Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 270: 115873, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38150749

RESUMEN

Heavy metal(loid)s contamination prevails in the water-soil-plant system around non-ferrous metal mining areas. The present study aimed to evaluate the heavy metal(loid)s contamination in Nandan Pb-Zn mining area (Guangxi, China). A total of 36 river water samples, 75 paired paddy soil and rice samples, and 128 paired upland soil and plant samples were collected from this area. The concentrations of arsenic (As), lead (Pb), and cadmium (Cd) in these samples were measured. Results showed that the average water quality indexes (WQIs) at the 12 sampling sites along the main river ranged from 41 to 5008, indicating the water qualities decreasing from "Excellent" to "Undrinkable". The WQIs nearby tailings or industrial park were significantly higher than those at the other sites. 34.0% and 64.5% of soil samples exceeded the risk screening values for As and Cd. The Pb and Cd concentrations in all rice samples exceeded the Chinese food safety limits by 18.7% and 82.7%, respectively. Leafy vegetables had a higher concentration of As, Pb, and Cd than other vegetables, exceeding the maximum permissible limits by 14.1%, 61.2%, and 40.0%, respectively. The biological accumulation coefficient (BAC) of Cd was the highest in rice and lettuce leaves. The hazard quotients (HQs) of As and Cd, indicating non-carcinogenic risks, were 4.15 and 1.76 in adult males, and 3.40 and 1.45 in adult females, all higher than the permitted level (1.0). The carcinogenic probabilities of As and Cd from rice and leafy vegetables consumption were all higher than 1 × 10-4. We conclude that metal(loid)s contamination of the water-soil-plant system has posed great non-carcinogenic and carcinogenic risks to the local population.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Humanos , Adulto , Cadmio/análisis , Arsénico/análisis , Plomo , Suelo , Contaminantes del Suelo/análisis , China , Metales Pesados/análisis , Verduras , Minería , Medición de Riesgo , Monitoreo del Ambiente
2.
Huan Jing Ke Xue ; 39(1): 27-37, 2018 Jan 08.
Artículo en Zh | MEDLINE | ID: mdl-29965663

RESUMEN

Two hundred eighteen PM10 and 202 PM2.5 samples were collected at three sampling sites to study the pollution characteristics of carbonaceous aerosols in Yulin from July 2015 to March 2016. Organic carbon (OC) and elemental carbon (EC) in the PM10 and PM2.5 samples were analyzed by a Multiwavelength Thermal/Optical Carbon Analyzer, and the characteristics, including pollution levels, temporal and spatial distributions, and possible sources of OC and EC, were investigated. The results showed that the OC and EC mass concentrations in PM10 in Yulin were 10.99 and 5.11 µg·m-3, respectively, while the OC and EC mass concentrations in PM2.5 were 7.51 and 4.70 µg·m-3, respectively. Strong correlations between OC and EC were found in PM10(R2=0.58) and PM2.5(R2=0.60). The winter average concentrations of secondary organic carbon (SOC) in PM10 and PM2.5 were 14.50 µg·m-3 and 6.74 µg·m-3, respectively. The SOC/OC ratios in both the PM10 and PM2.5 were higher than 0.5. The contribution of SOC to OC was 80.6% in PM10 and 77.7% in PM2.5, which were the highest in the summer, in accordance with the high temperature and strong solar radiation in the summer.

3.
Huan Jing Ke Xue ; 38(11): 4486-4493, 2017 Nov 08.
Artículo en Zh | MEDLINE | ID: mdl-29965391

RESUMEN

Distribution characteristics, chemical constituents, and sources of particulate matter were measured using a scanning mobility particle sizer and single particle aerosol mass spectrometer during pollution monitoring that occurred between December 5th and December 11th, 2016, in Nanning. Results showed that particulate matter (PM) sized between 20 nm-10 µm were concentrated in the 23 to 395 nm range, with a peak of 100 nm. Three new particle types were generated during the course of this monitoring. These new 30 nm particles came into existence between 14:00 to 18:00, and grew to a size of between 40 nm and 110 nm between 20:00 to 06:00 the next day. The generation of the all three new particles was affected by motor vehicle exhaust emissions. Many secondary particles were also produced during this period of pollution. The source of the fine particulate matter was mainly from the burning of biomass, dust, and the combustion of coal. In addition, a long-distance transmission also contributed to the particles from biomass burning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA