.

5.
J Am Chem Soc ; 144(28): 12673-12680, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35793438

RESUMEN

The conversion of CO2 into value-added products is a compelling way of storing energy derived from intermittent renewable sources and can bring us closer to a closed-loop anthropogenic carbon cycle. The ability to synthesize nanocrystals of well-defined structure and composition has invigorated catalysis science with the promise of nanocrystals that selectively express the most favorable sites for efficient catalysis. The performance of nanocrystal catalysts for the CO2 reduction reaction (CO2RR) is typically evaluated with nanocrystal ensembles, which returns an averaged system-level response of complex catalyst-modified electrodes with each nanocrystal likely contributing a different (unknown) amount. Measurements at single nanocrystals, taken in the context of statistical analysis of a population, and comparison to macroscale measurements are necessary to untangle the complexity of the ever-present heterogeneity in nanocrystal catalysts, achieve true structure-property correlation, and potentially identify nanocrystals with outlier performance. Here, we employ environment-controlled scanning electrochemical cell microscopy to isolate and investigate the electrocatalytic CO2RR response of individual facet-defined gold nanocrystals. Using correlative microscopy approaches, we conclusively demonstrate that {110}-terminated gold rhombohedra possess superior activity and selectivity for CO2RR compared with {111}-terminated octahedra and high-index {310}-terminated truncated ditetragonal prisms, especially at low overpotentials where electrode kinetics is anticipated to dominate the current response. The methodology framework described here could inform future studies of complex electrocatalytic processes through correlative single-entity and macroscale measurement techniques.


Asunto(s)
Dióxido de Carbono , Nanopartículas , Dióxido de Carbono/química , Catálisis , Oro , Nanopartículas/química , Propiedades de Superficie
6.
Acta Pharmacol Sin ; 43(11): 2817-2827, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35501362

RESUMEN

Progressive ischemic stroke (PIS) is featured by progressive neurological dysfunction after ischemia. Ischemia-evoked neuroinflammation is implicated in the progressive brain injury after cerebral ischemia, while Caspase-1, an active component of inflammasome, exaggerates ischemic brain injury. Current Caspase-1 inhibitors are inadequate in safety and druggability. Here, we investigated the efficacy of CZL80, a novel Caspase-1 inhibitor, in mice with PIS. Mice and Caspase-1-/- mice were subjected to photothrombotic (PT)-induced cerebral ischemia. CZL80 (10, 30 mg·kg-1·d-1, i.p.) was administered for one week after PT onset. The transient and the progressive neurological dysfunction (as foot faults in the grid-walking task and forelimb symmetry in the cylinder task) was assessed on Day1 and Day4-7, respectively, after PT onset. Treatment with CZL80 (30 mg/kg) during Day1-7 significantly reduced the progressive, but not the transient neurological dysfunction. Furthermore, we showed that CZL80 administered on Day4-7, when the progressive neurological dysfunction occurred, produced significant beneficial effects against PIS, suggesting an extended therapeutic time-window. CZL80 administration could improve the neurological function even as late as Day43 after PT. In Caspase-1-/- mice with PIS, the beneficial effects of CZL80 were abolished. We found that Caspase-1 was upregulated during Day4-7 after PT and predominantly located in activated microglia, which was coincided with the progressive neurological deficits, and attenuated by CZL80. We showed that CZL80 administration did not reduce the infarct volume, but significantly suppressed microglia activation in the peri-infarct cortex, suggesting the involvement of microglial inflammasome in the pathology of PIS. Taken together, this study demonstrates that Caspase-1 is required for the progressive neurological dysfunction in PIS. CZL80 is a promising drug to promote the neurological recovery in PIS by inhibiting Caspase-1 within a long therapeutic time-window.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Inflamasomas , Modelos Animales de Enfermedad , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Microglía , Infarto Cerebral , Caspasa 1 , Lesiones Encefálicas/patología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/patología , Ratones Endogámicos C57BL
7.
Nano Lett ; 21(22): 9517-9525, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34729982

RESUMEN

The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW heterostructures. Among various vdW magnets, Cr1+δTe2 possesses high temperature ferromagnetism along with possible topological spin textures. As this system can support self-intercalation in the vdW gap, it is crucial to precisely pinpoint the exact intercalation to understand the intrinsic magnetism of the system. Here, we developed an iterative method to determine the self-intercalated structures and show evidence of vdW "superstructures" in individual Cr1+δTe2 nanoplates exhibiting magnetic behaviors distinct from bulk chromium tellurides. Among 26,332 possible configurations, we unambiguously identified the Cr-intercalated structure as 3-fold symmetry broken Cr1.5Te2 segmented by vdW gaps. Moreover, a twisted Cr-intercalated layered structure is observed. The spontaneous formation of twisted vdW "superstructures" not only provides insight into the diverse magnetic properties of intercalated vdW magnets but may also add complementary building blocks to vdW-based spintronics.

8.
Nano Lett ; 20(10): 7263-7271, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32866022

RESUMEN

We report a heterometallic seed-mediated synthesis method for monodisperse penta-twinned Cu nanorods using Au nanocrystals as seeds. Elemental analyses indicate that resultant nanorods consist predominantly of copper with a gold content typically below 3 atom %. The nanorod aspect ratio can be readily adjusted from 2.8 to 13.1 by varying the molar ratio between Au seeds and Cu precursor, resulting in narrow longitudinal plasmon resonances tunable from 762 to 2201 nm. Studies of reaction intermediates reveal that symmetry-breaking is promoted by rapid nanoscale diffusion in Au-Cu alloys and the formation of a gold-rich surface. The growth pathway features coevolving shape and composition whereby nanocrystals become progressively enriched with Cu concomitant with nanorod growth. The availability of uniform colloidal Cu nanorods with widely tunable aspect ratios opens new avenues toward the synthesis of derivative one-dimensional metal nanostructures, and applications in surface-enhanced spectroscopy, bioimaging, and electrocatalysis, among others.


Asunto(s)
Nanoestructuras , Nanotubos , Cobre , Oro , Resonancia por Plasmón de Superficie
9.
Nano Lett ; 19(7): 4712-4720, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251071

RESUMEN

An emergent theme in mono- and multivalent ion batteries is to utilize nanoparticles (NPs) as electrode materials based on the phenomenological observations that their short ion diffusion length and large electrode-electrolyte interface can lead to improved ion insertion kinetics compared to their bulk counterparts. However, the understanding of how the NP size fundamentally relates to their electrochemical behaviors (e.g., charge storage mechanism, phase transition associated with ion insertion) is still primitive. Here, we employ spinel λ-MnO2 particles as a model cathode material, which have effective Mg2+ ion intercalation but with their size effect poorly understood to investigate their operating mechanism via a suite of electrochemical and structural characterizations. We prepare two differently sized samples, the small nanoscopic λ-MnO2 particles (81 ± 25 nm) and big micron-sized ones (814 ± 207 nm) via postsynthesis size-selection. Analysis of the charge storage mechanisms shows that the stored charge from Mg2+ ion intercalation dominates in both systems and is ∼10 times higher in small particles than that in the big ones. From both X-ray diffraction and atomic-resolution scanning transmission electron microscopy imaging, we reveal a fundamental difference in phase transition of the differently sized particles during Mg2+ ion intercalation: the small NPs undergo a solid-solution-like phase transition which minimizes lattice mismatch and energy penalty for accommodating new phases, whereas the big particles follow conventional multiphase transformation. We show that this pathway difference is related to the improved electrochemical performance (e.g., rate capability, cycling performance) of small particles over the big ones which provides important insights in encoding within the particle dimension, that is, the single-phase transition pathway in high-performance electrode materials for multivalent ion batteries.

13.
Nanoscale ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028007

RESUMEN

The synthesis of bismuth oxyhalides as defined nanostructures is hindered by their fast nucleation and growth in aqueous solutions. Using our recently developed single-source precursor, the formation of bismuth oxychloride in such solutions can be slowed significantly. As reported herein, this advance enables BiOCl formation to be investigated by in situ X-ray total scattering and in situ liquid cell transmission electron microscopy. In situ pair distribution function analysis of X-ray total scattering data reveals the local order of atomic structures throughout the synthesis, while in situ liquid cell transmission electron microscopy allows for tracking the growth of individual nanoparticles. Through this work, the precursor complex is shown to give rise to BiOCl upon heating in solution without the observation of structurally distinct intermediates. The emerging nanoparticles have a widened interlayer spacing, which moderately decreases as the particles grow. Mechanistic insights into the formation of bismuth oxyhalide nanoparticles, including the absence of distinct intermediates within the available time resolution, will help facilitate future design of controlled BiOX nanostructures.

14.
Int J Biol Macromol ; 232: 123431, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36702039

RESUMEN

How to improve the water and pollution resistance of films has been a major stumbling block in applications of waterborne coatings. To solve this problem, a new strategy was developed to construct waterborne superhydrophobic polyurethane composite films by modifying cellulose nanocrystal (CNC) with polysiloxane and doping the modified CNC into waterborne polyurethane (WPU). The super-hydrophobic functionalization with a water contact angle >150° was achieved by simple sanding. The effects of CNC on the morphology, thermal, mechanical, and hydrophobic properties of the obtained superhydrophobic composite films were investigated. The simple sanding process formed a large number of rough porous structures on the surface of the film, which improved the superhydrophobic properties of the film. And after 30 sanding cycles, the film still had excellent hydrophobicity (water contact angle >150°). This easy and effective method for the preparation of superhydrophobic films has great practical application value in the area of waterborne coatings.


Asunto(s)
Poliuretanos , Arena , Poliuretanos/química , Siliconas , Interacciones Hidrofóbicas e Hidrofílicas , Agua/química
15.
ACS Nano ; 17(22): 22499-22507, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37926957

RESUMEN

Bimetallic nanoparticles often show properties superior to their single-component counterparts. However, the large parameter space, including size, structure, composition, and spatial arrangement, impedes the discovery of the best nanoparticles for a given application. High-throughput methods that can control the composition and spatial arrangement of the nanoparticles are desirable for accelerated materials discovery. Herein, we report a methodology for synthesizing bimetallic alloy nanoparticle arrays with precise control over their composition and spatial arrangement. A dual-channel nanopipet is used, and nanofluidic control in the nanopipet further enables precise tuning of the electrodeposition rate of each element, which determines the final composition of the nanoparticle. The composition control is validated by finite element simulation as well as electrochemical and elemental analyses. The scope of the particles demonstrated includes Cu-Ag, Cu-Pt, Au-Pt, Cu-Pb, and Co-Ni. We further demonstrate surface patterning using Cu-Ag alloys with precise control of the location and composition of each pixel. Additionally, combining the nanoparticle alloy synthesis method with scanning electrochemical cell microscopy (SECCM) allows for fast screening of electrocatalysts. The method is generally applicable for synthesizing metal nanoparticles that can be electrodeposited, which is important toward developing automated synthesis and screening systems for accelerated material discovery in electrocatalysis.

16.
Nanoscale ; 15(8): 3749-3756, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36645383

RESUMEN

Galvanic replacement (GR) of monometallic nanoparticles (NPs) provides a versatile route to interesting bimetallic nanostructures, with examples such as nanoboxes, nanocages, nanoshells, nanorings, and heterodimers reported. The replacement of bimetallic templates by a more noble metal can generate trimetallic nanostructures with different architectures, where the specific structure has been shown to depend on the relative reduction potentials of the participating metals and lattice mismatch between the depositing and template metal phases. Now, the role of reaction stoichiometry is shown to direct the overall architecture of multimetallic nanostructures produced by GR with bimetallic templates. Specifically, the number of initial metal islands deposited on a NP template depends on the reaction stoichiometry. This outcome was established by studying the GR process between intermetallic PdCu (i-PdCu) NPs and either AuCl2- (Au1+) or AuCl4- (Au3+), producing i-PdCu-Au heterostructures. Significantly, multiple Au domains form in the case of GR with AuCl2- while only single Au domains form in the case of AuCl4-. These different NP architectures and their connection to reaction stoichiometry are consistent with Stranski-Krastanov (SK) growth, providing general guidelines on how the conditions of GR processes can be used to achieve multimetallic nanostructures with different defined architectures.

17.
Adv Sci (Weinh) ; 10(2): e2204424, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36437041

RESUMEN

Enhancing electron correlation in a weakly interacting topological system has great potential to promote correlated topological states of matter with extraordinary quantum properties. Here, the enhancement of electron correlation in a prototypical topological metal, namely iridium dioxide (IrO2 ), via doping with 3d transition metal vanadium is demonstrated. Single-crystalline vanadium-doped IrO2 nanowires are synthesized through chemical vapor deposition where the nanowire yield and morphology are improved by creating rough surfaces on substrates. Vanadium doping leads to a dramatic decrease in Raman intensity without notable peak broadening, signifying the enhancement of electron correlation. The enhanced electron correlation is further evidenced by transport studies where the electrical resistivity is greatly increased and follows an unusual T $\sqrt T $ dependence on the temperature (T). The lattice thermal conductivity is suppressed by an order of magnitude via doping even at room temperature where phonon-impurity scattering becomes less important. Density functional theory calculations suggest that the remarkable reduction of thermal conductivity arises from the complex phonon dispersion and reduced energy gap between phonon branches, which greatly enhances phase space for phonon-phonon Umklapp scattering. This work demonstrates a unique system combining 3d and 5d transition metals in isostructural materials to enrich the system with various types of interactions.

18.
ACS Mater Au ; 2(2): 143-153, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36855759

RESUMEN

Due to their ordered crystal structures and high structural stabilities, intermetallic nanoparticles often display enhanced catalytic, magnetic, and optical properties compared to their random alloy counterparts. Intermetallic nanoparticles can be achieved by thermal annealing of their disordered (random alloy) counterparts. However, high temperatures and long annealing times needed to achieve the disorder-to-order transition often lead to a loss of sample monodispersity and an increase in the average size of nanoparticles. Here, we performed ex situ powder X-ray diffraction (XRD) and in situ annealing transmission electron microscopy (TEM) experiments to elucidate nanoscale processes that contribute to the ordering of carbon-supported PdCu nanoparticles as a model system. Random alloy PdCu nanoparticles supported on carbon were thermally annealed for various lengths of time at the disorder-to-order phase transition temperature, where changes in nanoparticle size and the crystal phase were monitored. The nanoparticles were only completely transformed to the intermetallic phase by undertaking measures to deliberately increase their size by increasing the number of nanoparticles on the carbon support. In situ annealing TEM experiments reveal nanoscale processes that account for the disorder-to-order phase transformation. Five different processes were observed at 400 °C. Isolated nanoparticles remained in the random alloy phase or underwent a phase transformation to the intermetallic phase. Nanoparticles fused with neighboring nanoparticles resulting in no change in phase or conversion to the intermetallic phase. Evidence of vapor transport was also observed, as some isolated nanoparticles were found to diminish in size upon heating. These variable processes account for the heterogeneity often observed for intermetallic nanoparticle samples achieved through annealing and motivate the development of synthetic routes that suppress particle-particle coalescence, as well as investigating metal-support interactions to facilitate the disorder-to-order phase transformation under mild conditions. Overall, this work furthers our knowledge of the formation of intermetallic nanoparticles by thermal annealing approaches, which could accelerate the development of electrocatalysts and the application of intermetallic nanoparticles in magnetic storage devices.

19.
ACS Nano ; 16(11): 18873-18885, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36255141

RESUMEN

Colloidally prepared core@shell nanoparticles (NPs) were converted to monodisperse high entropy alloy (HEA) NPs by annealing, including quinary, senary, and septenary phases comprised of PdCuPtNi with Co, Ir, Rh, Fe, and/or Ru. Intraparticle heterogeneity, i.e., subdomains within individual NPs with different metal distributions, was observed for NPs containing Ir and Ru, with the phase stabilities of the HEAs studied by atomistic simulations. The quinary HEA NPs were found to be durable catalysts for the oxygen reduction reaction, with all but the PdCuPtNiIr NPs presenting better activities than commercial Pt. Density functional theory (DFT) calculations for PdCuPtNiCo and PdCuPtNiIr surfaces (the two extremes in performance) found agreement with experiment by weighting the adsorption energy contributions by the probabilities of each active site based on their DFT energies. This finding highlights how intraparticle heterogeneity, which we show is likely overlooked in many systems due to analytical limitations, can be leveraged toward efficient catalysis.

20.
ACS Appl Mater Interfaces ; 13(44): 51876-51885, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33945682

RESUMEN

Bimetallic Pd-based nanoparticles (NPs) are of interest as electrocatalysts for formic acid electrooxidation (FAEO) because of their higher initial catalytic activity and CO tolerance when compared to Pt. Intermetallic NPs (i-NPs) with specific geometric and electronic structures generally exhibit superior catalytic activity, selectivity, and durability when compared to their disordered (random alloy) counterparts; however, the colloidal synthesis of i-NPs remains a challenge. Here, a one-pot method was demonstrated as a facile route to obtain monodisperse Pd-Sn NPs with phase control, including intermetallic hexagonal Pd3Sn2 (P63/mmc), intermetallic orthorhombic Pd2Sn (Pnma), and alloy cubic Pd3Sn (FCC, Fm3m) as size-controlled NPs with quasi-spherical shapes. Initial metal precursor ratios and reaction temperature were critical parameters to achieving phase control. Also, slight modifications of synthetic conditions resulted in either Pd2Sn nanorhombohedra or nanorods with tunable aspect ratios. A systematic evaluation of the Pd-Sn NPs for FAEO showed that most presented higher specific activities when compared to commercial Pd/C, in which Pd2Sn quasi-spheres and nanorhombohedra showed the highest catalytic activity for FAEO. These results highlight the benefits of phase-controlled Pd-based nanocatalysts with defined nanocrystal size and shape, with use of trioctylphospine (TOP) and oleic acid (OA) central to shape and size control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA