Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 219: 115103, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549484

RESUMEN

The multiple ecological influences and potential microbial degradation of microplastics are generally attributed to the microbial communities colonized on microplastics. Phages play an important role in the composition and function of their bacterial hosts, yet the occurrence and the potential functional characteristics of phages in the biofilms of microplastics have not been known. This study, for the first time, explored the diversity, composition, and potential function characteristics of phage communities living in the biofilms of PP, PE, and PET microplastics and stones, cultured in the same site, via the metagenome method. The results showed that a total of 240 non-redundant virus OTUs (vOTUs), distributed in at least four orders and seven families, were detected from biofilm metagenomes of microplastics. Compared to stones, some phages were selectively enriched by microplastic biofilms, with 13 vOTUs uniquely colonized on three microplastics, and these vOTUs mainly belong to the family Autographiviridae and Podoviridae. Except for the evenness of PP, the richness index, Chao 1 index, and abundance of phage communities of three microplastics were much higher than that of stone. At least 8 bacterial phyla and 72 genera were possibly infected by phages. Compared to the stones, both composition and abundance of the phages and hosts presented significant and strong correlations for three microplastics. Some of the bacterial hosts on microplastics were likely involved in the microplastic degradation, fermenters, nitrogen transformation processes, and so on. A total of 124 encoding auxiliary metabolic genes (AMGs) were detected from viral contigs. The abundance of AMGs in microplastics was much higher than that of stones, which may provide more direct or indirect support for the bacterial degradation of microplastics. This study provides a new perspective on the occurrence and potential functions of phages on microplastic biofilms, thus expanding our understanding of microbial communities on microplastic biofilms.


Asunto(s)
Bacteriófagos , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos , Bacteriófagos/genética , Bacterias/genética , Biopelículas , Contaminantes Químicos del Agua/análisis
2.
Mar Drugs ; 20(9)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36135756

RESUMEN

The marine is a highly complex ecosystem including various microorganisms. Bacillus species is a predominant microbialflora widely distributed in marine ecosystems. This review aims to provide a systematic summary of the newly reported metabolites produced by marine-derived Bacillus species over recent years covering the literature from 2014 to 2021. It describes the structural diversity and biological activities of the reported compounds. Herein, a total of 87 newly reported metabolites are included in this article, among which 49 compounds originated from marine sediments, indicating that marine sediments are majority sources of productive strains of Bacillus species Therefore, marine-derived Bacillus species are a potentially promising source for the discovery of new metabolites.


Asunto(s)
Bacillus , Productos Biológicos , Bacillus/metabolismo , Productos Biológicos/química , Ecosistema
3.
Front Microbiol ; 13: 1085666, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687635

RESUMEN

Fungi are considered to be one of the wealthiest sources of bio-metabolites that can be employed for yielding novel biomedical agents. Alternaria, including parasitic, saprophytic, and endophytic species, is a kind of dark fungi that can produce a broad array of secondary metabolites (SMs) widely distributed in many ecosystems. These are categorized into polyketides, nitrogen-containing compounds, quinones, terpenes, and others based on the unique structural features of the metabolites. New natural products derived from Alternaria exhibit excellent bioactivities characterized by antibacterial, antitumor, antioxidative, phytotoxic, and enzyme inhibitory properties. Thus, the bio-metabolites of Alternaria species are significantly meaningful for pharmaceutical, industrial, biotechnological, and medicinal applications. To update the catalog of secondary metabolites synthesized by Alternaria fungi, 216 newly described metabolites isolated from Alternaria fungi were summarized with their diverse chemical structures, pharmacological activity, and possible biosynthetic pathway. In addition, possible insights, avenues, and challenges for future research and development of Alternaria are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA