Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 620
Filtrar
1.
Cell ; 170(3): 429-442.e11, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753423

RESUMEN

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.


Asunto(s)
Regulación del Apetito , Núcleo Dorsal del Rafe/metabolismo , Neuronas/metabolismo , Animales , Peso Corporal , Encéfalo/fisiología , Núcleo Dorsal del Rafe/citología , Electrofisiología , Ayuno , Hambre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Optogenética
2.
J Neurosci ; 44(13)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38378273

RESUMEN

Patients with chronic pain often develop comorbid depressive symptoms, which makes the pain symptoms more complicated and refractory. However, the underlying mechanisms are poorly known. Here, in a repeated complete Freund's adjuvant (CFA) male mouse model, we reported a specific regulatory role of the paraventricular thalamic nucleus (PVT) glutamatergic neurons, particularly the anterior PVT (PVA) neurons, in mediating chronic pain and depression comorbidity (CDC). Our c-Fos protein staining observed increased PVA neuronal activity in CFA-CDC mice. In wild-type mice, chemogenetic activation of PVA glutamatergic neurons was sufficient to decrease the 50% paw withdrawal thresholds (50% PWTs), while depressive-like behaviors evaluated with immobile time in tail suspension test (TST) and forced swim test (FST) could only be achieved by repeated chemogenetic activation. Chemogenetic inhibition of PVA glutamatergic neurons reversed the decreased 50% PWTs in CFA mice without depressive-like symptoms and the increased TST and FST immobility in CFA-CDC mice. Surprisingly, in CFA-CDC mice, chemogenetically inhibiting PVA glutamatergic neurons failed to reverse the decrease of 50% PWTs, which could be restored by rapid-onset antidepressant S-ketamine. Further behavioral tests in chronic restraint stress mice and CFA pain mice indicated that PVA glutamatergic neuron inhibition and S-ketamine independently alleviate sensory and affective pain. Molecular profiling and pharmacological studies revealed the 5-hydroxytryptamine receptor 1D (Htr1d) in CFA pain-related PVT engram neurons as a potential target for treating CDC. These findings identified novel CDC neuronal and molecular mechanisms in the PVT and provided insight into the complicated pain neuropathology under a comorbid state with depression and related drug development.


Asunto(s)
Dolor Crónico , Ketamina , Humanos , Ratones , Masculino , Animales , Dolor Crónico/metabolismo , Depresión/tratamiento farmacológico , Tálamo , Neuronas/metabolismo , Comorbilidad
3.
Hum Mol Genet ; 32(2): 231-243, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35947995

RESUMEN

Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease that results from degeneration of retinal ganglion cells (RGC). Mitochondrial ND4 11778G > A mutation, which affects structural components of complex I, is the most prevalent LHON-associated mitochondrial DNA (mtDNA) mutation worldwide. The m.11778G > A mutation is the primary contributor underlying the development of LHON and X-linked PRICKLE3 allele (c.157C > T, p.Arg53Trp) linked to biogenesis of ATPase interacts with m.11778G > A mutation to cause LHON. However, the lack of appropriate cell and animal models of LHON has been significant obstacles for deep elucidation of disease pathophysiology, specifically the tissue-specific effects. Using RGC-like cells differentiated from induced pluripotent stem cells (iPSCs) from members of one Chinese family (asymptomatic subjects carrying only m.11778G > A mutation or PRICKLE3 p.Arg53Trp mutation, symptomatic individuals bearing both m.11778G > A and PRICKLE3 p.Arg53Trp mutations and control lacking these mutations), we demonstrated the deleterious effects of mitochondrial dysfunctions on the morphology and functions of RGCs. Notably, iPSCs bearing only m.11778G > A or p.Arg53Trp mutation exhibited mild defects in differentiation to RGC-like cells. The RGC-like cells carrying only m.11778G > A or p.Arg53Trp mutation displayed mild defects in RGC morphology, including the area of soma and numbers of neurites, electrophysiological properties, ATP contents and apoptosis. Strikingly, those RGC-like cells derived from symptomatic individuals harboring both m.11778G > A and p.Arg53Trp mutations displayed greater defects in the development, morphology and functions than those in cells bearing single mutation. These findings provide new insights into pathophysiology of LHON arising from RGC deficiencies caused by synergy between m.11778G > A and PRICKLE3 p.Arg53Trp mutation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Atrofia Óptica Hereditaria de Leber , Animales , Células Ganglionares de la Retina , Atrofia Óptica Hereditaria de Leber/genética , NADH Deshidrogenasa/genética , ADN Mitocondrial/genética , Mutación
4.
Mol Psychiatry ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454083

RESUMEN

Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.

5.
J Neurosci ; 43(24): 4525-4540, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37188517

RESUMEN

Our recent study demonstrated the critical role of the mesolimbic dopamine (DA) circuit and its brain-derived neurotropic factor (BDNF) signaling in mediating neuropathic pain. The present study aims to investigate the functional role of GABAergic inputs from the lateral hypothalamus (LH) to the ventral tegmental area (VTA; LHGABA→VTA) in regulating the mesolimbic DA circuit and its BDNF signaling underlying physiological and pathologic pain. We demonstrated that optogenetic manipulation of the LHGABA→VTA projection bidirectionally regulated pain sensation in naive male mice. Optogenetic inhibition of this projection generated an analgesic effect in mice with pathologic pain induced by chronic constrictive injury (CCI) of the sciatic nerve and persistent inflammatory pain by complete Freund's adjuvant (CFA). Trans-synaptic viral tracing revealed a monosynaptic connection between LH GABAergic neurons and VTA GABAergic neurons. Functionally, in vivo calcium/neurotransmitter imaging showed an increased DA neuronal activity, decreased GABAergic neuronal activity in the VTA, and increased dopamine release in the NAc, in response to optogenetic activation of the LHGABA→VTA projection. Furthermore, repeated activation of the LHGABA→VTA projection was sufficient to increase the expression of mesolimbic BDNF protein, an effect seen in mice with neuropathic pain. Inhibition of this circuit induced a decrease in mesolimbic BDNF expression in CCI mice. Interestingly, the pain behaviors induced by activation of the LHGABA→VTA projection could be prevented by pretreatment with intra-NAc administration of ANA-12, a TrkB receptor antagonist. These results demonstrated that LHGABA→VTA projection regulated pain sensation by targeting local GABAergic interneurons to disinhibit the mesolimbic DA circuit and regulating accumbal BDNF release.SIGNIFICANCE STATEMENT The mesolimbic dopamine (DA) system and its brain-derived neurotropic factor (BDNF) signaling have been implicated in pain regulation, however, underlying mechanisms remain poorly understood. The lateral hypothalamus (LH) sends different afferent fibers into and strongly influences the function of mesolimbic DA system. Here, utilizing cell type- and projection-specific viral tracing, optogenetics, in vivo calcium and neurotransmitter imaging, our current study identified the LHGABA→VTA projection as a novel neural circuit for pain regulation, possibly by targeting the VTA GABA-ergic neurons to disinhibit mesolimbic pathway-specific DA release and BDNF signaling. This study provides a better understanding of the role of the LH and mesolimbic DA system in physiological and pathological pain.


Asunto(s)
Dopamina , Neuralgia , Ratones , Masculino , Animales , Dopamina/metabolismo , Área Hipotalámica Lateral/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/metabolismo , Área Tegmental Ventral/fisiología , Neuronas GABAérgicas/fisiología , Ácido gamma-Aminobutírico/metabolismo , Neuralgia/metabolismo , Sensación , Núcleo Accumbens/fisiología
6.
Neurobiol Dis ; 190: 106374, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097092

RESUMEN

Despite women representing most of those affected by major depression, preclinical studies have focused almost exclusively on male subjects, partially due to a lack of ideal animal paradigms. As the persistent need regarding the sex balance of neuroscience research and female-specific pathology of mental disorders surges, the establishment of natural etiology-based and systematically validated animal paradigms for depression with female subjects becomes an urgent scientific problem. This study aims to establish, characterize, and validate a "Multiple Integrated Social Stress (MISS)" model of depression in female C57BL/6J mice by manipulating and integrating daily social stressors that females are experiencing. Female C57BL/6J mice randomly experienced social competition failure in tube test, modified vicarious social defeat stress, unescapable overcrowding stress followed by social isolation on each day, for ten consecutive days. Compared with their controls, female MISS mice exhibited a relatively decreased preference for social interaction and sucrose, along with increased immobility in the tail suspension test, which could last for at least one month. These MISS mice also exhibited increased levels of blood serum corticosterone, interleukin-6 L and 1ß. In the pharmacological experiment, MISS-induced dysfunctions in social interaction, sucrose preference, and tail suspension tests were amended by systematically administrating a single dose of sub-anesthetic ketamine, a rapid-onset antidepressant. Compared with controls, MISS females exhibited decreased c-Fos activation in their anterior cingulate cortex, prefrontal cortex, nucleus accumbens and some other depression-related brain regions. Furthermore, 24 h after the last exposure to the paradigm, MISS mice demonstrated a decreased center zone time in the open field test and decreased open arm time in the elevated plus-maze test, indicating anxiety-like behavioral phenotypes. Interestingly, MISS mice developed an excessive nesting ability, suggesting a likely behavioral phenotype of obsessive-compulsive disorder. These data showed that the MISS paradigm was sufficient to generate pathological profiles in female mice to mimic core symptoms, serum biochemistry and neural adaptations of depression in clinical patients. The present study offers a multiple integrated natural etiology-based animal model tool for studying female stress susceptibility.


Asunto(s)
Trastorno Depresivo , Humanos , Masculino , Femenino , Animales , Ratones , Ratones Endogámicos C57BL , Antidepresivos , Encéfalo , Sacarosa/uso terapéutico , Estrés Psicológico/complicaciones , Depresión/etiología , Modelos Animales de Enfermedad
7.
Hepatology ; 78(2): 547-561, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839302

RESUMEN

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD), a complex metabolic syndrome, has limited therapeutic options. Microsomal prostaglandin E synthase-2 (mPGES-2) was originally discovered as a prostaglandin E 2 (PGE 2 ) synthase; however, it does not produce PGE 2 in the liver. Moreover, the role of mPGES-2 in NAFLD remains undefined. Herein, we aimed to determine the function and mechanism of mPGES-2 in liver steatosis and steatohepatitis. APPROACH AND RESULTS: To evaluate the role of mPGES-2 in NAFLD, whole-body or hepatocyte-specific mPGES-2-deficient mice fed a high-fat or methionine-choline-deficient diet were used. Compared with control mice, mPGES-2-deficient mice showed reduced hepatic lipid accumulation, along with ameliorated liver injury, inflammation, and fibrosis. Furthermore, the protective effect of mPGES-2 deficiency against NAFLD was dependent on decreased cytochrome P450 4A14 and increased acyl-CoA thioesterase 4 levels regulated by the heme receptor nuclear receptor subfamily 1 group D member 1 (NR1D1), but not PGE 2 . Heme regulated the increased NR1D1 activity mediated by mPGES-2 deficiency. Further, we confirmed the protective role of the mPGES-2 inhibitor SZ0232 in NAFLD therapy. CONCLUSION: Our study indicates the pathogenic role of mPGES-2 and outlines the mechanism in mediating NAFLD, thereby highlighting the therapeutic potential of mPGES-2 inhibition in liver steatosis and steatohepatitis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Prostaglandina-E Sintasas/metabolismo , Hemo , Modelos Animales de Enfermedad , Hígado/patología , Ratones Endogámicos C57BL
8.
Mol Psychiatry ; 28(3): 1090-1100, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642737

RESUMEN

Pain and anxiety comorbidities are a common health problem, but the neural mechanisms underlying comorbidity remain unclear. We propose that comorbidity implies that similar brain regions and neural circuits, with the lateral septum (LS) as a major candidate, process pain and anxiety. From results of behavioral and neurophysiological experiments combined with selective LS manipulation in mice, we find that LS GABAergic neurons were critical for both pain and anxiety. Selective activation of LS GABAergic neurons induced hyperalgesia and anxiety-like behaviors. In contrast, selective inhibition of LS GABAergic neurons reduced nocifensive withdrawal responses and anxiety-like behaviors. This was found in two mouse models, one for chronic inflammatory pain (induced by complete Freund's adjuvant) and one for anxiety (induced by chronic restraint stress). Additionally, using TetTag chemogenetics to functionally mark LS neurons, we found that activation of LS neurons by acute pain stimulation could induce anxiety-like behaviors and vice versa. Furthermore, we show that LS GABAergic projection to the lateral hypothalamus (LH) plays an important role in the regulation of pain and anxiety comorbidities. Our study revealed that LS GABAergic neurons, and especially the LSGABAergic-LH circuit, are a critical to the modulation of pain and anxiety comorbidities.


Asunto(s)
Dolor Crónico , Área Hipotalámica Lateral , Ratones , Animales , Área Hipotalámica Lateral/fisiología , Ansiedad , Comorbilidad , Neuronas GABAérgicas/fisiología
9.
PLoS Biol ; 19(3): e3000709, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690628

RESUMEN

Daily rhythms are disrupted in patients with mood disorders. The lateral habenula (LHb) and dorsal raphe nucleus (DRN) contribute to circadian timekeeping and regulate mood. Thus, pathophysiology in these nuclei may be responsible for aberrations in daily rhythms during mood disorders. Using the 15-day chronic social defeat stress (CSDS) paradigm and in vitro slice electrophysiology, we measured the effects of stress on diurnal rhythms in firing of LHb cells projecting to the DRN (cellsLHb→DRN) and unlabeled DRN cells. We also performed optogenetic experiments to investigate if increased firing in cellsLHb→DRN during exposure to a weak 7-day social defeat stress (SDS) paradigm induces stress-susceptibility. Last, we investigated whether exposure to CSDS affected the ability of mice to photoentrain to a new light-dark (LD) cycle. The cellsLHb→DRN and unlabeled DRN cells of stress-susceptible mice express greater blunted diurnal firing compared to stress-näive (control) and stress-resilient mice. Daytime optogenetic activation of cellsLHb→DRN during SDS induces stress-susceptibility which shows the direct correlation between increased activity in this circuit and putative mood disorders. Finally, we found that stress-susceptible mice are slower, while stress-resilient mice are faster, at photoentraining to a new LD cycle. Our findings suggest that exposure to strong stressors induces blunted daily rhythms in firing in cellsLHb→DRN, DRN cells and decreases the initial rate of photoentrainment in susceptible-mice. In contrast, resilient-mice may undergo homeostatic adaptations that maintain daily rhythms in firing in cellsLHb→DRN and also show rapid photoentrainment to a new LD cycle.


Asunto(s)
Ritmo Circadiano/fisiología , Habénula/fisiología , Estrés Psicológico/metabolismo , Animales , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/metabolismo , Habénula/citología , Habénula/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Neuronas/fisiología , Optogenética/métodos , Serotonina/farmacología , Derrota Social , Estrés Psicológico/fisiopatología
10.
Phys Chem Chem Phys ; 26(11): 8807-8814, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38421040

RESUMEN

Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of more drugs in clinical use than any other xenobiotic-metabolizing enzyme. CYP3A4-mediated drug metabolism is usually allosterically modulated by substrate concentration (homotropic allostery) and other drugs (heterotropic allostery), exhibiting unusual kinetic profiles and regiospecific metabolism. Recent studies suggest that residue Phe108 (F108) of CYP3A4 may have an important role in drug metabolism. In this work, residue mutations were coupled with well-tempered metadynamics simulations to assess the importance of F108 in the allosteric effects of midazolam metabolism. Comparing the simulation results of the wild-type and mutation systems, we identify that the π-π interaction and steric effect between the F108 side chain and midazolam is favorable for the stable binding of substrate in the active site. F108 also plays an important role in the transition of substrate binding mode, which mainly induces the transition of substrate binding mode by forming π-π interactions with multiple aromatic rings of the substrate. Moreover, the side chain of F108 is closely related to the radius and depth of the 2a and 2f channels, and F108 may further regulate drug metabolism by affecting the pathway, orientation, or time of substrate entry into the CYP3A4 active site or product egress from the active site. Altogether, we suggest that F108 affects drug metabolism and regulatory mechanisms by affecting substrate binding stability, binding mode transition, and channel characteristics of CYP3A4. Our findings could promote the understanding of complicated allosteric mechanisms in CYP3A4-mediated drug metabolism, and the knowledge could be used for drug development and disease treatment.


Asunto(s)
Citocromo P-450 CYP3A , Midazolam , Midazolam/química , Midazolam/metabolismo , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Dominio Catalítico , Unión Proteica , Simulación por Computador
11.
Cereb Cortex ; 33(7): 3683-3700, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36005854

RESUMEN

Difficulties in parsing the multiaspect heterogeneity of schizophrenia (SCZ) based on current nosology highlight the need to subtype SCZ using objective biomarkers. Here, utilizing a large-scale multisite SCZ dataset, we identified and validated 2 neuroanatomical subtypes with individual-level abnormal patterns of the tensor-based morphometric measurement. Remarkably, compared with subtype 1, which showed moderate deficits of some subcortical nuclei and an enlarged striatum and cerebellum, subtype 2, which showed cerebellar atrophy and more severe subcortical nuclei atrophy, had a higher subscale score of negative symptoms, which is considered to be a core aspect of SCZ and is associated with functional outcome. Moreover, with the neuroimaging-clinic association analysis, we explored the detailed relationship between the heterogeneity of clinical symptoms and the heterogeneous abnormal neuroanatomical patterns with respect to the 2 subtypes. And the neuroimaging-transcription association analysis highlighted several potential heterogeneous biological factors that may underlie the subtypes. Our work provided an effective framework for investigating the heterogeneity of SCZ from multilevel aspects and may provide new insights for precision psychiatry.


Asunto(s)
Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Imagen por Resonancia Magnética/métodos , Esquizofrenia/diagnóstico por imagen , Neuroimagen , Cerebelo/diagnóstico por imagen , Atrofia
12.
BMC Psychiatry ; 24(1): 29, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191362

RESUMEN

BACKGROUND: Schizophrenia is a kind of intractable brain disorder. Electroconvulsive therapy (ECT) has been used to rapidly improve the clinical symptoms of patients with schizophrenia, but the effect of ECT on topological attributes of brain functional network in patients with schizophrenia has not been clear. The purpose of this study was to investigate the brain functional network mechanism of ECT against schizophrenia. METHODS: Thirty-one patients with schizophrenia and fifty healthy controls matching age, gender, and years of education were included. All participants underwent general data collection and magnetic resonance imaging scanning before ECT, and clinical symptoms were assessed using the Positive And Negative Syndrome Scale (PANSS). MRI and clinical symptoms were collected again after the first and eighth ECT application. The functional brain network was constructed on the basis of magnetic resonance imaging, and the global and node topological properties were analyzed. Repeated measure variance analysis was used to explore the changes of the topological attribute values and clinical symptom scores before and after ECT, and Bonferroni post hoc analysis was performed. The independent sample t-test was used to compare the differences in the topological attribute values between patients and healthy controls at three time points before and after ECT. Partial correlation analysis was performed for topological attribute values and clinical symptom scores of abnormal brain regions in the patient groups and their changes during ECT. A general linear regression model was used to predict the outcome after the final eighth ECT using the patient's response to the first ECT. RESULTS: (1) One ECT can restore the gamma(γ), lamuda(λ), sigma(σ), nodal global efficiency (Ne) of right insular gyrus ventral agranular insula (INS_R_vIa) and nodal local efficiency (NLe) of bilateral fusiform gyrus medioventral area37 (FuG_A37mv). Eight ECT can also restore the NLe of cortex rostral lingual gyrus (MVOcC _R_rLinG). Eight ECT did not improve the Ne of right superior parietal lobule rostral area 7 (SPL_R_A7r) and NLe of left superior frontal gyrus medial area 6 (SFG_L_A6m). (2) Even after only the first use of ECT, total PANSS scores began to decrease (mean ΔPANSSECT1 was 11.7%; Range, 2%-32.8%), decreased significantly after the eighth application (mean ΔPANSSECT8 was 86.0%; Range,72.5% to 97.9%). Five patients met the response criteria after ECT1 (20% reduction in PANSS total score), and all patients met the response criteria after ECT8. (3) Linear regression analysis showed that ΔPANSSECT1 was a significant predictor of ΔPANSSECT8 (F=5.387, P=0.028), and ΔPANSSECT1 explained 15.7% of the variance of ΔPANSSECT8 (R2=0.157). CONCLUSIONS: ECT was able to normalize γ, λ, σ, Ne of INS_R_vIa, NLe of bilateral FuG_A37mv in SZ patients after the first treatment, and NLe of MVOcC_R_rLinG after the eighth ECT. ECT significantly alleviates psychotic symptoms in patients with SZ, and its efficacy after eight sessions can be predicted by the patient's response to the first session of ECT.


Asunto(s)
Encefalopatías , Terapia Electroconvulsiva , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/terapia , Encéfalo/diagnóstico por imagen , Corteza Prefrontal
13.
BMC Musculoskelet Disord ; 25(1): 81, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245679

RESUMEN

BACKGROUND: Symptomatic lumbar disc herniation (LDH) and lumbar isthmic spondylolisthesis (LIS) present significant challenges for military pilots, which may result in grounding if not effectively managed. Surgical treatment for LDH and LIS may offer a pathway to return to flight duty (RTFD), but recent data on this crucial topic is lacking. This study seeks to address this gap by investigating the RTFD outcomes among Chinese military pilots who have undergone lumbar spine surgery for symptomatic LDH and LIS. METHODS: A retrospective review was conducted on active-duty military pilots who underwent isolated decompressive or fusion procedures at an authorized military medical center from March 1, 2007, to March 1, 2023. The analysis utilized descriptive statistics to examine demographic, occupational, surgical, and outcome data, with a particular focus on preoperative flight status, recommended clearance by spine surgeons, and actual RTFD outcomes and time. RESULTS: Among the identified cases of active-duty military pilots with LDH or LIS treated by lumbar surgery (n = 24), 70.8% (17 of 24) consistently maintained RTFD status without encountering surgical complications or medical issues during the follow-up period. Of the seven pilots who did not RTFD, one retired within a year of surgery, two had anterior cruciate ligament injuries, three had residual radicular symptoms, and one had chronic low back pain. Excluding pilots who retired and did not RTFD for reasons unrelated to their lumbar conditions, the RTFD rate stood at 81.0% (17 of 21). The median time for recommended clearance by spine surgeons was 143.0 days (inter-quartile range, 116.5-196.0), while the median duration for actual RTFD attainment was 221.0 days (inter-quartile range, 182.0-300.0). The median follow-up post-lumbar surgery was 1.7 years (inter-quartile range, 0.4-2.9). CONCLUSION: Most military pilots diagnosed with symptomatic LDH and LIS can continue their careers and regain active-duty flight status following lumbar spine surgery, as reflected by the high RTFD rate. Lumbar spine surgery can successfully alleviate the physical constraints associated with spinal conditions, facilitating the return of military pilots to their demanding profession.


Asunto(s)
Desplazamiento del Disco Intervertebral , Personal Militar , Fusión Vertebral , Espondilolistesis , Humanos , Desplazamiento del Disco Intervertebral/epidemiología , Desplazamiento del Disco Intervertebral/cirugía , Espondilolistesis/epidemiología , Espondilolistesis/cirugía , Resultado del Tratamiento , Estudios Retrospectivos , Vértebras Lumbares/cirugía , China/epidemiología , Fusión Vertebral/métodos
14.
Psychiatry Clin Neurosci ; 78(1): 41-50, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37781929

RESUMEN

AIM: Childhood maltreatment (CM) is an important risk factor for major depressive disorder (MDD). This study aimed to explore the specific effect of CM on cerebral blood flow (CBF) and brain functional connectivity (FC) in MDD patients. METHODS: A total of 150 subjects were collected including 55 MDD patients with CM, 34 MDD patients without CM, 19 healthy controls (HC) with CM, and 42 HC without CM. All subjects completed MRI scans and neuropsychological tests. Two-way analysis of covariance was used to detect the main and interactive effects of disease and CM on CBF and FC across subjects. Then, partial correlation analyses were conducted to explore the behavioral significance of altered CBF and FC in MDD patients. Finally, a support vector classifier model was applied to differentiate MDD patients. RESULTS: MDD patients represented increased CBF in bilateral temporal lobe and decreased CBF in right visual cortex. Importantly, significant depression-by-CM interactive effects on CBF were primarily located in the frontoparietal regions, including orbitofrontal cortex (OFC), lateral prefrontal cortex (PFC), and parietal cortex. Moreover, significant FC abnormalities were seen in OFC-PFC and frontoparietal-visual cortex. Notably, the abnormal CBF and FC were significantly associated with behavioral performance. Finally, a combination of altered CBF and FC behaved with a satisfactory classification ability to differentiate MDD patients. CONCLUSIONS: These results highlight the importance of frontoparietal and visual cortices for MDD with CM experience, proposing a potential neuroimaging biomarker for MDD identification.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Circulación Cerebrovascular/fisiología , Biomarcadores
15.
Pharm Biol ; 62(1): 170-182, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38334090

RESUMEN

CONTEXT: Chinese medicine injections (CMIs) are widely used as adjuvant therapy for cervical cancer in China. However, the effectiveness of different types of CMIs remains uncertain. OBJECTIVE: To assess the effectiveness and safety of CMIs when used in conjunction with radiotherapy (RT) or concurrent chemoradiotherapy (CCRT), particularly in combination with cisplatin (DDP), docetaxel plus cisplatin (DP), and paclitaxel plus cisplatin (TP). MATERIALS AND METHODS: Randomized controlled trials (RCTs) were searched in databases including CNKI, WanFang, VIP, SinoMed, PubMed, Cochrane Library, Embase, and Web of Science from inception to September 2023. We calculated the risk ratio with a 95% confidence interval and the surface under the cumulative ranking area curve (SUCRA) for the clinical efficacy rate (CER), the efficacy rate by Karnofsky Performance Status (KPS), and the rates of leukopenia reduction (LRR) and gastrointestinal reactions (GRR). RESULTS: Forty-seven RCTs were included, including nine CMI types: Aidi, Fufangkushen, Huangqi, Kangai (KA), Kanglaite (KLT), Renshenduotang, Shenqifuzheng (SQFZ), Shenmai (SM), and Yadanzi. KLT and KA were likely optimal choices with radiotherapy for CER and KPS, respectively. KA and KLT were optimal choices with RT + DDP for CER and GRR, respectively. KLT was the likely optimal choice with RT + DP for CER and KA for both KPS and GRR. SM and SQFZ were the likely optimal choices with RT + TP for CER and LRR, respectively. CONCLUSIONS: The optimal recommendation depends on whether CMIs are used with radiotherapy or concurrent chemoradiotherapy. More high-quality RCTs are needed to confirm further and update the existing evidence.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias del Cuello Uterino , Femenino , Humanos , Cisplatino/efectos adversos , Metaanálisis en Red , Neoplasias del Cuello Uterino/tratamiento farmacológico , Medicina Tradicional China , Medicamentos Herbarios Chinos/efectos adversos , Terapia Combinada
16.
Physiol Mol Biol Plants ; 30(6): 877-891, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974354

RESUMEN

Natural leaf senescence is critical for plant fitness. Drought-induced premature leaf senescence affects grape yield and quality. However, reports on the regulatory mechanisms underlying premature leaf senescence under drought stress are limited. In this study, two-year-old potted 'Muscat Hamburg' grape plants were subjected to continuous natural drought treatment until mature leaves exhibited senescence symptoms. Physiological and biochemical indices related to drought stress and senescence were monitored. Transcriptome and transgenic Arabidopsis were used to perform expression analyses and functional identification of drought-induced senescence-associated genes. Twelve days of continuous drought stress was sufficient to cause various physiological disruptions and visible senescence symptoms in mature 'Muscat Hamburg' leaves. These disruptions included malondialdehyde and H2O2 accumulation, and decreased catalase activity and chlorophyll (Chl) levels. Transcriptome analysis revealed that most genes involved in photosynthesis and Chl synthesis were downregulated after 12 d of drought treatment. Three key Chl catabolic genes (SGR, NYC1, and PAO) were significantly upregulated. Overexpression of VvSGR in wild Arabidopsis further confirmed that SGR directly promoted early yellowing of cotyledons and leaves. In addition, drought treatment decreased expression of gibberellic acid signaling repressors (GAI and GAI1) and cytokinin signal components (AHK4, AHK2, RR22, RR9-1, RR9-2, RR6, and RR4) but significantly increased the expression of abscisic acid, jasmonic acid, and salicylic acid signaling components and responsive transcription factors (bZIP40/ABF2, WRKY54/75/70, ANAC019, and MYC2). Moreover, some NAC members (NAC0002, NAC019, and NAC048) may also be drought-induced senescence-associated genes. These results provide extensive information on candidate genes involved in drought-induced senescence in grape leaves. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01465-2.

17.
Carcinogenesis ; 44(7): 610-625, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37235794

RESUMEN

Although emerging evidence has established the roles of miRNAs in hepatocellular carcinoma (HCC), the global functional implication of miRNAs in this malignancy remains largely uncharacterized. Here, we aim to systematically identify novel miRNAs involved in HCC and clarify the function and mechanism of specific novel candidate miRNA(s) in this malignancy. Through an integrative omics approach, we identified ten HCC-associated functional modules and a collection of candidate miRNAs. Among them, we demonstrated that miR-424-3p, exhibiting strong associations with extracellular matrix (ECM), promotes HCC cells migration and invasion in vitro and facilitates HCC metastasis in vivo. We further demonstrated that SRF is a direct functional target of miR-424-3p, and is required for the oncogenic activity of miR-424-3p. Finally, we found that miR-424-3p reduces the interferon pathway by attenuating the transactivation of SRF on STAT1/2 and IRF9 genes, which in turn enhances the matrix metalloproteinases (MMPs)-mediated ECM remodeling. This study provides comprehensive functional relevance of miRNAs in HCC by an integrative omics analysis, and further clarifies that miR-424-3p in ECM functional module plays an oncogenic role via reducing the SRF-STAT1/2 axis in this malignancy.

18.
Chemphyschem ; 24(10): e202200813, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-36759326

RESUMEN

In this work, two kinds of BN-nanowires (BNnws): a-BNnw and d-BNnw, respectively composed of azo (N-N) and diboron (B-B) bonds, are proposed with the aid of the first-principles simulations. Their structural stabilities are carefully verified from the energetics, lattice dynamics, and thermodynamic perspectives. Similar to the other common boron nitride polymorph, the a-BNnw and d-BNnw are semiconductors with relatively wide band gaps of 3.256 and 4.631 eV at the HSE06 level, respectively. The corresponding projected DOS patterns point out that their band edges are composed of different atomic species, which can help with the separation of their excitons. The band gaps can be manipulated monotonically by axial strains within the elastic ranges. The major charge carriers are electron holes. Significantly, a-BNnw possesses very high carrier mobilities around 0.44×104  cm2 V-1 s-1 .

19.
Pharmacol Res ; 187: 106598, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481260

RESUMEN

Resilience represents an active adaption process in the face of adversity, trauma, tragedy, threats, or significant sources of stress. Investigations of neurobiological mechanisms of resilience opens an innovative direction for preclinical research and drug development for various stress-related disorders. The locus coeruleus norepinephrine system has been implicated in mediating stress susceptibility versus resilience. It has attracted increasing attention over the past decades with the revolution of modern neuroscience technologies. In this review article, we first briefly go over resilience-related concepts and introduce rodent paradigms for segregation of susceptibility and resilience, then highlight recent literature that identifies the neuronal and molecular substrates of active resilience in the locus coeruleus, and discuss possible future directions for resilience investigations.


Asunto(s)
Norepinefrina
20.
Pharmacol Res ; 191: 106776, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37084858

RESUMEN

The paucity of medications with novel mechanisms for pain treatment combined with the severe adverse effects of opioid analgesics has led to an imperative pursuit of non-opioid analgesia and a better understanding of pain mechanisms. Here, we identify the putative glutamatergic inputs from the paraventricular thalamic nucleus to the nucleus accumbens (PVTGlut→NAc) as a novel neural circuit for pain sensation and non-opioid analgesia. Our in vivo fiber photometry and in vitro electrophysiology experiments found that PVTGlut→NAc neuronal activity increased in response to acute thermal/mechanical stimuli and persistent inflammatory pain. Direct optogenetic activation of these neurons in the PVT or their terminals in the NAc induced pain-like behaviors. Conversely, inhibition of PVTGlut→NAc neurons or their NAc terminals exhibited a potent analgesic effect in both naïve and pathological pain mice, which could not be prevented by pretreatment of naloxone, an opioid receptor antagonist. Anterograde trans-synaptic optogenetic experiments consistently demonstrated that the PVTGlut→NAc circuit bi-directionally modulates pain behaviors. Furthermore, circuit-specific molecular profiling and pharmacological studies revealed dopamine receptor 3 as a candidate target for pain modulation and non-opioid analgesic development. Taken together, these findings provide a previously unknown neural circuit for pain sensation and non-opioid analgesia and a valuable molecular target for developing future safer medication.


Asunto(s)
Analgesia , Analgésicos no Narcóticos , Ratones , Animales , Núcleos Talámicos de la Línea Media , Núcleo Accumbens/fisiología , Dolor/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA