Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nano Lett ; 24(8): 2671-2679, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38375804

RESUMEN

The emerging two-photon polymerization (TPP) technique enables high-resolution printing of complex 3D structures, revolutionizing micro/nano additive manufacturing. Various fast scanning and parallel processing strategies have been proposed to promote its efficiency. However, obtaining large numbers of uniform focal spots for parallel high-speed scanning remains challenging, which hampers the realization of higher throughput. We report a TPP printing platform that combines galvanometric mirrors and liquid crystal on silicon spatial light modulator (LCoS-SLM). By setting the target light field at LCoS-SLM's diffraction center, sufficient energy is acquired to support simultaneous polymerization of over 400 foci. With fast scanning, the maximum printing speed achieves 1.49 × 108 voxels s-1, surpassing the existing scanning-based TPP methods while maintaining high printing resolution and flexibility. To demonstrate the processing capability, functional 3D microstructure arrays are rapidly fabricated and applied in micro-optics and micro-object manipulation. Our method may expand the prospects of TPP in large-scale micro/nanomanufacturing.

2.
Small ; 20(6): e2305645, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37775938

RESUMEN

The use of photothermal therapy (PTT) with the near-infrared II region (NIR-II: 1000-1700 nm) is expected to be a powerful cancer treatment strategy. It retains the noninvasive nature and excellent temporal and spatial controllability of the traditional PTT, and offers significant advantages in terms of tissue penetration depth, background noise, and the maximum permissible exposure standards for skin. MXenes, transition-metal carbides, nitrides, and carbonitrides are emerging inorganic nanomaterials with natural biocompatibility, wide spectral absorption, and a high photothermal conversion efficiency. The PTT of MXenes in the NIR-II region not only provides a valuable reference for exploring photothermal agents that respond to NIR-II in 2D inorganic nanomaterials, but also be considered as a promising biomedical therapy. First, the synthesis methods of 2D MXenes are briefly summarized, and the laser light source, mechanism of photothermal conversion, and evaluation criteria of photothermal performance are introduced. Second, the latest progress of PTT based on 2D MXenes in NIR-II are reviewed, including titanium carbide (Ti3 C2 ), niobium carbide (Nb2 C), and molybdenum carbide (Mo2 C). Finally, the main problems in the PTT application of 2D MXenes to NIR-II and future research directions are discussed.


Asunto(s)
Hipertermia Inducida , Nanoestructuras , Terapia Fototérmica , Fototerapia/métodos , Hipertermia Inducida/métodos , Nanomedicina Teranóstica/métodos
3.
Opt Lett ; 48(7): 1562-1565, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37221710

RESUMEN

Advanced encryption and decryption strategies are of great significance for information protection and data security. Visual optical information encryption and decryption technology plays an important role in the field of information security. However, the current optical information encryption technologies have shortcomings such as the need for external decryption equipment, the inability to read out repeatedly, and information leakage, which hinder their practical application. By combining the excellent thermal response characteristics of the MXene-isocyanate propyl triethoxy silane (IPTS)/polyethylene (PE) bilayer and the structural color generated from the laser fabricated biomimetic structural color surface, an approach of encrypt, decrypt, and transmit information has been proposed. The microgroove-induced structural color is attached to the MXene-IPTS/PE bilayer to form a colored soft actuator (CSA) to realize information encryption and decryption, and information transmission. Benefiting from the unique photon-thermal response of the bilayer actuator and the precise spectrum response of the microgroove-induced structural color, the information encryption and decryption system has the advantages of being simple and reliable, which has the potential application in the field of optical information security.

4.
Nano Lett ; 22(13): 5277-5286, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35728002

RESUMEN

Functional microdevices based on responsive hydrogel show great promise in targeted delivery and biomedical analysis. Among state-of-the-art techniques for manufacturing hydrogel-based microarchitectures, femtosecond laser two-photon polymerization distinguishes itself by high designability and precision, but the point-by-point writing scheme requires mechanical apparatuses to support focus scanning. In this work, by predesigning holograms combined with lens phase modulation, multiple femtosecond laser spots are holographically generated and shifted for prototyping of three-dimensional shape-morphing structures without any moving equipment in the construction process. The microcage array is rapidly fabricated for high-performance target capturing enabled by switching environmental pH. Moreover, the built scaffolds can serve as arrayed analytical platforms for observing cell behaviors in normal or changeable living spaces or revealing the anticancer effects of loaded drugs. The proposed approach opens a new path for facile and flexible manufacturing of hydrogel-based functional microstructures with great versatility in micro-object manipulation.


Asunto(s)
Hidrogeles , Rayos Láser , Hidrogeles/química , Fotones , Polimerizacion
5.
Opt Lett ; 46(21): 5308-5311, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724462

RESUMEN

We propose a new, to the best of our knowledge, technique to capture single particles in real-time in a microfluidic system with controlled flow using micro-pillar traps fabricated by one-step. The micro pillars are fabricated in parallel by femtosecond multi-foci laser beams, which are generated by multiplexing gratings. As the generation process does not need integration loops, the pattern and the intensity distribution of the foci array can be controlled in real-time by changing the parameters of gratings. The real-time control of the foci array enables rapidly fabricating microtraps in the microchannel with adjustment of the pillar spaces and patterns according to the sizes and shapes of target particles. This technology provides an important step towards using platforms based on single-particle analysis, and it paves the way for the development of innovative microfluidic devices for single-cell analysis.

6.
Opt Lett ; 46(6): 1401-1404, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720197

RESUMEN

Three-dimensional helical microstructures are abundant in nature and can be applied as chiral metamaterials for advanced nanophotonics. Here we report a flexible method to fabricate double-helical microstructures with single exposure by recording the chirality of incident optical vortices. Two coaxial optical vortices can interfere to generate a helical optical field, confirmed by the numerical simulation. The diameters of double-helical microstructures can be tailored by the magnitude of topological charges. This fast manufacturing strategy provides the opportunity to efficiently yield helical microstructures. Finally, the chirality of double-helical microstructures can be reversibly read by optical vortices, demonstrating a strong chiroptical response.

7.
Opt Lett ; 46(12): 2968-2971, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34129586

RESUMEN

In this Letter, a magnetically driven rotary microfilter that enables switching the modes of filtering and passing is fabricated in microfluidic devices via two-photon polymerization using a femtosecond laser for selective filtering of particles. The high-quality integration of a microfilter is ensured by accurately formulating the magnetic photoresist and optimizing the processing parameters. By changing the direction of the external magnetic field, the fabricated microfilter can be remotely manipulated to rotate by desired angles, thereby achieving the "filtering" or "passing" mode on demand. Taking advantage of this property, the magnetically rotary microfilter realizes multi-mode filtering functions such as capturing 8 µm particles/passing the 2.5 µm particles and passing both particles. More importantly, the responsive characteristic increases the reusability of the microchip. The lab-on-chip devices integrated with remotely rotary microfilters by the femtosecond laser two-photon polymerization with the functional photoresist will offer extensive applications in chemical and biological studies.

8.
Opt Lett ; 45(14): 3929-3932, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32667321

RESUMEN

Femtosecond-laser-induced two-photon polymerization has distinct advantages in micro-nanofabrication due to its intrinsic three-dimensional processing capability and high precision with sub-100 nanometer fabrication resolution. However, the high resolution causes a drawback in fabricating large-scale structures due to unacceptably long processing times. To solve this problem, we applied the patterned focus as the basic element for scanning processing. Theoretically, the relationship between patterned-focus scanning parameters and the uniformity of scanned light field was analyzed and optimized. Experimentally, we quantitatively investigated the relationship between the microstructure surface quality and the parameters of patterned-focus scanning. Based on above, we put forward a hybrid method that combines the femtosecond laser patterned exposure with direct-writing fabrication to rapidly fabricate large-scale microfluidic devices for various practical applications.

9.
Neuroimage ; 188: 369-379, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30553918

RESUMEN

Cerebral small vessel disease has been linked to cognitive, psychiatric and physical disabilities, especially in the elderly. However, the underlying pathophysiology remains incompletely understood, largely due to the limited accessibility of these small vessels in the live brain. Here, we report an intravital imaging and analysis platform for high-resolution, quantitative and comprehensive characterization of pathological alterations in the mouse cerebral microvasculature. By exploiting multi-parametric photoacoustic microscopy (PAM), microvascular structure, blood perfusion, oxygenation and flow were imaged in the awake brain. With the aid of vessel segmentation, these structural and functional parameters were extracted at the single-microvessel level, from which vascular density, tortuosity, wall shear stress, resistance and associated cerebral oxygen extraction fraction and metabolism were also quantified. With the use of vasodilatory stimulus, multifaceted cerebrovascular reactivity (CVR) was characterized in vivo. By extending the classic Evans blue assay to in vivo, permeability of the blood-brain barrier (BBB) was dynamically evaluated. The utility of this enabling technique was examined by studying cerebrovascular alterations in an established mouse model of high-fat diet-induced obesity. Our results revealed increased vascular density, reduced arterial flow, enhanced oxygen extraction, impaired BBB integrity, and increased multifaceted CVR in the obese brain. Interestingly, the 'counterintuitive' increase of CVR was supported by the elevated active endothelial nitric oxide synthase in the obese mouse. Providing comprehensive and quantitative insights into cerebral microvessels and their responses under pathological conditions, this technique opens a new door to mechanistic studies of the cerebral small vessel disease and its implications in neurodegeneration and stroke.


Asunto(s)
Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Microvasos/diagnóstico por imagen , Obesidad/diagnóstico por imagen , Técnicas Fotoacústicas , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Microscopía
10.
Opt Lett ; 43(15): 3514-3517, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30067699

RESUMEN

In this Letter, we present a light field regulation method to form a ring light field with controllable density distribution. This method is to compress the phase modulation depth of Bessel holograms superimposed with blazed gratings and tune the diffraction efficiency of the superimposed holograms by gray scale. The experimental light field generated by the superimposed holograms is consistent with the simulation results. By designing the phase modulation depth of the superimposed holograms with different parameters, ring light fields with suitable intensity distribution are obtained, and the fabrication of ring microstructure with uniform wall thickness is realized. Finally, as a special case of processing, dynamic holographic processing of high-aspect-ratio microtubes with variable diameter and uniform wall thickness is demonstrated.

11.
Opt Lett ; 43(5): 1151-1154, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29489802

RESUMEN

In this Letter, we demonstrate the observation of colorful Airy beams and Airy imaging of letters, which we called Airy letters here, generated through the continuous cubic phase microplate (CCPP) elaborately fabricated by femtosecond laser two-photon processing. The fabricated CCPP with both micro size (60 µm×60 µm×1.1 µm) and continuous variation of phase shows a good agreement with the designed CCPP. Chromatic Airy beams and Airy letters "USTC" are experimentally generated via the CCPP illuminated by white light. In addition, superior properties of Airy letters are explored, demonstrating that the Airy letters inherit the nondiffraction, self-healing, and transverse acceleration characteristics of Airy beams. Our work paves the way toward integrated optics, light separation, optical imaging, and defective information recovery.


Asunto(s)
Cristales Líquidos/química , Materiales Manufacturados , Refractometría/métodos , Dispersión de Radiación , Simulación por Computador , Cristalización , Luz , Modelos Teóricos
12.
Small ; 13(23)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28440043

RESUMEN

Long microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microchannels with designable holes are manufactured by combining laser printing with line-contact capillary-force assembly. Two microwalls are first printed by femtosecond laser direct-writing, and subsequently driven to collapse into a channel by the capillary force that arises in the evaporation of developer. The channel can remain stable in solvent due to the enhanced Van der Waals' force caused by the line-contact of microwalls. Microchannels with controllable nanoholes and almost arbitrary patterns can be fabricated without any bonding or multistep processes. As-prepared microchannels, with wall thicknesses less than 1 µm, widths less than 3 µm, lengths more than 1 mm, are comparable with human capillaries. In addition, the prepared channels also exhibit the ability to steer the flow of liquid without any external pump.

13.
Opt Express ; 25(14): 16739-16753, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28789175

RESUMEN

Conventional micropore membranes based size sorting have been widely applied for single-cell analysis. However, only a single filtering size can be achieved and the clogging issue cannot be completely avoided. Here, we propose a novel arch-like microsorter capable of multimodal (high-, band- and low-capture mode) sorting of particles. The target particles can pass through the front filter and are then trapped by the back filter, while the non-target particles can bypass or pass through the microsorter. This 3D arch-like microstructures are fabricated inside a microchannel by femtosecond laser parallel multifocal scanning. The designed architecture allows for particles isolation free of clogging over 20 minutes. Finally, as a proof of concept demonstration, SUM159 breast cancer cells are successfully separated from whole blood.

14.
Opt Lett ; 42(13): 2483-2486, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957264

RESUMEN

Owing to the distinguishing properties of nondiffraction, self-healing, and transverse acceleration, Airy beams have attracted much attention in the past decade. To date, a simple approach for exquisitely fabricating cubic phase plates with both continuous variation of phase and micro size still remains challenging, which limits the generation of high-quality Airy beams for integrated micro-optics. Here, we report the elaborate design and fabrication of a continuous cubic phase microplate (CCPP) for generating high-quality Airy beams in micrometer scale. A CCPP with a precise size (60 µm×60 µm×1.1 µm) is fabricated by femtosecond laser direct writing, exhibiting a high optical efficiency (∼79%). The high-quality Airy beam generated via the CCPP demonstrates an unprecedentedly strong deflection (∼4.2 µm within a 90 µm propagation distance) as well as being diffraction-free. Our research on the design and fabrication of miniature Airy phase plates paves the way toward high-performance integrated optics, optical micromanipulation, and optical imaging.

15.
Opt Express ; 22(4): 3983-90, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24663719

RESUMEN

A rapid method of fabricating microscopic tubular structures via two-photon polymerization is presented. Novel Fresnel lens is designed and applied to modulate the light field into a uniform ring pattern with controllable diameters. Comparing with the conventional holographic processing method, Fresnel lens shows higher uniformity and better flexibility, while easier to generate. This versatile method provides a powerful solution to produce tube structure array within several seconds.

16.
Nanoscale ; 15(28): 11945-11954, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37382247

RESUMEN

The functionality of tunable liquid droplet adhesion is crucial for many applications such as self-cleaning surfaces and water collectors. However, it is still a challenge to achieve real-time and fast reversible switching between isotropic and anisotropic liquid droplet rolling states. Inspired by the surface topography on lotus leaves and rice leaves, herein we report a biomimetic hybrid surface with gradient magnetism-responsive micropillar/microplate arrays (GMRMA), featuring dynamic fast switching toward different droplet rolling states. The exceptional dynamic switching characteristics of GMRMA are visualized and attributed to the fast asymmetric deformation between the two different biomimetic microstructures under a magnetic field; they endow the rolling droplets with anisotropic interfacial resistance. Based on the exceptional morphology switching surface, we demonstrate the function of classification and screening of liquid droplets, and thus propose a new strategy for liquid mixing and potential microchemical reactions. It is expected that this intelligent GMRMA will be conducive to many engineering applications, such as microfluidic devices and microchemical reactors.

17.
ACS Nano ; 17(10): 9025-9038, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37134316

RESUMEN

The highly aligned extracellular matrix of metastatic breast cancer cells is considered to be the "highway" of cancer invasion, which strongly promotes the directional migration of cancer cells to break through the basement membrane. However, how the reorganized extracellular matrix regulates cancer cell migration remains unknown. Here, a single exposure of a femtosecond Airy beam followed by a capillary-assisted self-assembly process was used to fabricate a microclaw-array, which was used to mimic the highly oriented extracellular matrix of tumor cells and the pores in the matrix or basement membrane during cell invasion. Through the experiment, we found that metastatic breast cancer MDA-MB-231 cells and normal breast epithelial MCF-10A cells exhibit three major migration phenotypes on microclaw-array assembled with different lateral spacings: guidance, impasse, and penetration, whereas guided and penetrating migration are almost completely arrested in noninvasive MCF-7 cells. In addition, different mammary breast epithelial cells differ in their ability to spontaneously perceive and respond to the topology of the extracellular matrix at the subcellular and molecular levels, which ultimately affects the cell migratory phenotype and pathfinding. Altogether, we fabricated a microclaw-array as a flexible and high-throughput tool to mimic the extracellular matrix during invasion to study the migratory plasticity of cancer cells.


Asunto(s)
Neoplasias de la Mama , Células Epiteliales , Humanos , Femenino , Células MCF-7 , Células Epiteliales/metabolismo , Fenotipo , Carmustina/metabolismo , Movimiento Celular/fisiología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Invasividad Neoplásica
18.
ACS Nano ; 15(3): 5294-5306, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33650851

RESUMEN

Soft actuators and microrobots that can move spontaneously and continuously without artificial energy supply and intervention have great potential in industrial, environmental, and military applications, but still remain a challenge. Here, a bioinspired MXene-based bimorph actuator with an asymmetric layered microstructure is reported, which can harness natural sunlight to achieve directional self-locomotion. We fabricate a freestanding MXene film with an increased and asymmetric layered microstructure through the graft of coupling agents into the MXene nanosheets. Owing to the excellent photothermal effect of MXene nanosheets, increased interlayer spacing favoring intercalation/deintercalation of water molecules and its caused reversible volume change, and the asymmetric microstructure, this film exhibits light-driven deformation with a macroscopic and fast response. Based on it, a soft bimorph actuator with ultrahigh response to solar energy is fabricated, showing natural sunlight-driven actuation with ultralarge amplitude and fast response (346° in 1 s). By utilizing continuous bending deformation of the bimorph actuator in response to the change of natural sunlight intensity and biomimetic design of an inchworm to rectify the repeated bending deformation, an inchwormlike soft robot is constructed, achieving directional self-locomotion without any artificial energy and control. Moreover, soft arms for lifting objects driven by natural sunlight and wearable smart ornaments that are combined with clothing and produce three-dimensional deformation under natural sunlight are also developed. These results provide a strategy for developing natural sunlight-driven soft actuators and reveal great application prospects of this photoactuator in sunlight-driven soft biomimetic robots, intelligent solar-energy-driven devices in space, and wearable clothing.

19.
Light Sci Appl ; 9: 119, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695316

RESUMEN

Efficient calculation of the light diffraction in free space is of great significance for tracing electromagnetic field propagation and predicting the performance of optical systems such as microscopy, photolithography, and manipulation. However, existing calculation methods suffer from low computational efficiency and poor flexibility. Here, we present a fast and flexible calculation method for computing scalar and vector diffraction in the corresponding optical regimes using the Bluestein method. The computation time can be substantially reduced to the sub-second level, which is 105 faster than that achieved by the direct integration approach (~hours level) and 102 faster than that achieved by the fast Fourier transform method (~minutes level). The high efficiency facilitates the ultrafast evaluation of light propagation in diverse optical systems. Furthermore, the region of interest and the sampling numbers can be arbitrarily chosen, endowing the proposed method with superior flexibility. Based on these results, full-path calculation of a complex optical system is readily demonstrated and verified by experimental results, laying a foundation for real-time light field analysis for realistic optical implementation such as imaging, laser processing, and optical manipulation.

20.
Adv Mater ; 32(48): e2005039, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33124744

RESUMEN

The high-performance unidirectional manipulation of microdroplets is crucial for many vital applications including water collection and bioanalysis. Among several actuation methods (e.g., electric, magnetic, light, and thermal actuation), mechanical vibration is pollution-free and biocompatible. However, it suffers from limited droplet movement mode, small volume range (VMax /VMin  < 3), and low transport velocity (≤11.5 mm s-1 ) because the droplet motion is a sliding state caused by the vertical vibration on the asymmetric hydrophobic microstructures. Here, an alternative strategy is proposed-horizontal vibration for multimode (rolling, bouncing/reverse bouncing, converging/diffusing, climbing, 90o turning, and sequential transport), large-volume-range (VMax /VMin  ≈ 100), and high-speed (≈22.86 mm s-1 ) unidirectional microdroplet manipulation, which is ascribed to the rolling state on superhydrophobic slant microwall arrays (SMWAs) fabricated by the one-step femtosecond laser oblique ablation. The unidirectional transport mechanism relies on the variance of viscous resistance induced by the difference of contact area between the microdroplet and the slant microwalls. Furthermore, a circular, curved, and "L"-shaped SMWA is designed and fabricated for droplet motion with particular paths. Finally, sequential transport of large-volume-range droplets and chemical mixing microreaction of water-based droplets are demonstrated on the SMWA, which demonstrates the great potential in the field of microdroplet manipulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA