Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Respir Res ; 25(1): 242, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877465

RESUMEN

BACKGROUND: Silicosis represents a paramount occupational health hazard globally, with its incidence, morbidity, and mortality on an upward trajectory, posing substantial clinical dilemmas due to limited effective treatment options available. Trigonelline (Trig), a plant alkaloid extracted mainly from coffee and fenugreek, have diverse biological properties such as protecting dermal fibroblasts against ultraviolet radiation and has the potential to inhibit collagen synthesis. However, it's unclear whether Trig inhibits fibroblast activation to attenuate silicosis-induced pulmonary fibrosis is unclear. METHODS: To evaluate the therapeutic efficacy of Trig in the context of silicosis-related pulmonary fibrosis, a mouse model of silicosis was utilized. The investigation seeks to elucidated Trig's impact on the progression of silica-induced pulmonary fibrosis by evaluating protein expression, mRNA levels and employing Hematoxylin and Eosin (H&E), Masson's trichrome, and Sirius Red staining. Subsequently, we explored the mechanism underlying of its functions. RESULTS: In vivo experiment, Trig has been demonstrated the significant efficacy in mitigating SiO2-induced silicosis and BLM-induced pulmonary fibrosis, as evidenced by improved histochemical staining and reduced fibrotic marker expressions. Additionally, we showed that the differentiation of fibroblast to myofibroblast was imped in Trig + SiO2 group. In terms of mechanism, we obtained in vitro evidence that Trig inhibited fibroblast-to-myofibroblast differentiation by repressing TGF-ß/Smad signaling according to the in vitro evidence. Notably, our finding indicated that Trig seemed to be safe in mice and fibroblasts. CONCLUSION: In summary, Trig attenuated the severity of silicosis-related pulmonary fibrosis by alleviating the differentiation of myofibroblasts, indicating the development of novel therapeutic approaches for silicosis fibrosis.


Asunto(s)
Alcaloides , Diferenciación Celular , Fibroblastos , Ratones Endogámicos C57BL , Miofibroblastos , Fibrosis Pulmonar , Dióxido de Silicio , Silicosis , Animales , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control , Alcaloides/farmacología , Dióxido de Silicio/toxicidad , Ratones , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Diferenciación Celular/efectos de los fármacos , Silicosis/patología , Silicosis/metabolismo , Silicosis/tratamiento farmacológico , Masculino
2.
Cancer Cell Int ; 23(1): 222, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775731

RESUMEN

According to the latest epidemiological investigation, lung adenocarcinoma (LUAD) is one of the most fatal cancer among both men and women. Despite continuous advancements in treatment approaches in recent years, the prognosis for LUAD remains relatively poor. Given the crucial role of the solute carrier (SLC) family in maintaining cellular energy metabolism stability, we conducted a comprehensive analysis of the association between SLC genes and LUAD prognosis. In the present study, we identified 71 genes among the SLC family members, of which 32 were downregulated and 39 were upregulated in LUAD samples. Based on these differentially expressed genes, a prognostic risk scoring model was established that was composed of five genes (SLC16A7, SLC16A4, SLC16A3, SLC12A8, and SLC25A15) and clinical characteristics; this model could effectively predict the survival and prognosis of patients in the cohort. Notably, SLC2A1, SLC25A29, and SLC27A4 were identified as key genes associated with survival and tumor stage. Further analysis revealed that SLC25A29 was underexpressed in LUAD tissue and regulated the phenotype of endothelial cells. Endothelial cell proliferation and migration increased and apoptosis decreased with a decrease in SLC25A29 expression. Investigation of the upstream regulatory mechanisms of SLC25A29 revealed that SLC25A29 expression gradually decreased as the lactate concentration increased. This phenomenon suggested that the expression of SLC25A29 may be related to lactylation modification. ChIP-qPCR experiments confirmed the critical regulatory role played by H3K14la and H3K18la modifications in the promoter region of SLC25A29. In conclusion, this study confirmed the role of SLC family genes in LUAD prognosis and revealed the role of SLC25A29 in regulating endothelial cell phenotypes. These study results provided important clues to further understand LUAD pathogenesis and develop appropriate therapeutic strategies.

3.
Respir Res ; 24(1): 255, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880668

RESUMEN

BACKGROUND: Neutrophilic airway inflammation is a challenge in asthma management and is associated with poor patient prognosis. Mucin 1 (MUC1), which contains a cytoplasmic tail (MUC1-CT), has been found to mediate glucocorticoid sensitivity in asthma; however, its role in modulating neutrophilic airway inflammation in asthma remains unknown. METHODS: Human-induced sputum cells were collected from healthy participants (n = 12), patients with mild-to-moderate asthma (n = 34), and those with severe asthma (n = 18). In vitro human lung bronchial 1 epithelial cell line (BEAS-2B) was transfected with small interfering RNA against MUC1 (MUC1-siRNA) and then stimulated by lipopolysaccharide (LPS), where some cells were pretreated with a TLR4 inhibitor (TAK-242). In vivo mouse model of asthmatic neutrophil airway inflammation was induced by ovalbumin (OVA)/LPS. Some groups were intraperitoneally injected with MUC1-CT inhibitor (GO-203) and/or TAK-242 . RESULTS: The mRNA expression of MUC1 was downregulated in the induced sputum of patients with asthma and correlated with asthmatic neutrophilic airway inflammation. The mRNA expressions of TLR4, MyD88, nucleotide-binding oligomerization domain-like pyrin domain-containing protein 3 (NLRP3), caspase-1, interleukin (IL)-18, and IL-1ß in induced sputum cells of patients with asthma were upregulated and related to the mRNA expression of MUC1. LPS activated the TLR4 pathway and NLRP3-mediated pyroptosis in BEAS-2B cells in vitro, which were significantly aggravated after MUC1-siRNA transfection. Furthermore, MUCl-CT interacted with TLR4, and the interaction between TLR4 and MyD88 was significantly increased after MUCl-siRNA transfection. Moreover, TAK-242 ameliorated TLR4/MyD88/nuclear factor kappa B (NF-κB) pathway activation, NLRP3 inflammasome-mediated pyroptosis, and neutrophilic inflammation exacerbated by MUC1 downregulation. GO-203 exacerbated TLR4/MyD88/NF-κB pathway activation in vivo, and NLRP3 inflammasome-mediated pyroptosis reduced in a mouse model of asthmatic neutrophil airway inflammation induced by OVA/LPS; these pathological changes were partially alleviated after TAK-242 application. CONCLUSION: This study revealed that MUC1 downregulation plays an important role in asthmatic neutrophilic airway inflammation. MUC1-CT reduces NLRP3 inflammasome-mediated pyroptosis by inhibiting the activation of the TLR4/MyD88/NF-κB pathway, thereby attenuating neutrophil airway inflammation in patients with asthma.


Asunto(s)
Asma , FN-kappa B , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/genética , Piroptosis , Transducción de Señal , Lipopolisacáridos , Mucina-1/genética , Mucina-1/metabolismo , Asma/metabolismo , Ovalbúmina/toxicidad , Inflamación/metabolismo , ARN Interferente Pequeño , ARN Mensajero
4.
Biomed Chromatogr ; 34(4): e4799, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31994209

RESUMEN

Spermiogenesis in mammals is an exclusive process during which haploid round spermatids mature into spermatozoa in the testis. Any abnormality in the process of spermiogenesis may result in male infertility. The aim of the present study was to characterize the differentially expressed proteins between round and elongated spermatids in mice using label-free quantitative mass spectrometry. Of the 2411 proteins identified in this study, 333 were differentially expressed with a ≥10-fold change, including 208 upregulated proteins and 125 downregulated proteins in round spermatids relative to elongated spermatids. Gene Ontology analysis showed that these differentially expressed proteins were categorized into 10 types of subcellular localizations, 9 molecular functions, and were involved in 9 biological processes. All the identified proteins participated in 268 different pathways. In addition, ubiquitin-mediated proteolysis and the proteasome pathway, autophagy, lysosome, and apoptosis pathways were involved in the mechanism of spermiogenesis. Our data may provide valuable information for a better understanding of spermiogenesis and help improve the diagnosis and treatment of male factor infertility.


Asunto(s)
Proteoma/análisis , Espermátides/metabolismo , Espermatogénesis/fisiología , Animales , Bases de Datos de Proteínas , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos BALB C , Proteínas/análisis , Proteínas/clasificación , Proteínas/metabolismo , Proteoma/clasificación , Proteoma/metabolismo , Espermátides/química
5.
Nat Sci Sleep ; 16: 917-933, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006248

RESUMEN

Obstructive sleep apnea (OSA), a common sleep-disordered breathing condition, is characterized by intermittent hypoxia (IH) and sleep fragmentation and has been implicated in the pathogenesis and severity of nonalcoholic fatty liver disease (NAFLD). Abnormal molecular changes mediated by IH, such as high expression of hypoxia-inducible factors, are reportedly involved in abnormal pathophysiological states, including insulin resistance, abnormal lipid metabolism, cell death, and inflammation, which mediate the development of NAFLD. However, the relationship between IH and NAFLD remains to be fully elucidated. In this review, we discuss the clinical correlation between OSA and NAFLD, focusing on the molecular mechanisms of IH in NAFLD progression. We meticulously summarize clinical studies evaluating the therapeutic efficacy of continuous positive airway pressure treatment for NAFLD in OSA. Additionally, we compile potential molecular biomarkers for the co-occurrence of OSA and NAFLD. Finally, we discuss the current research progress and challenges in the field of OSA and NAFLD and propose future directions and prospects.

6.
Exp Hematol Oncol ; 13(1): 26, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429828

RESUMEN

A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.

7.
Sleep Med ; 119: 296-311, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723575

RESUMEN

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is the most prevalent sleep and respiratory disorder. This syndrome can induce severe cardiovascular and cerebrovascular complications, and intermittent hypoxia is a pivotal contributor to this damage. Vascular pathology is closely associated with the impairment of target organs, marking a focal point in current research. Vascular lesions are the fundamental pathophysiological basis of multiorgan ailments and indicate a shared pathogenic mechanism among common cardiovascular and cerebrovascular conditions, suggesting their importance as a public health concern. Increasing evidence shows a strong correlation between OSAHS and vascular lesions. Previous studies predominantly focused on the pathophysiological alterations in OSAHS itself, such as intermittent hypoxia and fragmented sleep, leading to vascular disruptions. This review aims to delve deeper into the vascular lesions affected by OSAHS by examining the microscopic pathophysiological mechanisms involved. Emphasis has been placed on examining how OSAHS induces vascular lesions through disruptions in the endothelial barrier, metabolic dysregulation, cellular phenotype alterations, neuroendocrine irregularities, programmed cell death, vascular inflammation, oxidative stress and epigenetic modifications. This review examines the epidemiology and associated risk factors for OSAHS and vascular diseases and subsequently describes the existing evidence on vascular lesions induced by OSAHS in the cardiovascular, cerebrovascular, retinal, renal and reproductive systems. A detailed account of the current research on the pathophysiological mechanisms mediating vascular lesions caused by OSAHS is provided, culminating in a discussion of research advancements in therapeutic modalities to mitigate OSAHS-related vascular lesions and the implications of these treatment strategies.


Asunto(s)
Apnea Obstructiva del Sueño , Humanos , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/complicaciones , Factores de Riesgo , Enfermedades Vasculares/fisiopatología , Enfermedades Vasculares/complicaciones , Enfermedades Vasculares/epidemiología , Enfermedades Cardiovasculares/epidemiología
8.
PeerJ ; 12: e17570, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903879

RESUMEN

Objectives: This study sought to evaluate the diagnostic value of a non-contact optical fiber mattress for apnea and hypopnea and compare it with traditional polysomnography (PSG) in adult obstructive sleep apnea hypopnea syndrome (OSAHS). Methods: To determine the value of a non-contact optical fiber mattress for apnea and hypopnea, six healthy people and six OSAHS patients were selected from Tongji Hospital to design a program to identify apnea or hypopnea. A total of 108 patients who received polysomnography for drowsiness, snoring or other suspected OSAHS symptoms. All 108 patients were monitored with both the non-contact optical fiber mattress and PSG were collected. Results: Six healthy controls and six patients with OSAHS were included. The mean apnea of the six healthy controls was 1.22 times/h, and the mean hypopnea of the six healthy controls was 2 times/h. Of the six patients with OSAHS, the mean apnea was 12.63 times/h, and the mean hypopnea was 19.25 times/h. The non-contact optical fiber mattress results showed that the mean apnea of the control group was 3.17 times/h and the mean hypopnea of the control group was 3.83 times/h, while the mean apnea of the OSAHS group was 11.95 times/h and the mean hypopnea of the OSAHS group was 17.77 times/h. The apnea index of the non-contact optical fiber mattress was positively correlated with the apnea index of the PSG (P < 0.05, r = 0.835), and the hypopnea index of the non-contact optical fiber mattress was also positively correlated with the hypopnea index of the PSG (P < 0.05, r = 0.959). The non-contact optical fiber mattress had high accuracy (area under curve, AUC = 0.889), specificity (83.4%) and sensitivity (83.3%) for the diagnosis of apnea. The non-contact fiber-optic mattress also had high accuracy (AUC = 0.944), specificity (83.4%) and sensitivity (100%) for the diagnosis of hypopnea. Among the 108 patients enrolled, there was no significant difference between the non-contact optical fiber mattress and the polysomnography monitor in total recording time, apnea hypopnea index (AHI), average heart rate, tachycardia index, bradycardia index, longest time of apnea, average time of apnea, longest time of hypopnea, average time of hypopnea, percentage of total apnea time in total sleep time and percentage of total hypopnea time in total sleep time. The AHI value of the non-contact optical fiber mattress was positively correlated with the AHI value of the PSG (P < 0.05, r = 0.713). The specificity and sensitivity of the non-contact optical fiber mattress AHI in the diagnosis of OSAHS were 95% and 93%, with a high OSAHS diagnostic accuracy (AUC = 0.984). Conclusion: The efficacy of the non-contact optical fiber mattress for OSAHS monitoring was not significantly different than PSG monitoring. The specificity of the non-contact optical mattress for diagnosing OSAHS was 95% and its sensitivity was 93%, with a high OSAHS diagnostic accuracy.


Asunto(s)
Fibras Ópticas , Polisomnografía , Apnea Obstructiva del Sueño , Humanos , Apnea Obstructiva del Sueño/diagnóstico , Masculino , Polisomnografía/instrumentación , Polisomnografía/métodos , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto , Lechos , Sensibilidad y Especificidad , Estudios de Casos y Controles , Anciano
9.
Expert Rev Respir Med ; 17(12): 1261-1271, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38315090

RESUMEN

INTRODUCTION: Asthma is a common chronic respiratory disease characterized by chronic airway inflammation, airway hyperresponsiveness, reversible airflow limitation, and airway remodeling. Mild asthma is the most common type of asthma, but it is the most neglected. Sometimes mild asthma can lead to acute severe exacerbations or even death. AREAS COVERED: This article reviews the epidemiology, risk factors, and possible predictors of acute severe exacerbations and disease progression in mild asthma to improve the understanding of mild asthma and its severe acute exacerbations and progression. EXPERT OPINION: There is a necessity to improve asthma patient categorization and redefine mild asthma's concept to heighten patient and physician attention. Identifying mild asthma patients that are highly vulnerable to severe acute exacerbations and researching the mechanisms are future prioritizations.


Asunto(s)
Asma , Humanos , Progresión de la Enfermedad , Asma/diagnóstico , Asma/epidemiología , Pulmón , Factores de Riesgo
10.
J Inflamm Res ; 16: 2727-2754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415620

RESUMEN

Bronchial asthma is a complex heterogeneous airway disease, which has emerged as a global health issue. A comprehensive understanding of the different molecular mechanisms of bronchial asthma may be an efficient means to improve its clinical efficacy in the future. Increasing research evidence indicates that some types of programmed cell death (PCD), including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis, contributed to asthma pathogenesis, and may become new targets for future asthma treatment. This review briefly discusses the molecular mechanism and signaling pathway of these forms of PCD focuses on summarizing their roles in the pathogenesis and treatment strategies of asthma and offers some efficient means to improve clinical efficacy of therapeutics for asthma in the near future.

11.
Front Mol Biosci ; 9: 807497, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480896

RESUMEN

Lung cancer is one of the main cancer types due to its persistently high incidence and mortality, yet a simple and effective prognostic model is still lacking. This study aimed to identify independent prognostic genes related to the heterogeneity of lung adenocarcinoma (LUAD), generate a prognostic risk score model, and construct a nomogram in combination with other pathological characteristics to predict patients' overall survival (OS). A significant amount of data pertaining to single-cell RNA sequencing (scRNA-seq), RNA sequencing (RNA-seq), and somatic mutation were used for data mining. After statistical analyses, a risk scoring model was established based on eight independent prognostic genes, and the OS of high-risk patients was significantly lower than that of low-risk patients. Interestingly, high-risk patients were more sensitive and effective to immune checkpoint blocking therapy. In addition, it was noteworthy that CCL20 not only affected prognosis and differentiation of LUAD but also led to poor histologic grade of tumor cells. Ultimately, combining risk score, clinicopathological information, and CCL20 mutation status, a nomogram with good predictive performance and high accuracy was established. In short, our research established a prognostic model that could be used to guide clinical practice based on the constantly updated big multi-omics data. Finally, this analysis revealed that CCL20 may become a potential therapeutic target for LUAD.

12.
Life Sci ; 285: 119963, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34536498

RESUMEN

AIMS: Hepatocyte necroptosis is a critical event in the progression of non-alcoholic fatty liver disease (NAFLD). Obstructive sleep apnea hypopnea syndrome (OSAHS) and chronic intermittent hypoxia (CIH) may be linked with the pathogenesis and the severity of NAFLD. However, the potential role of necroptosis in OSAHS-associated NAFLD has not been evaluated. The present study investigated whether IH could affect NAFLD progression through promoting receptor-interacting protein kinase-3 (RIPK3)-dependent necroptosis, oxidative stress, and inflammatory response, and further elucidated the underlying molecular mechanisms. MAIN METHODS: LO2 cells were treated with palmitic acid (PA) and subjected to IH, and necroptosis, oxidative stress, and inflammation were assessed. The high-fat choline-deficient (HFCD)-fed mouse model was also used to assess the effects of CIH in experimental NAFLD in vivo. KEY FINDINGS: In this study, we found that RIPK3-mediated necroptosis was activated both in the PA plus IH-treated LO2 cells and liver of HFCD/CIH mice, and which could trigger oxidative stress and inflammatory response by decreasing Nrf2 and increasing p-P65. RIPK3 downregulation significantly reduced hepatocyte necroptosis, and ameliorated oxidative stress and inflammation through modulating Nrf2/NFκB pathway in vitro and vivo. Similarly, pretreatment with TBHQ, an activator of Nrf2, effectively blocked the generation of oxidative productions and inflammatory cytokines. In addition, RIPK3 inhibitor GSK-872 or TBHQ administration obviously alleviated hepatic injury, including histology, transaminase activities, and triglyceride contents in vivo. SIGNIFICANCE: IH aggravates NAFLD via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway, and which should be considered as a potential therapeutic strategy for the treatment of NAFLD with OSASH.


Asunto(s)
Hipoxia/complicaciones , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Necroptosis , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/patología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Apnea Obstructiva del Sueño/complicaciones , Animales , Línea Celular , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Hidroquinonas/farmacología , Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos , Estrés Oxidativo , Ácido Palmítico/farmacología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de Señal , Apnea Obstructiva del Sueño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA