Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 917
Filtrar
1.
Cell ; 185(18): 3375-3389.e21, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998627

RESUMEN

Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving multiple immune cells. To elucidate SLE pathogenesis, it is essential to understand the dysregulated gene expression pattern linked to various clinical statuses with a high cellular resolution. Here, we conducted a large-scale transcriptome study with 6,386 RNA sequencing data covering 27 immune cell types from 136 SLE and 89 healthy donors. We profiled two distinct cell-type-specific transcriptomic signatures: disease-state and disease-activity signatures, reflecting disease establishment and exacerbation, respectively. We then identified candidate biological processes unique to each signature. This study suggested the clinical value of disease-activity signatures, which were associated with organ involvement and therapeutic responses. However, disease-activity signatures were less enriched around SLE risk variants than disease-state signatures, suggesting that current genetic studies may not well capture clinically vital biology. Together, we identified comprehensive gene signatures of SLE, which will provide essential foundations for future genomic and genetic studies.


Asunto(s)
Lupus Eritematoso Sistémico , Transcriptoma , Humanos , Lupus Eritematoso Sistémico/genética , Análisis de Secuencia de ARN
2.
Nature ; 611(7934): 155-160, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36289334

RESUMEN

Relatlimab and nivolumab combination immunotherapy improves progression-free survival over nivolumab monotherapy in patients with unresectable advanced melanoma1. We investigated this regimen in patients with resectable clinical stage III or oligometastatic stage IV melanoma (NCT02519322). Patients received two neoadjuvant doses (nivolumab 480 mg and relatlimab 160 mg intravenously every 4 weeks) followed by surgery, and then ten doses of adjuvant combination therapy. The primary end point was pathologic complete response (pCR) rate2. The combination resulted in 57% pCR rate and 70% overall pathologic response rate among 30 patients treated. The radiographic response rate using Response Evaluation Criteria in Solid Tumors 1.1 was 57%. No grade 3-4 immune-related adverse events were observed in the neoadjuvant setting. The 1- and 2-year recurrence-free survival rate was 100% and 92% for patients with any pathologic response, compared to 88% and 55% for patients who did not have a pathologic response (P = 0.005). Increased immune cell infiltration at baseline, and decrease in M2 macrophages during treatment, were associated with pathologic response. Our results indicate that neoadjuvant relatlimab and nivolumab induces a high pCR rate. Safety during neoadjuvant therapy is favourable compared to other combination immunotherapy regimens. These data, in combination with the results of the RELATIVITY-047 trial1, provide further confirmation of the efficacy and safety of this new immunotherapy regimen.


Asunto(s)
Melanoma , Terapia Neoadyuvante , Nivolumab , Humanos , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/cirugía , Terapia Neoadyuvante/efectos adversos , Terapia Neoadyuvante/métodos , Estadificación de Neoplasias , Nivolumab/efectos adversos , Nivolumab/uso terapéutico , Macrófagos/efectos de los fármacos , Quimioterapia Combinada , Tasa de Supervivencia
3.
Nature ; 599(7884): 325-329, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34552241

RESUMEN

Glutamate-gated kainate receptors are ubiquitous in the central nervous system of vertebrates, mediate synaptic transmission at the postsynapse and modulate transmitter release at the presynapse1-7. In the brain, the trafficking, gating kinetics and pharmacology of kainate receptors are tightly regulated by neuropilin and tolloid-like (NETO) proteins8-11. Here we report cryo-electron microscopy structures of homotetrameric GluK2 in complex with NETO2 at inhibited and desensitized states, illustrating variable stoichiometry of GluK2-NETO2 complexes, with one or two NETO2 subunits associating with GluK2. We find that NETO2 accesses only two broad faces of kainate receptors, intermolecularly crosslinking the lower lobe of ATDA/C, the upper lobe of LBDB/D and the lower lobe of LBDA/C, illustrating how NETO2 regulates receptor-gating kinetics. The transmembrane helix of NETO2 is positioned proximal to the selectivity filter and competes with the amphiphilic H1 helix after M4 for interaction with an intracellular cap domain formed by the M1-M2 linkers of the receptor, revealing how rectification is regulated by NETO2.


Asunto(s)
Proteínas de la Membrana/metabolismo , Receptores de Ácido Kaínico/metabolismo , Microscopía por Crioelectrón , Electrofisiología , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Modelos Moleculares , Unión Proteica , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/ultraestructura , Receptor de Ácido Kaínico GluK2
4.
Plant J ; 118(6): 2249-2268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38430487

RESUMEN

Melon (Cucumis melo L.), being under intensive domestication and selective breeding, displays an abundant phenotypic diversity. Wild germplasm with tolerance to stress represents an untapped genetic resource for discovery of disease-resistance genes. To comprehensively characterize resistance genes in melon, we generate a telomere-to-telomere (T2T) and gap-free genome of wild melon accession PI511890 (C. melo var. chito) with a total length of 375.0 Mb and a contig N50 of 31.24 Mb. The complete genome allows us to dissect genome architecture and identify resistance gene analogs. We construct a pan-NLRome using seven melon genomes, which include 208 variable and 18 core nucleotide-binding leucine-rich repeat receptors (NLRs). Multiple disease-related transcriptome analyses indicate that most up-regulated NLRs induced by pathogens are shell or cloud NLRs. The T2T gap-free assembly and the pan-NLRome not only serve as essential resources for genomic studies and molecular breeding of melon but also provide insights into the genome architecture and NLR diversity.


Asunto(s)
Cucumis melo , Resistencia a la Enfermedad , Genoma de Planta , Genoma de Planta/genética , Cucumis melo/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Cucurbitaceae/genética
5.
Biochem Biophys Res Commun ; 725: 150271, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38901222

RESUMEN

The R-type voltage-gated calcium channel CaV2.3 is predominantly located in the presynapse and is implicated in distinct types of epileptic seizures. It has consequently emerged as a molecular target in seizure treatment. Here, we determined the cryo-EM structure of the CaV2.3-α2δ1-ß1 complex in the topiramate-bound state at a 3.0 Å resolution. We provide a snapshot of the binding site of topiramate, a widely prescribed antiepileptic drug, on a voltage-gated ion channel. The binding site is located at an intracellular juxtamembrane hydrophilic cavity. Further structural analysis revealed that topiramate may allosterically facilitate channel inactivation. These findings provide fundamental insights into the mechanism underlying the inhibitory effect of topiramate on CaV and NaV channels, elucidating a previously unseen modulator binding site and thus pointing toward a route for the development of new drugs.


Asunto(s)
Anticonvulsivantes , Canales de Calcio Tipo R , Microscopía por Crioelectrón , Topiramato , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Topiramato/química , Topiramato/farmacología , Humanos , Regulación Alostérica/efectos de los fármacos , Canales de Calcio Tipo R/química , Canales de Calcio Tipo R/metabolismo , Sitios de Unión , Modelos Moleculares , Células HEK293 , Conformación Proteica , Fructosa/química , Fructosa/análogos & derivados , Fructosa/metabolismo , Animales , Proteínas de Transporte de Catión
6.
Plant Cell Environ ; 47(6): 1997-2010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38379450

RESUMEN

Gummy stem blight (GSB), a widespread disease causing great loss to cucurbit production, has become a major threat to melon cultivation. However, the melon-GSB interaction remains largely unknown. Here, full-length transcriptome and widely targeted metabolome were used to investigate the defence responses of resistant (PI511089) and susceptible (Payzawat) melon accessions to GSB pathogen infection at 24 h. The biosynthesis of secondary metabolites and MAPK signalling pathway were specifically enriched for differentially expressed genes in PI511890, while carbohydrate metabolism and amino acid metabolism were specifically enriched in Payzawat. More than 1000 novel genes were identified and MAPK signalling pathway was specifically enriched for them in PI511890. There were 11 793 alternative splicing events involving in the defence response to GSB. Totally, 910 metabolites were identified in Payzawat and PI511890, and flavonoids were the dominant metabolites. Integrated full-length transcriptome and metabolome analysis showed eriodictyol and oxalic acid were the potential marker metabolites for GSB resistance in melon. Moreover, posttranscription regulation was widely involved in the defence response of melon to GSB pathogen infection. These results not only improve our understanding on the interaction between melon and GSB, but also facilitate the genetic improvement of melon with GSB resistance.


Asunto(s)
Cucurbitaceae , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Metaboloma , Enfermedades de las Plantas , Transcriptoma , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Cucurbitaceae/microbiología , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Perfilación de la Expresión Génica
7.
Opt Express ; 32(9): 15813-15826, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859222

RESUMEN

After the aluminum alloy mirror machined by single point diamond turning (SPDT), the residual tool marks and surface accuracy of the aluminum alloy mirror cannot meet the requirements of visible or ultraviolet light system. In this study, a processing method combining magnetorheological finishing (MRF) and chemical mechanical polishing (CMP) is proposed to realize the polishing of aluminum alloy mirrors with high efficiency, high precision and high-quality. Firstly, the properties and composition of passivation layer after MRF were analyzed and the polishing performance of acidic, neutral and alkaline alumina polishing fluid on passivation layer were investigated based on the computer numerical control (CNC) polishing equipment. Based on the experimental results, a new acidic nano-silica polishing fluid which is suitable for the efficient and high-quality removal of passivation layers on aluminum alloy surfaces was developed. Finally, a combined approach of MRF-CMP was used to the directly polishing of a rapidly solidified aluminum mirror (RSA-6061) with a diameter of 100 mm after SPDT. With two iterative of MRF-CMP polishing in 220 minutes, the surface accuracy of the aluminum alloy mirror was improved from 0.1λ (λ=632.8 nm) to 0.024λ, and the surface roughness (Ra) decreased from 3.6 nm to 1.38 nm. The experiment results manifest that high precision, and high-quality aluminum alloy mirror can be achieved by MRF-CMP method with the new developed acid nano-silica polishing fluid and suitable MR polishing fluid. The research results will provide a new strategy for ultra-precision direct polishing of aluminum alloy mirrors and will also give the important technical support for the extensive use of aluminum alloy mirror in visible light and ultraviolet optical systems.

8.
Opt Express ; 32(7): 11150-11170, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570970

RESUMEN

The magnetorheological finishing (MRF) of surfaces often results in tool mark errors. A prediction model can effectively guide subsequent processing, necessitating thorough research. To address this issue, this paper introduces an enhanced continuous tool influence function method. This method involves sub dwell time convolution with varying tool influence functions, enabling tool mark prediction. Numerical simulations demonstrate the proposed method's effectiveness, while the data size is estimated to confirm its economic properties. Subsequently, a MRF experiment was conducted, affirming the practicability through power spectral density evaluation. A fast algorithm is given to guide tool mark predictions on large-aperture mirrors fabrication engineering subjected to sub-aperture polishing.

9.
Opt Express ; 32(1): 825-834, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175102

RESUMEN

The diffraction efficiency, defined as the ratio of diffracted power to incident power, is one of the key working indicators for a computer-generated hologram (CGH). The CGH with high diffraction efficiency could suppress stray light and eliminate ghost images, thus improving interferometric performance in aspherical testing of low-reflectivity or large off-axis distance surfaces. However, the high-efficiency CGH is hard to precisely fabricate by traditional reactive ion etching and focusing ion beam, because it requires high etching depth with a high uniformity and sub-nanometric roughness in the glass, especially in the fabrication of a large CGH with an aperture of up to 300 mm. In this study, fabrication of the above-mentioned CGH was demonstrated via what we believe to be a new method called scanning homogenization etching (SHE), in which the ion source with a Gaussian energy distribution accurately scans the glass surface to realize homogenization etching. Different from controlling dwell time at each etching point, this paper proposes to control the scanning rate to achieve not only uniform but also quantitative depth removal in a single scan. Moreover, the depth errors in deep etching across the whole glass surface can be remarkably reduced due to homogenization effects introduced by multiple scanning etching. Finally, the target etching depth of 692.3 nm with an etching uniformity of 2.2% in the etching of a 300 mm CGH was achieved. The roughness of the etched and unetched area both have Ra values of 0.3 nm. The diffraction efficiency of working order is 39.998%, achieving 98.6% of the theoretical diffraction efficiency. In addition, the SHE is not limited by the aperture of the ion source, so it can achieve even larger diffractive optical elements with high diffraction efficiency and high accuracy.

10.
Opt Express ; 32(7): 11241-11258, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570976

RESUMEN

Scratches on optical components induce laser damage and limit the increase in laser power. Magnetorheological finishing (MRF) is a highly deterministic optical manufacturing technology that can improve the surface roughness of optical components. Although MRF has exhibited significant potential for reducing subsurface damage and removing scratches, the principle and mechanism behind the scratch removal are not sufficiently understood. In this study, the theory of fluid mechanics is used to analyze the pressure, velocity, and particle trajectory distribution near a scratch. A physical model was developed for the differential removal of scratches at the bottom and surface of the optical components. The morphological evolution of the scratch was predicted during removal, and detailed experiments were performed to verify the effectiveness of the proposed model. The results indicate that scratches expand laterally rather than being completely removed. Furthermore, scratch removal efficiency is greater when the removal direction is perpendicular to the scratch rather than being parallel. This study offers an intrinsic perspective for a comprehensive understanding of the MRF technique used for scratch removal, which can be beneficial for removing scratches from aspherical optical systems.

11.
Cancer Cell Int ; 24(1): 116, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539153

RESUMEN

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) have been acknowledged as the most important stromal cells in the bone marrow (BM) microenvironment for physiologic hematopoiesis and the concomitant hematologic malignancies. However, the systematic and detailed dissection of the biological and transcriptomic signatures of BM-MSCs in multiple myeloma (MM) are largely unknown. METHODS: In this study, we isolated and identified BM-MSCs from 10 primary MM patients and 10 healthy donors (HD). On the one hand, we compared the multifaceted biological characteristics of the indicated two BM-MSCs, including biomarker expression pattern, multilineage differentiation potential, stemness and karyotyping, together with the cellular vitality and immunosuppressive property. On the other hand, we took advantage of RNA-SEQ and bioinformatics analysis to verify the similarities and differences at the transcriptomic level between MM-MSCs and HD-MSCs. RESULTS: As to biological phenotypes and biofunctions, MM-MSCs revealed conservation in immunophenotype, stemness and differentiation towards adipocytes and chondrocytes with HD-MSCs, whereas with impaired osteogenic differentiation potential, cellular vitality and immunosuppressive property. As to transcriptomic properties, MM-MSCs revealed multidimensional alterations in gene expression profiling and genetic variations. CONCLUSIONS: Overall, our date systematic and detailed reflected the multifaceted similarities and variations between MM-MSCs and HD-MSCs both at the cellular and molecular levels, and in particular, the alterations of immunomodulation and cellular viability of MM-MSCs, which wound benefit the further exploration of the pathogenesis and new drug application (NDA) of multiple myeloma from the view of BM-MSCs.

13.
Environ Res ; 248: 118411, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38316382

RESUMEN

As a typical heterogeneous catalytic process, the catalytic combustion of toluene over Co3O4-based catalysts is strongly depends on the surface properties of catalysts, especially the concentration of surface oxygen defects. Here, a novel way was proposed to construct chemically bonded CuO-Co3O4 interface by chemical deposition of CuO onto Co3O4 nanoflowers. The interfacial refinement effect between CuO and Co3O4 support disrupted the ordered atomic arrangement and created countless unsaturated coordination sites at CuO-Co3O4 interface, inducing a significant generation of surface oxygen defects. Surface-rich oxygen vacancies enhanced the capacity of 20%CuO/Co3O4-R to adsorb and activate oxygen species. Benefiting from this, 90 % toluene conversion was reached at 228 °C over 20%CuO/Co3O4-R, which was much lower than that over 20%CuO/Co3O4-S prepared by impregnation method and CuO/Co3O4-mix obtained by mechanically mixing way. In-situ DRIFTS analysis revealed that toluene could be directly decomposed into benzaldehyde at the highly defective CuO-Co3O4 interface, leading to toluene oxidation following the path of toluene → benzaldehyde → benzoate → maleic anhydride → water and carbon dioxide over 20%CuO/Co3O4-R, which was significantly different from decomposition mechanism over 20%CuO/Co3O4-S. Additionally, 20%CuO/Co3O4-R displayed terrific recyclability and outstanding stability, showing good application potential.


Asunto(s)
Benzaldehídos , Cobalto , Óxidos , Oxígeno , Oxidación-Reducción , Oxígeno/química , Tolueno/análisis
14.
Appl Opt ; 63(15): 4024-4031, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38856494

RESUMEN

More accurate dwell time calculation methods are necessary to achieve superior error convergence in producing optically critical components. Although the discrete convolution matrix method finds widespread application, it still has approximate errors in the non-uniform discrete form of tool paths. To address this issue, this paper introduced a modified matrix elements method and presented the general Voronoi polygon area weight calculation forms under different tool path discretization forms. The mechanism is explained through analysis and the validity is verified by numerical simulation. The modified method significantly improved uniformity distribution and accuracy in computation of surface residuals. This improvement holds promise as a guiding principle for the fabrication of ultra-precision optical components.

15.
BMC Musculoskelet Disord ; 25(1): 338, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671421

RESUMEN

OBJECTIVES: The application of a growing rod technique can retain the growth and development potential of the spine and thorax while controlling the progression of scoliosis deformity. Theoretically, convex side short fusion combined with a concave side single growing rod technique can significantly reduce the asymmetric growth of the spine in the vertex region in most patients. However, the final clinical outcome of various techniques is yet to be clearly determined and compared between studies. Therefore, we compared the efficacy of these two growing rod techniques in treating early onset scoliosis. METHODS: In a retrospective study of 152 EOS patients seen between 2013.1 and 2019.12, 36 cases of EOS patients were selected for inclusion. Among the 36 cases, 11 cases were treated with convex side short fusion combined with a concave side single growing rod technique, group (A) The remaining 25 cases were treated with traditional bilateral growing rod technique, group (B) Age, gender, etiology, follow-up time, Cobb angle of main curve, T1-S1 height, coronal trunk shift, sagittal vertical axis (SVA), Cobb angle of thoracic kyphosis at last follow-up, and Cobb angle at proximal junction kyphosis of the first and last post-operation follow-up were recorded. In addition, internal fixation related complications, infection, nervous system complications were recorded as well. RESULTS: There was no statistically significant difference between group A and group B in preoperative age, Cobb angle of main curve, coronal trunk shift, T1-S1 height, SVA, Cobb angle of thoracic kyphosis (p > 0.05). However, at the last follow-up (Group A, mean 4.4 ± 1.01 years; Group B, mean 3.6 ± 0.01 years) the Cobb angle of the main curve was less and T1-S1 height greater in group A compared with group B (p < 0.05). There was no statistically significant difference between group A and group B in the correction rate of the Cobb angle of the main curve or the growth rate of T1-S1 height (p > 0.05). There was no statistically significant difference in the coronal imbalance ratio, thoracic kyphosis abnormality ratio, or the occurrence PJK ratio between group A and group B at the last follow-up (p > 0.05), but the sagittal imbalance ratio and internal fixation abnormality ratio were higher in group A than in the group B (p < 0.05). CONCLUSIONS: During the treatment of EOS, both the convex side short fusion combined with concave side single growing rod technique and traditional bilateral growing rod technique can correct the Cobb angle of main curve with no significant hindering of the spinal growth observed. The traditional bilateral growing rod technique has advantages in control of the sagittal balance of the spine, and the complications associated with internal fixation were lower.


Asunto(s)
Escoliosis , Fusión Vertebral , Humanos , Escoliosis/cirugía , Escoliosis/diagnóstico por imagen , Femenino , Estudios Retrospectivos , Masculino , Fusión Vertebral/métodos , Fusión Vertebral/efectos adversos , Fusión Vertebral/instrumentación , Niño , Resultado del Tratamiento , Vértebras Torácicas/cirugía , Vértebras Torácicas/diagnóstico por imagen , Preescolar , Estudios de Seguimiento , Edad de Inicio
16.
J Pediatr Orthop ; 44(4): 260-266, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38312109

RESUMEN

PURPOSE: This study was performed to compare the radiographic results of robot-assisted and traditional methods of treating lower extremity deformities (LEDs). METHODS: From January 2019 to February 2022, 55 patients with LEDs were treated by temporary hemiepiphysiodesis with eight-plates. They were divided into a robot group and a freehand group. The fluoroscopy time and operation time were recorded. The accuracy of screw placement was measured after the operation using the following parameters: coronal entering point (CEP), sagittal entering point (SEP), and angle between the screw and epiphyseal plate (ASEP). The limb length discrepancy (LLD) and femorotibial angle (FTA) were measured before the operation, after the operation, and at the last follow-up. Patients were followed up for 12 to 24 months, and the radiographic results of the 2 groups were compared. RESULTS: Among the 55 patients with LEDs, 36 had LLD and 19 had angular deformities. Seventy-six screws were placed in the robot group and 85 in the freehand group. There was no difference in the CEP between the 2 groups ( P >0.05). The robot group had a better SEP (2.96±1.60 vs. 6.47±2.80 mm) and ASEP (3.46°±1.58° vs. 6.92°±3.92°) than the freehand group ( P <0.001). At the last follow-up, there was no difference in the LLD or FTA improvement between the two groups ( P >0.05). The incidence of complications was significantly lower in the robot group than in the freehand group (0/27 vs. 5/28, P <0.05). CONCLUSION: Robot-assisted temporary hemiepiphysiodesis with eight-plates is a safe and effective method for treating LEDs in children. Robotic placement of screws is superior to freehand placement with respect to the entering position and direction. Although the correction effect for LLD and angular deformity is similar, screw dislocation is less common when using robot assistance. LEVELS OF EVIDENCE: Level-III. Retrospective comparative study.


Asunto(s)
Tornillos Pediculares , Robótica , Niño , Humanos , Estudios Retrospectivos , Tornillos Óseos/efectos adversos , Fluoroscopía/métodos , Extremidad Inferior
17.
Sensors (Basel) ; 24(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38339456

RESUMEN

Real-time monitoring and timely risk warnings for the safety, health, and fatigue of underground miners are essential for establishing intelligent mines, enhancing the safety of production, and safeguarding the well-being of miners. This concerns the collection, transmission, and processing of relevant data. To minimize physical strain on miners, data collection functions are consolidated into two wearable terminals: an electronic bracelet equipped with reliable, low-power components for gathering vital sign data and transmitting them via Bluetooth and a miner lamp that integrates multi-gas detection, personnel positioning, and wireless communication capabilities. The gas sensors within the miner lamp undergo regular calibration to maintain accuracy, while the positioning tag supports round-trip polling to ensure a deviation of less than 0.3 m. Data transmission is facilitated through the co-deployment of 5G communication and UWB positioning base stations, with distributed MIMO networking to minimize frequent cell handovers and ensure a low latency of no more than 20 ms. In terms of data processing, a backpropagation mapping model was developed to estimate miners' fatigue, leveraging the strong correlation between saliva pH and fatigue, with vital signs as the input layer and saliva pH as the output layer. Furthermore, a unified visualization platform was established to facilitate the management of all miners' states and enable prompt emergency response. Through these optimizations, a monitoring system for underground miners' status based on mine IoT technology can be constructed, meeting the requirements of practical operations.

18.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339660

RESUMEN

Multi-spectral imaging technologies have made great progress in the past few decades. The development of snapshot cameras equipped with a specific multi-spectral filter array (MSFA) allow dynamic scenes to be captured on a miniaturized platform across multiple spectral bands, opening up extensive applications in quantitative and visualized analysis. However, a snapshot camera based on MSFA captures a single band per pixel; thus, the other spectral band components of pixels are all missed. The raw images, which are captured by snapshot multi-spectral imaging systems, require a reconstruction procedure called demosaicing to estimate a fully defined multi-spectral image (MSI). With increasing spectral bands, the challenge of demosaicing becomes more difficult. Furthermore, the existing demosaicing methods will produce adverse artifacts and aliasing because of the adverse effects of spatial interpolation and the inadequacy of the number of layers in the network structure. In this paper, a novel multi-spectral demosaicing method based on a deep convolution neural network (CNN) is proposed for the reconstruction of full-resolution multi-spectral images from raw MSFA-based spectral mosaic images. The CNN is integrated with the channel attention mechanism to protect important channel features. We verify the merits of the proposed method using 5 × 5 raw mosaic images on synthetic as well as real-world data. The experimental results show that the proposed method outperforms the existing demosaicing methods in terms of spatial details and spectral fidelity.

19.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892093

RESUMEN

One key post-transcriptional modification mechanism that dynamically controls a number of physiological processes in plants is alternative splicing (AS). However, the functional impacts of AS on fruit ripening remain unclear. In this research, we used RNA-seq data from climacteric (VED, Harukei 3) and non-climacteric (PI, PS) melon cultivars to explore alternative splicing (AS) in immature and mature fruit. The results revealed dramatic changes in differential AS genes (DAG) between the young and mature fruit stages, particularly in genes involved in fruit development/ripening, carotenoid and capsaicinoid biosynthesis, and starch and sucrose metabolism. Serine/arginine-rich (SR) family proteins are known as important splicing factors in AS events. From the melon genome, a total of 17 SR members were discovered in this study. These genes could be classified into eight distinct subfamilies based on gene structure and conserved motifs. Promoter analysis detected various cis-acting regulatory elements involved in hormone pathways and fruit development. Interestingly, these SR genes exhibited specific expression patterns in reproductive organs such as flowers and ovaries. Additionally, concurrent with the increase in AS levels in ripening fruit, the transcripts of these SR genes were activated during fruit maturation in both climacteric and non-climacteric melon varieties. We also found that most SR genes were under selection during domestication. These results represent a novel finding of increased AS levels and SR gene expression during fruit ripening, indicating that alternative splicing may play a role in fruit maturation.


Asunto(s)
Empalme Alternativo , Cucumis melo , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Cucumis melo/genética , Cucumis melo/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica
20.
Chin J Traumatol ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38369429

RESUMEN

PURPOSE: To explore the clinical characteristics of pediatric pelvic fracturs caused by traffic accidents and to analyze the accompanying injuries and complications. METHODS: A total of 222 cases involved traffic accidents was enrolled in this case-control study. The data of children with pelvic fractures caused by traffic accidents who were admitted to our hospital from January 2006 to December 2021 were analyzed retrospectively. Sex, age, Tile classification, abbreviated injury scale score, injury severity score, mortality, and accompanying injuries were studied. The ANOVA was used for measurement data, and the non-parametric rank sum test was used for non-normally distributed data. The Fisher's exact probability method was used for the count data. RESULTS: Of all enrolled cases, 140 are boys and 82 are girls, including 144 aged < 6 years, 65 aged between 6 and 12 years, and 13 aged > 12 years. Depending on the injury mechanism, there are 15 cases involving pedestrians vs. motorcycles (PVM), 91 cases involving pedestrians vs. passenger cars (PVC), 78 cases involving pedestrians vs. commercial vehicles (PVV), and 38 cases involving motor vehicles vs. motor vehicles (MVM). Associated injuries are reported in 198 cases (89.2%), primarily involving the abdomen injury in 144 cases (64.9%), and lower limb injury in 99 cases (44.6%). PVV injury involves longer hospital stay (p = 0.004). Intensive care unit admission rate is significantly higher in the MVM group than in other groups (p = 0.004). Head injury (p = 0.001) and face injury (p = 0.037) are more common in the MVM group, whereas abdominal injury (p = 0.048) and lower limb injury (p = 0.037) are more common in the PVV group. In the MVM group, the brain injury (p = 0.004) and femoral neck injury (p = 0.044) are more common. In the PVM group, the mediastinum (p = 0.004), ear (p = 0.009), lumbar vertebrae (p = 0.008), and spinal cord (p = 0.011) are the most vulnerable regions, while in the PVV group, the perineum (p < 0.001), urethra (p = 0.001), rectum (p = 0.006), anus (p = 0.004), and lower limb soft tissues (p = 0.024) are the most vulnerable regions. Children aged > 12 years have higher pelvic abbreviated injury scale scores (p = 0.019). There are significant differences in the classification of pelvic fractures among children < 6, 6 - 12, and > 12 years of age, with Tile C being more likely to occur in children > 12 years of age (p = 0.033). Children aged > 12 years are more likely to sustain injuries to the spleen (p = 0.022), kidneys (p = 0.019), pancreas (p < 0.001), lumbar vertebrae (p = 0.013), and sacrum (p = 0.024). The MVM group has the highest complication rate (p = 0.003). CONCLUSION: PVC is the leading cause of the abdomen and lower extremities injury and has the most concomitant injuries. Different traffic injuries often lead to different associated injuries. Older children are more likely to sustain more severe pelvic fractures and peripelvic organs injuries. The MVM group has the highest extent of injury and complication rates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA