Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.078
Filtrar
1.
Cell ; 167(6): 1511-1524.e10, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27884405

RESUMEN

Zika virus (ZIKV) persists in the semen of male patients, a first for flavivirus infection. Here, we demonstrate that ZIKV can induce inflammation in the testis and epididymidis, but not in the prostate or seminal vesicle, and can lead to damaged testes after 60 days post-infection in mice. ZIKV induces innate immune responses in Leydig, Sertoli, and epididymal epithelial cells, resulting in the production of pro-inflammatory cytokines/chemokines. However, ZIKV does not induce a rapid and abundant cytokine production in peritubular cell and spermatogonia, suggesting that these cells are vulnerable for ZIKV infection and could be the potential repositories for ZIKV. Our study demonstrates a correlation between ZIKV and testis infection/damage and suggests that ZIKV infection, under certain circumstances, can eventually lead to male infertility.


Asunto(s)
Infertilidad Masculina/virología , Testículo/virología , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Citocinas/metabolismo , Epidídimo/patología , Epidídimo/virología , Humanos , Infertilidad Masculina/patología , Masculino , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor de Interferón alfa y beta/genética , Testículo/patología , Internalización del Virus , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/patología , Infección por el Virus Zika/transmisión , Tirosina Quinasa del Receptor Axl
2.
Mol Cell ; 79(3): 521-534.e15, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32592681

RESUMEN

Genome-wide mapping of chromatin interactions at high resolution remains experimentally and computationally challenging. Here we used a low-input "easy Hi-C" protocol to map the 3D genome architecture in human neurogenesis and brain tissues and also demonstrated that a rigorous Hi-C bias-correction pipeline (HiCorr) can significantly improve the sensitivity and robustness of Hi-C loop identification at sub-TAD level, especially the enhancer-promoter (E-P) interactions. We used HiCorr to compare the high-resolution maps of chromatin interactions from 10 tissue or cell types with a focus on neurogenesis and brain tissues. We found that dynamic chromatin loops are better hallmarks for cellular differentiation than compartment switching. HiCorr allowed direct observation of cell-type- and differentiation-specific E-P aggregates spanning large neighborhoods, suggesting a mechanism that stabilizes enhancer contacts during development. Interestingly, we concluded that Hi-C loop outperforms eQTL in explaining neurological GWAS results, revealing a unique value of high-resolution 3D genome maps in elucidating the disease etiology.


Asunto(s)
Cromatina/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Neurogénesis/genética , Regiones Promotoras Genéticas , Adulto , Línea Celular , Cerebro/citología , Cerebro/crecimiento & desarrollo , Cerebro/metabolismo , Cromatina/ultraestructura , Mapeo Cromosómico , Feto , Histonas/genética , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/citología , Neuronas/metabolismo , Lóbulo Temporal/citología , Lóbulo Temporal/crecimiento & desarrollo , Lóbulo Temporal/metabolismo , Factores de Transcripción/clasificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant Cell ; 36(6): 2176-2200, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38345432

RESUMEN

Phosphorus is indispensable in agricultural production. An increasing food supply requires more efficient use of phosphate due to limited phosphate resources. However, how crops regulate phosphate efficiency remains largely unknown. Here, we identified a major quantitative trait locus, qPE19, that controls 7 low-phosphate (LP)-related traits in soybean (Glycine max) through linkage mapping and genome-wide association studies. We identified the gene responsible for qPE19 as GLYCEROPHOSPHORYL DIESTER PHOSPHODIESTERASE2 (GmGDPD2), and haplotype 5 represents the optimal allele favoring LP tolerance. Overexpression of GmGDPD2 significantly affects hormone signaling and improves root architecture, phosphate efficiency and yield-related traits; conversely, CRISPR/Cas9-edited plants show decreases in these traits. GmMyb73 negatively regulates GmGDPD2 by directly binding to its promoter; thus, GmMyb73 negatively regulates LP tolerance. GmGDPD2 physically interacts with GA 2-oxidase 1 (GmGA2ox1) in the plasma membrane, and overexpressing GmGA2ox1 enhances LP-associated traits, similar to GmGDPD2 overexpression. Analysis of double mutants for GmGDPD2 and GmGA2ox1 demonstrated that GmGDPD2 regulates LP tolerance likely by influencing auxin and gibberellin dose-associated cell division in the root. These results reveal a regulatory module that plays a major role in regulating LP tolerance in soybeans and is expected to be utilized to develop phosphate-efficient varieties to enhance soybean production, particularly in phosphate-deficient soils.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Fosfatos , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Fosfatos/metabolismo , Fosfatos/deficiencia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sitios de Carácter Cuantitativo/genética , Plantas Modificadas Genéticamente , Estudio de Asociación del Genoma Completo
4.
Immunity ; 49(1): 66-79.e5, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29980436

RESUMEN

Genetic mutations of CARD14 (encoding CARMA2) are observed in psoriasis patients. Here we showed that Card14E138A/+ and Card14ΔQ136/+ mice developed spontaneous psoriasis-like skin inflammation, which resulted from constitutively activated CARMA2 via self-aggregation leading to the enhanced activation of the IL-23-IL-17A cytokine axis. Card14-/- mice displayed attenuated skin inflammation in the imiquimod-induced psoriasis model due to impaired IL-17A signaling in keratinocytes. CARMA2, mainly expressed in keratinocytes, associates with the ACT1-TRAF6 signaling complex and mediates IL-17A-induced NF-κB and MAPK signaling pathway activation, which leads to expression of pro-inflammatory factors. Thus, CARMA2 serves as a key mediator of IL-17A signaling and its constitutive activation in keratinocytes leads to the onset of psoriasis, which indicates an important role of NF-κB activation in keratinocytes in psoriatic initiation.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Dermatitis/genética , Mutación con Ganancia de Función , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Interleucina-17/metabolismo , Queratinocitos/metabolismo , Psoriasis/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/química , Proteínas Adaptadoras de Señalización CARD/deficiencia , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Dermatitis/fisiopatología , Regulación de la Expresión Génica/efectos de los fármacos , Guanilato-Quinasas/química , Guanilato-Quinasas/deficiencia , Células HEK293 , Humanos , Imiquimod , Queratinocitos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Psoriasis/inducido químicamente , Psoriasis/fisiopatología , Transducción de Señal , Subgrupos de Linfocitos T/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo
6.
Hum Mol Genet ; 32(10): 1589-1606, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36519762

RESUMEN

Autism spectrum disorders (ASD) display both phenotypic and genetic heterogeneity, impeding the understanding of ASD and development of effective means of diagnosis and potential treatments. Genes affected by genomic variations for ASD converge in dozens of gene ontologies (GOs), but the relationship between the variations at the GO level have not been well elucidated. In the current study, multiple types of genomic variations were mapped to GOs and correlations among GOs were measured in ASD and control samples. Several ASD-unique GO correlations were found, suggesting the importance of co-occurrence of genomic variations in genes from different functional categories in ASD etiology. Combined with experimental data, several variations related to WNT signaling, neuron development, synapse morphology/function and organ morphogenesis were found to be important for ASD with macrocephaly, and novel co-occurrence patterns of them in ASD patients were found. Furthermore, we applied this gene ontology correlation analysis method to find genomic variations that contribute to ASD etiology in combination with changes in gene expression and transcription factor binding, providing novel insights into ASD with macrocephaly and a new methodology for the analysis of genomic variation.


Asunto(s)
Trastorno del Espectro Autista , Megalencefalia , Humanos , Trastorno del Espectro Autista/genética , Genómica , Megalencefalia/genética
7.
Proc Natl Acad Sci U S A ; 119(32): e2202371119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917353

RESUMEN

Epstein-Barr virus (EBV) infects more than 90% of the world's adult population and accounts for a significant cancer burden of epithelial and B cell origins. Glycoprotein B (gB) is the primary fusogen essential for EBV entry into host cells. Here, we isolated two EBV gB-specific neutralizing antibodies, 3A3 and 3A5; both effectively neutralized the dual-tropic EBV infection of B and epithelial cells. In humanized mice, both antibodies showed effective protection from EBV-induced lymphoproliferative disorders. Cryoelectron microscopy analyses identified that 3A3 and 3A5 bind to nonoverlapping sites on domains D-II and D-IV, respectively. Structure-based mutagenesis revealed that 3A3 and 3A5 inhibit membrane fusion through different mechanisms involving the interference with gB-cell interaction and gB activation. Importantly, the 3A3 and 3A5 epitopes are major targets of protective gB-specific neutralizing antibodies elicited by natural EBV infection in humans, providing potential targets for antiviral therapies and vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Proteínas Virales , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos Antivirales/uso terapéutico , Microscopía por Crioelectrón , Infecciones por Virus de Epstein-Barr/prevención & control , Infecciones por Virus de Epstein-Barr/terapia , Herpesvirus Humano 4/inmunología , Humanos , Fusión de Membrana , Ratones , Proteínas Virales/inmunología
8.
Chem Soc Rev ; 53(3): 1167-1315, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38168612

RESUMEN

The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.


Asunto(s)
Nanomedicina , Silicio , Nanomedicina/métodos , Dióxido de Silicio , Sistemas de Liberación de Medicamentos , Materiales Biocompatibles
9.
J Cell Mol Med ; 28(10): e18448, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774993

RESUMEN

Pulmonary fibrosis represents the final alteration seen in a wide variety of lung disorders characterized by increased fibroblast activity and the accumulation of substantial amounts of extracellular matrix, along with inflammatory damage and the breakdown of tissue architecture. This condition is marked by a significant mortality rate and a lack of effective treatments. The depositing of an excessive quantity of extracellular matrix protein follows the damage to lung capillaries and alveolar epithelial cells, leading to pulmonary fibrosis and irreversible damage to lung function. It has been proposed that the connective tissue growth factor (CTGF) plays a critical role in the advancement of pulmonary fibrosis by enhancing the accumulation of the extracellular matrix and exacerbating fibrosis. In this context, the significance of CTGF in pulmonary fibrosis is examined, and a summary of the development of drugs targeting CTGF for the treatment of pulmonary fibrosis is provided.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Fibrosis Pulmonar , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Humanos , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Animales , Terapia Molecular Dirigida , Matriz Extracelular/metabolismo
10.
EMBO J ; 39(10): e103111, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32187724

RESUMEN

The homeostatic link between oxidative stress and autophagy plays an important role in cellular responses to a wide variety of physiological and pathological conditions. However, the regulatory pathway and outcomes remain incompletely understood. Here, we show that reactive oxygen species (ROS) function as signaling molecules that regulate autophagy through ataxia-telangiectasia mutated (ATM) and cell cycle checkpoint kinase 2 (CHK2), a DNA damage response (DDR) pathway activated during metabolic and hypoxic stress. We report that CHK2 binds to and phosphorylates Beclin 1 at Ser90/Ser93, thereby impairing Beclin 1-Bcl-2 autophagy-regulatory complex formation in a ROS-dependent fashion. We further demonstrate that CHK2-mediated autophagy has an unexpected role in reducing ROS levels via the removal of damaged mitochondria, which is required for cell survival under stress conditions. Finally, CHK2-/- mice display aggravated infarct phenotypes and reduced Beclin 1 p-Ser90/Ser93 in a cerebral stroke model, suggesting an in vivo role of CHK2-induced autophagy in cell survival. Taken together, these results indicate that the ROS-ATM-CHK2-Beclin 1-autophagy axis serves as a physiological adaptation pathway that protects cells exposed to pathological conditions from stress-induced tissue damage.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Beclina-1/metabolismo , Quinasa de Punto de Control 2/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Autofagia , Línea Celular , Modelos Animales de Enfermedad , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Ratones , Estrés Oxidativo , Fosforilación
11.
J Clin Microbiol ; 62(1): e0109623, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38054730

RESUMEN

Rapid diagnostic tests (RDTs) for bloodstream infections have the potential to reduce time to appropriate antimicrobial therapy and improve patient outcomes. Previously, an in-house, lipid-based, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) method, Fast Lipid Analysis Technique (FLAT MS), has shown promise as a rapid pathogen identification method. In this study, FLAT MS for direct from blood culture identification was evaluated and compared to FDA-cleared identification methods using the Benefit-risk Evaluation Framework (BED-FRAME) analysis. FLAT MS was evaluated and compared to Bruker Sepsityper and bioMérieux BioFire FilmArray BCID2 using results from a previous study. For this study, 301 positive blood cultures were collected from the University of Maryland Medical Center. The RDTs were compared by their sensitivities, time-to-results, hands-on time, and BED-FRAME analysis. The overall sensitivity of all platforms compared to culture results from monomicrobial-positive blood cultures was 88.3%. However, the three RDTs differed in their accuracy for identifying Gram-positive bacteria, Gram-negative bacteria, and yeast. Time-to-results for FLAT MS, Sepsityper, and BioFire BCID2 were all approximately one hour. Hands-on times for FLAT MS, Sepsityper, and BioFire BCID2 were 10 (±1.3), 40 (±2.8), and 5 (±0.25) minutes, respectively. BED-FRAME demonstrated that each RDT had utility at different pathogen prevalence and relative importance. BED-FRAME is a useful tool that can used to determine which RDT is best for a healthcare center.


Asunto(s)
Bacteriemia , Sepsis , Humanos , Bacteriemia/diagnóstico , Bacteriemia/microbiología , Prueba de Diagnóstico Rápido , Técnicas Bacteriológicas/métodos , Sepsis/diagnóstico , Cultivo de Sangre , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Lípidos
12.
Appl Environ Microbiol ; 90(5): e0014524, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38578096

RESUMEN

The bacterium Natranaerobius thermophilus is an extremely halophilic alkalithermophile that can thrive under conditions of high salinity (3.3-3.9 M Na+), alkaline pH (9.5), and elevated temperature (53°C). To understand the molecular mechanisms of salt adaptation in N. thermophilus, it is essential to investigate the protein, mRNA, and key metabolite levels on a molecular basis. Based on proteome profiling of N. thermophilus under 3.1, 3.7, and 4.3 M Na+ conditions compared to 2.5 M Na+ condition, we discovered that a hybrid strategy, combining the "compatible solute" and "salt-in" mechanisms, was utilized for osmotic adjustment dur ing the long-term salinity adaptation of N. thermophilus. The mRNA level of key proteins and the intracellular content of compatible solutes and K+ support this conclusion. Specifically, N. thermophilus employs the glycine betaine ABC transporters (Opu and ProU families), Na+/solute symporters (SSS family), and glutamate and proline synthesis pathways to adapt to high salinity. The intracellular content of compatible solutes, including glycine betaine, glutamate, and proline, increases with rising salinity levels in N. thermophilus. Additionally, the upregulation of Na+/ K+/ H+ transporters facilitates the maintenance of intracellular K+ concentration, ensuring cellular ion homeostasis under varying salinities. Furthermore, N. thermophilus exhibits cytoplasmic acidification in response to high Na+ concentrations. The median isoelectric points of the upregulated proteins decrease with increasing salinity. Amino acid metabolism, carbohydrate and energy metabolism, membrane transport, and bacterial chemotaxis activities contribute to the adaptability of N. thermophilus under high salt stress. This study provides new data that support further elucidating the complex adaptation mechanisms of N. thermophilus under multiple extremes.IMPORTANCEThis study represents the first report of simultaneous utilization of two salt adaptation mechanisms within the Clostridia class in response to long-term salinity stress.


Asunto(s)
Proteínas Bacterianas , Potasio , Estrés Salino , Potasio/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Adaptación Fisiológica , Salinidad
13.
Artículo en Inglés | MEDLINE | ID: mdl-38429955

RESUMEN

OBJECTIVES: To develop a novel ultrasound scoring system for the major salivary glands in patients with immunoglobulin G4-related sialadenitis (IgG4-RS) and assess its diagnostic value in a multicenter cohort of Chinese patients. METHODS: Twenty clinicians (rheumatologists, stomatologists, and radiologists) participated. The study was conducted in four steps: (1) defining the ultrasonography (US) elements, (2) developing a novel ultrasound scoring system for US of the salivary glands, (3) evaluation of inter- and intra-reader reliabilities using the new ultrasound scoring system, and (4) assessing the diagnostic value of this novel ultrasound scoring system in IgG4-RS patients in a Chinese multicenter cohort. RESULTS: A novel ultrasound scoring system for the salivary glands was developed, with total scores ranging from 0 to 34. The inter- and intra-reader reliabilities of the ultrasound scoring system were excellent (0.972 and 0.940, respectively). A total of 470 people were recruited in this study; 187 patients were diagnosed with IgG4-RS, and the remaining 283 people were diagnosed with non-IgG4-RS. Patients with IgG4-RS had significantly higher US scores than the non-IgG4-RS group (mean US score=16 vs. 4, P < 0.001). The calculated area under the curve (AUC) for the total US score was 0.852 (95% CI: 0.814-0.891). The total US scores≥9 showed a sensitivity of 75.4% and a specificity of 91.9%. Association analysis showed a positive correlation between total US scores and serum IgG4 levels and hypocomplementemia (r=0.221, r=0.349; P = 0.002) and a negative correlation between total US scores and serum C3 and C4 levels (r=-0.210, r=-0.303; P = 0.005, P < 0.001). CONCLUSIONS: A novel semiquantitative ultrasound scoring system for patients with IgG4-RS was developed, with good diagnostic performance. The inter- and intra-reader reliabilities were excellent. US scores were correlated with IgG4, C3, and C4 levels and hypocomplementemia.

14.
Plant Physiol ; 192(2): 1099-1114, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36932694

RESUMEN

Soybean (Glycine max) is a major grain and oil crop worldwide, but low phosphorus (LP) in soil severely limits the development of soybean production. Dissecting the regulatory mechanism of the phosphorus (P) response is crucial for improving the P use efficiency of soybean. Here, we identified a transcription factor, GmERF1 (ethylene response factor 1), that is mainly expressed in soybean root and localized in the nucleus. Its expression is induced by LP stress and differs substantially in extreme genotypes. The genomic sequences of 559 soybean accessions suggested that the allelic variation of GmERF1 has undergone artificial selection, and its haplotype is significantly related to LP tolerance. GmERF1 knockout or RNA interference resulted in significant increases in root and P uptake efficiency traits, while the overexpression of GmERF1 produced an LP-sensitive phenotype and affected the expression of 6 LP stress-related genes. In addition, GmERF1 directly interacted with GmWRKY6 to inhibit transcription of GmPT5 (phosphate transporter 5), GmPT7, and GmPT8, which affects plant P uptake and use efficiency under LP stress. Taken together, our results show that GmERF1 can affect root development by regulating hormone levels, thus promoting P absorption in soybean, and provide a better understanding of the role of GmERF1 in soybean P signal transduction. The favorable haplotypes from wild soybean will be conducive to the molecular breeding of high P use efficiency in soybean.


Asunto(s)
Glycine max , Factores de Transcripción , Glycine max/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fósforo/metabolismo , Genotipo , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
15.
Opt Lett ; 49(10): 2821-2824, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748170

RESUMEN

Waveguide Bragg grating (WBG) blood glucose sensing, as a biological sensing technology with broad application prospects, plays an important role in the fields of health management and medical treatment. In this work, a polymer-based cascaded WBG is applied to glucose detection. We investigated photonic devices with two different grating structures cascaded-a crossed grating and a bilateral grating-and analyzed the effects of the crossed grating period, bilateral grating period, and number of grating periods on the sensing performance of the glucose sensor. Finally, the spectral reflectance characteristics, response time, and sensing specificity of the cascaded WBG were evaluated. The experimental results showed that the glucose sensor has a sensitivity of 175 nm/RIU in a glucose concentration range of 0-2 mg/ml and has the advantages of high integration, a narrow bandwidth, and low cost.


Asunto(s)
Glucemia , Polímeros , Polímeros/química , Glucemia/análisis , Técnicas Biosensibles/instrumentación
16.
Reprod Biol Endocrinol ; 22(1): 65, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849798

RESUMEN

BACKGROUND: The cumulative live birth rate (CLBR) has been regarded as a key measure of in vitro fertilization (IVF) success after a complete treatment cycle. Women undergoing IVF face great psychological pressure and financial burden. A predictive model to estimate CLBR is needed in clinical practice for patient counselling and shaping expectations. METHODS: This retrospective study included 32,306 complete cycles derived from 29,023 couples undergoing IVF treatment from 2014 to 2020 at a university-affiliated fertility center in China. Three predictive models of CLBR were developed based on three phases of a complete cycle: pre-treatment, post-stimulation, and post-treatment. The non-linear relationship was treated with restricted cubic splines. Subjects from 2014 to 2018 were randomly divided into a training set and a test set at a ratio of 7:3 for model derivation and internal validation, while subjects from 2019 to 2020 were used for temporal validation. RESULTS: Predictors of pre-treatment model included female age (non-linear relationship), antral follicle count (non-linear relationship), body mass index, number of previous IVF attempts, number of previous embryo transfer failure, type of infertility, tubal factor, male factor, and scarred uterus. Predictors of post-stimulation model included female age (non-linear relationship), number of oocytes retrieved (non-linear relationship), number of previous IVF attempts, number of previous embryo transfer failure, type of infertility, scarred uterus, stimulation protocol, as well as endometrial thickness, progesterone and luteinizing hormone on trigger day. Predictors of post-treatment model included female age (non-linear relationship), number of oocytes retrieved (non-linear relationship), cumulative Day-3 embryos live-birth capacity (non-linear relationship), number of previous IVF attempts, scarred uterus, stimulation protocol, as well as endometrial thickness, progesterone and luteinizing hormone on trigger day. The C index of the three models were 0.7559, 0.7744, and 0.8270, respectively. All models were well calibrated (p = 0.687, p = 0.468, p = 0.549). In internal validation, the C index of the three models were 0.7422, 0.7722, 0.8234, respectively; and the calibration P values were all greater than 0.05. In temporal validation, the C index were 0.7430, 0.7722, 0.8234 respectively; however, the calibration P values were less than 0.05. CONCLUSIONS: This study provides three IVF models to predict CLBR according to information from different treatment stage, and these models have been converted into an online calculator ( https://h5.eheren.com/hcyc/pc/index.html#/home ). Internal validation and temporal validation verified the good discrimination of the predictive models. However, temporal validation suggested low accuracy of the predictive models, which might be attributed to time-associated amelioration of IVF practice.


Asunto(s)
Tasa de Natalidad , Fertilización In Vitro , Nacimiento Vivo , Humanos , Femenino , Fertilización In Vitro/métodos , Adulto , China/epidemiología , Estudios Retrospectivos , Embarazo , Nacimiento Vivo/epidemiología , Masculino , Índice de Embarazo , Inducción de la Ovulación/métodos , Transferencia de Embrión/métodos
17.
J Nutr ; 154(5): 1596-1603, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484977

RESUMEN

BACKGROUND: Although adverse health effects of phthalates have been reported, very few studies have assessed the associations between biomarkers of phthalate exposure and serum folate concentrations in children. OBJECTIVES: We aimed to examine the association between urinary phthalate metabolites, as biomarkers of exposure to phthalates, and total serum folate concentrations in children using national data from the United States. METHODS: We conducted cross-sectional analyses of 2100 individuals aged 6-18 y enrolled in the National Health and Nutrition Examination Survey, 2011-2016. Multivariable linear regression was applied to examine the relationship between natural logarithm (ln)-transformed urinary phthalate metabolites and serum folate concentrations. The quantile-based g-computation was used to assess the association of urinary phthalate metabolite mixture with serum folate levels. Subgroup analyses were conducted by sex, age, and race/ethnicity, and the interactions were assessed by adding interaction terms of these stratifying variables and phthalates and modeling through the Wald test. RESULTS: In multiple linear regression models, for participants in the highest tertile of MEHHP, MEOHP, DEHP, MCPP, and MCOP, total serum folate concentrations were 1.566 [ß: -1.566; 95% confidence interval: -2.935, -0.196], 1.423 (-1.423; -2.689, -0.157), 1.309 (-1.309; -2.573, -0.044), 1.530 (-1.530; -2.918, -0.142), and 1.381 (-1.381; -2.641, -0.122) ng/mL lower than those in the lowest tertile. The inverse associations were consistent in different subgroups by sex, age, and race/ethnicity (P for interaction ≥0.083 for all). In addition, the phthalate mixture showed a strong inverse correlation with serum folate; a quartile increase in the phthalate mixture on the ln scale was associated with 0.888 (-0.888; -1.677, -0.099) ng/mL decrease in the serum folate. CONCLUSIONS: Higher concentrations of urinary phthalate metabolites were associated with lower serum folate concentrations in children. Although our findings should be validated through additional population and mechanistic studies, they support a potential adverse effect of phthalate exposure on folate metabolism in children.


Asunto(s)
Biomarcadores , Exposición a Riesgos Ambientales , Ácido Fólico , Ácidos Ftálicos , Ácido Fólico/sangre , Biomarcadores/orina , Exposición a Riesgos Ambientales/análisis , Estudios Transversales , Ácidos Ftálicos/orina , Humanos , Masculino , Femenino , Niño , Adolescente
18.
Anal Biochem ; 690: 115509, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38508332

RESUMEN

DNA methylation aberrations have a strong correlation with cancer in early detection, diagnosis, and prognosis, which make them possible candidate biomarkers. Electrochemical biosensors offer rapid protocols for detecting DNA methylation status with minimal pretreatment of samples. However, the inevitable presence of background current in the time domain, including electrochemical noise and variations, limits the detection performance of these biosensors, especially for low concentration analytes. Here, we propose an ultrasensitive frequency-domain electrochemical analysis strategy to effectively separate the weak signals from background current. To achieve this, we employed periodic magnetic field modulation of magnetic beads (MBs) on and off the electrode surface to generate a periodic electrochemical signal for subsequent frequency-domain analysis. By capturing labeled MBs with as low as 0.5 pg of DNA, we successfully demonstrated a highly sensitive electrochemical method for determination of genome-wide DNA methylation levels. We also validated the effectiveness of this methodology using DNA samples extracted from three types of hepatocellular carcinoma (HCC) cell lines. The results revealed varying genomic methylation levels among different HCC cell lines, indicating the potential application of this approach for early-stage cancer detection in terms of DNA methylation status.

19.
Virol J ; 21(1): 11, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191404

RESUMEN

BACKGROUND: The pathogenesis of severe fever with thrombocytopenia syndrome (SFTS) remained unclear. We aimed to profile the metabolic alterations in urine of SFTS patients and provide new evidence for its pathogenesis. METHODS: A case-control study was conducted in the 154th hospital in China. Totally 88 cases and 22 controls aged ≥ 18 years were enrolled. The cases were selected from laboratory-confirmed SFTS patients. The controls were selected among SFTSV-negative population. Those with diabetes, cancer, hepatitis and other sexually transmitted diseases were excluded in both groups. Fatal cases and survival cases were 1:1 matched. Inter-group differential metabolites and pathways were obtained, and the inter-group discrimination ability was evaluated. RESULTS: Tryptophan metabolism and phenylalanine metabolism were the top one important metabolism pathway in differentiating the control and case groups, and the survival and fatal groups, respectively. The significant increase of differential metabolites in tryptophan metabolism, including 5-hydroxyindoleacetate (5-HIAA), L-kynurenine (KYN), 5-hydroxy-L-tryptophan (5-HTP), 3-hydroxyanthranilic acid (3-HAA), and the increase of phenylpyruvic acid and decrease of hippuric acid in phenylalanine metabolism indicated the potential metabolic alterations in SFTSV infection. The increase of 5-HIAA, KYN, 5-HTP, phenylpyruvic acid and hippuric acid were involved in the fatal progress of SFTS patients. CONCLUSIONS: Tryptophan metabolism and phenylalanine metabolism might be involved in the pathogenesis of SFTSV infection. These findings provided new evidence for the pathogenesis and treatment of SFTS.


Asunto(s)
Síndrome de Trombocitopenia Febril Grave , Humanos , 5-Hidroxitriptófano , Estudios de Casos y Controles , Ácido Hidroxiindolacético , Triptófano , Fenilalanina
20.
Fish Shellfish Immunol ; 145: 109351, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171429

RESUMEN

INTRODUCTION: Ulcerative colitis (UC) is an incurable and highly complex chronic inflammatory bowel disease (IBD) affecting millions of people worldwide. C-phycocyanin (C-PC) has been reported to possess outstanding anti-inflammatory activities and can effectively inhibit various inflammation-related diseases. Whether C-PC-derived bioactive peptides can inhibit intestinal inflammation is worth research and consideration. METHODS: The inhibition activities of three anti-neuroinflammatory peptides were evaluated using 2-4-6-trinitrobenzen sulfonic acid (TNBS)-induced zebrafish colitis model. Subsequently, the abilities of peptides to promote gastrointestinal motility were also examined. The changes in the intestinal pathological symptoms and ultrastructure of intestinal, reactive oxygen species (ROS) levels, and antioxidant enzymes were then determined after co-treatment with peptides and TNBS. Transcriptome analysis was used to investigate the underlying ameliorating TNBS-induced colitis effects molecular mechanisms of better activity peptide. Furthermore, quantitative reverse-transcription polymerase chain reaction and molecular docking techniques verified the mRNA sequencing results. RESULTS: Three peptides, MHLWAAK, MAQAAEYYR and MDYYFEER, which significantly inhibit macrophage migration, were synthesized. The results showed that these peptides could effectively alleviate the inflammatory responses in the TNBS-induced zebrafish model of colitis. In addition, co-treatment with TNBS and C-PC peptides could decrease ROS production and increase antioxidant enzyme activities in zebrafish larvae. Moreover, MHLWAAK had the most significantly therapeutic effects on colitis in zebrafish. The transcriptome analysis suggests that the effect of MHLWAAK on TNBS-induced colitis may be associated with the modulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinase (MAPK) signaling pathway associated genes. In addition, molecular docking was conducted to study the prospective interaction between peptides and the key proteins that streamline the Nrf2 and MAPK signaling pathways. IL-6, JNK3, TNF-α, KEAP1-NRF2 complex and MAPK may be the core targets of MHLWAAK in treating colitis. CONCLUSION: The results suggested that the three C-PC-derived peptides could ameliorate TNBS-induced colitis in zebrafish, and these peptides might be a promising therapeutic candidate for UC treatment.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Pez Cebra/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ficocianina/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Simulación del Acoplamiento Molecular , Estudios Prospectivos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Sistema de Señalización de MAP Quinasas , Inflamación , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA