Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 779
Filtrar
1.
Cell ; 182(3): 734-743.e5, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32643603

RESUMEN

COVID-19, caused by SARS-CoV-2, is a virulent pneumonia, with >4,000,000 confirmed cases worldwide and >290,000 deaths as of May 15, 2020. It is critical that vaccines and therapeutics be developed very rapidly. Mice, the ideal animal for assessing such interventions, are resistant to SARS-CoV-2. Here, we overcome this difficulty by exogenous delivery of human ACE2 with a replication-deficient adenovirus (Ad5-hACE2). Ad5-hACE2-sensitized mice developed pneumonia characterized by weight loss, severe pulmonary pathology, and high-titer virus replication in lungs. Type I interferon, T cells, and, most importantly, signal transducer and activator of transcription 1 (STAT1) are critical for virus clearance and disease resolution in these mice. Ad5-hACE2-transduced mice enabled rapid assessments of a vaccine candidate, of human convalescent plasma, and of two antiviral therapies (poly I:C and remdesivir). In summary, we describe a murine model of broad and immediate utility to investigate COVID-19 pathogenesis and to evaluate new therapies and vaccines.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Pandemias/prevención & control , Neumonía Viral/patología , Neumonía Viral/prevención & control , Vacunación , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , SARS-CoV-2 , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Organismos Libres de Patógenos Específicos , Transducción Genética , Células Vero , Carga Viral , Replicación Viral
3.
Nature ; 587(7834): 466-471, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116313

RESUMEN

Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.


Asunto(s)
Proteína ADAMTS4/metabolismo , Fibroblastos/enzimología , Fibroblastos/patología , Virus de la Influenza A/patogenicidad , Pulmón/patología , Pulmón/fisiopatología , Proteína ADAMTS4/antagonistas & inhibidores , Animales , Aves/virología , Matriz Extracelular/enzimología , Perfilación de la Expresión Génica , Humanos , Gripe Aviar/virología , Gripe Humana/patología , Gripe Humana/terapia , Gripe Humana/virología , Interferones/inmunología , Interferones/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Pulmón/enzimología , Pulmón/virología , Ratones , Síndrome de Dificultad Respiratoria/enzimología , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/virología , Estaciones del Año , Análisis de la Célula Individual , Células del Estroma/metabolismo
4.
Genome Res ; 32(2): 228-241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35064006

RESUMEN

The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)-related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , ARN/sangre , COVID-19/sangre , COVID-19/genética , Ácidos Nucleicos Libres de Células/sangre , Síndrome de Liberación de Citoquinas , Humanos , SARS-CoV-2
5.
Clin Immunol ; 264: 110234, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740111

RESUMEN

BACKGROUND: Natural anti-cytokine autoantibodies can regulate homeostasis of infectious and inflammatory diseases. The anti-cytokine autoantibody profile and relevance to the pathogenesis of asthma are unknown. We aim to identify key anti-cytokine autoantibodies in asthma patients, and reveal their immunological function and clinical significance. METHODS: A Luciferase Immunoprecipitation System was used to screen serum autoantibodies against 11 key cytokines in patients with allergic asthma and healthy donors. The antigen-specificity, immunomodulatory functions and clinical significance of anti-cytokine autoantibodies were determined by ELISA, qPCR, neutralization assays and statistical analysis, respectively. Potential conditions for autoantibody induction were revealed by in vitro immunization. RESULTS: Of 11 cytokines tested, only anti-IL-33 autoantibody was significantly increased in asthma, compare to healthy controls, and the proportion positive was higher in patients with mild-to-moderate than severe allergic asthma. In allergic asthma patients, the anti-IL-33 autoantibody level correlated negatively with serum concentration of pathogenic cytokines (e.g., IL-4, IL-13, IL-25 and IL-33), IgE, and blood eosinophil count, but positively with mid-expiratory flow FEF25-75%. The autoantibodies were predominantly IgG isotype, polyclonal and could neutralize IL-33-induced pathogenic responses in vitro and in vivo. The induction of the anti-IL-33 autoantibody in blood B-cells in vitro required peptide IL-33 antigen along with a stimulation cocktail of TLR9 agonist and cytokines IL-2, IL-4 or IL-21. CONCLUSIONS: Serum natural anti-IL-33 autoantibodies are selectively induced in some asthma patients. They ameliorate key asthma inflammatory responses, and may improve lung function of allergic asthma.


Asunto(s)
Asma , Autoanticuerpos , Interleucina-33 , Humanos , Asma/inmunología , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Interleucina-33/inmunología , Femenino , Adulto , Masculino , Persona de Mediana Edad , Animales , Anticuerpos Neutralizantes/inmunología , Citocinas/inmunología , Citocinas/sangre , Ratones , Adulto Joven , Inmunoglobulina E/inmunología , Inmunoglobulina E/sangre , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/agonistas , Índice de Severidad de la Enfermedad , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre
6.
Antimicrob Agents Chemother ; : e0012424, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690893

RESUMEN

As an obligate aerobe, Mycobacterium tuberculosis relies on its branched electron transport chain (ETC) for energy production through oxidative phosphorylation. Regimens targeting ETC exhibit promising potential to enhance bactericidal activity against M. tuberculosis and hold the prospect of shortening treatment duration. Our previous research demonstrated that the bacteriostatic drug candidate TB47 (T) inhibited the growth of M. tuberculosis by targeting the cytochrome bc1 complex and exhibited synergistic activity with clofazimine (C). Here, we found synergistic activities between C and sudapyridine (S), a structural analog of bedaquiline (B). S has shown similar anti-tuberculosis efficacy and may share a mechanism of action with B, which inhibits ATP synthesis and the energy metabolism of bacteria. We evaluated the efficacy of SCT in combination with linezolid (L) or pyrazinamide (Z) using a well-established murine model of tuberculosis. Compared to the BPa(pretomanid)L regimen, SCT and SCTL demonstrated similar bactericidal and sterilizing activities. There was no significant difference in activity between SCT and SCTL. In contrast, SCZ and SCTZ showed much higher activities, with none of the 15 mice experiencing relapse after 2 months of treatment with either SCZ or SCTZ. However, T did not contribute to the activity of the SCZ. Our findings emphasize the efficacy and the potential clinical significance of combination therapy with ETC inhibitors. Additionally, cross-resistance exists not only between S and B but also between S/B and C. This is supported by our findings, as spontaneous S-resistant mutants exhibited mutations in Rv0678, which are associated with cross-resistance to B and C.

7.
J Med Virol ; 96(1): e29417, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38258345

RESUMEN

The EG.5.1 variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been prevalent since mid-July 2023 in the United States and China. The variant BA.2.86 has become a major concern because it is 34 mutations away from the parental variant BA.2 and >30 mutations from XBB.1.5. There is an urgent need to evaluate whether the immunity of the population and current vaccines are protective against EG.5.1 and BA.2.86. Based on a cohort of two breakthrough-infected groups, the levels of neutralizing antibodies (NAbs) against different subvariants were measured using pseudovirus-based neutralization assays. XBB.1.5, EG.5.1, and BA.2.86 are comparably immune-evasive from neutralization by the plasma of individuals recovered from BA.5 infection (BA.5-convalescent) or XBB.1.9.2/XBB.1.5 infection following BA.5 infection (BA.5-XBB-convalescent). NAb levels against EG.5.1 and BA.2.86 subvariants remained >120 geometric mean titers (GMTs) in BA.5-XBB-convalescent individuals 2 months postinfection but were <40 GMTs in BA.5-convalescent individuals. Furthermore, the XBB-targeting messenger RNA (mRNA) vaccine RQ3033 induced higher levels of NAbs against XBB.1.5, EG.5.1, and BA.2.86 than against BA.5-XBB infection. The results suggest that BA.2.86 and EG.5.1 are unlikely to cause more severe concerns than the currently circulating XBB subvariants and that the XBB.1.5-targeting mRNA vaccine tested has promising protection against EG.5.1 and BA.2.86.


Asunto(s)
Anticuerpos Neutralizantes , Plasma , Humanos , China , Evasión Inmune , Mutación , ARN Mensajero , SARS-CoV-2/genética
8.
Respir Res ; 25(1): 14, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178075

RESUMEN

BACKGROUND: Ambient fine particulate matter (PM2.5) is considered a plausible contributor to the onset of chronic obstructive pulmonary disease (COPD). Mechanistic studies are needed to augment the causality of epidemiologic findings. In this study, we aimed to test the hypothesis that repeated exposure to diesel exhaust particles (DEP), a model PM2.5, causes COPD-like pathophysiologic alterations, consequently leading to the development of specific disease phenotypes. Sprague Dawley rats, representing healthy lungs, were randomly assigned to inhale filtered clean air or DEP at a steady-state concentration of 1.03 mg/m3 (mass concentration), 4 h per day, consecutively for 2, 4, and 8 weeks, respectively. Pulmonary inflammation, morphologies and function were examined. RESULTS: Black carbon (a component of DEP) loading in bronchoalveolar lavage macrophages demonstrated a dose-dependent increase in rats following DEP exposures of different durations, indicating that DEP deposited and accumulated in the peripheral lung. Total wall areas (WAt) of small airways, but not of large airways, were significantly increased following DEP exposures, compared to those following filtered air exposures. Consistently, the expression of α-smooth muscle actin (α-SMA) in peripheral lung was elevated following DEP exposures. Fibrosis areas surrounding the small airways and content of hydroxyproline in lung tissue increased significantly following 4-week and 8-week DEP exposure as compared to the filtered air controls. In addition, goblet cell hyperplasia and mucus hypersecretions were evident in small airways following 4-week and 8-week DEP exposures. Lung resistance and total lung capacity were significantly increased following DEP exposures. Serum levels of two oxidative stress biomarkers (MDA and 8-OHdG) were significantly increased. A dramatical recruitment of eosinophils (14.0-fold increase over the control) and macrophages (3.2-fold increase) to the submucosa area of small airways was observed following DEP exposures. CONCLUSIONS: DEP exposures over the courses of 2 to 8 weeks induced COPD-like pathophysiology in rats, with characteristic small airway remodeling, mucus hypersecretion, and eosinophilic inflammation. The results provide insights on the pathophysiologic mechanisms by which PM2.5 exposures cause COPD especially the eosinophilic phenotype.


Asunto(s)
Contaminantes Atmosféricos , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Animales , Material Particulado/toxicidad , Material Particulado/análisis , Emisiones de Vehículos/toxicidad , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Ratas Sprague-Dawley , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente
9.
Respir Res ; 25(1): 165, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622589

RESUMEN

Little is known about the relationships between human genetics and the airway microbiome. Deeply sequenced airway metagenomics, by simultaneously characterizing the microbiome and host genetics, provide a unique opportunity to assess the microbiome-host genetic associations. Here we performed a co-profiling of microbiome and host genetics with the identification of over 5 million single nucleotide polymorphisms (SNPs) through deep metagenomic sequencing in sputum of 99 chronic obstructive pulmonary disease (COPD) and 36 healthy individuals. Host genetic variation was the most significant factor associated with the microbiome except for geography and disease status, with its top 5 principal components accounting for 12.11% of the microbiome variability. Within COPD individuals, 113 SNPs mapped to candidate genes reported as genetically associated with COPD exhibited associations with 29 microbial species and 48 functional modules (P < 1 × 10-5), where Streptococcus salivarius exhibits the strongest association to SNP rs6917641 in TBC1D32 (P = 9.54 × 10-8). Integration of concurrent host transcriptomic data identified correlations between the expression of host genes and their genetically-linked microbiome features, including NUDT1, MAD1L1 and Veillonella parvula, TTLL9 and Stenotrophomonas maltophilia, and LTA4H and Haemophilus influenzae. Mendelian randomization analyses revealed a potential causal link between PARK7 expression and microbial type III secretion system, and a genetically-mediated association between COPD and increased relative abundance of airway Streptococcus intermedius. These results suggest a previously underappreciated role of host genetics in shaping the airway microbiome and provide fresh hypotheses for genetic-based host-microbiome interactions in COPD.


Asunto(s)
Microbiota , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Microbiota/genética , Esputo , Transcriptoma , Genética Humana , Proteínas Adaptadoras Transductoras de Señales/genética
10.
Am J Respir Crit Care Med ; 208(4): 435-441, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37315325

RESUMEN

Rationale: The CAPTURE tool (Chronic Obstructive Pulmonary Disease [COPD] Assessment in Primary Care to Identify Undiagnosed Respiratory Disease and Exacerbation Risk) was developed to identify patients with undiagnosed COPD with an FEV1 <60% predicted or risk of exacerbation as treatment criteria. Objectives: To test the ability of CAPTURE to identify patients requiring treatment because of symptoms or risk of exacerbation or hospitalization. Methods: Data were from COMPASS (Clinical, Radiological and Biological Factors Associated with Disease Progression, Phenotypes and Endotypes of COPD in China), a prospective study of COPD, chronic bronchitis without airflow limitation (postbronchodilator FEV1/FVC ratio ≥0.70), and healthy never-smokers. CAPTURE was tested as questions alone and with peak expiratory flow measurement. Sensitivity, specificity, and positive and negative predicted values (PPV and NPV) were calculated for COPD Assessment Test (CAT) scores ⩾10 versus <10, modified Medical Research Council (mMRC) scores ⩾2 versus <2, and at least one moderate exacerbation or hospitalization in the previous year versus none. Measurements and Main Results: Patients with COPD (n = 1,696) had a mean age of 65 ± 7.5 years, and 90% were male, with a postbronchodilator FEV1 of 66.5 ± 20.1% predicted. Control participants (n = 307) had a mean age of 60.2 ± 7.0 years, and 65% were male, with an FEV1/FVC ratio of 0.78 ± 0.04. CAPTURE using peak expiratory flow showed the best combination of sensitivity and specificity. Sensitivity and specificity were 68.5% and 64.0%, respectively, to detect a CAT score ⩾10; 85.6% and 61.0% to detect an mMRC score ⩾2; 63.5% and 55.6% to detect at least one moderate exacerbation; and 70.2% and 59.4% to detect at least one hospitalization. PPVs ranged from 15.6% (moderate exacerbations) to 47.8% (CAT score). NPVs ranged from 80.8% (CAT score) to 95.6% (mMRC score). Conclusions: CAPTURE has good sensitivity to identify patients with COPD who may require treatment because of increased symptoms or risk of exacerbations or hospitalization, including those with an FEV1 >60% predicted. High NPV values show that CAPTURE can also exclude those who may not require treatment. Clinical trial registered with www.clinicaltrials.gov (NCT04853225).


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Masculino , Femenino , Humanos , Estudios Prospectivos , Volumen Espiratorio Forzado , Pulmón , Sensibilidad y Especificidad , Progresión de la Enfermedad
11.
Am J Respir Crit Care Med ; 207(2): 160-172, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35984444

RESUMEN

Rationale: Sustained activation of lung fibroblasts and the resulting oversynthesis of the extracellular matrix are detrimental events for patients with interstitial lung diseases (ILDs). Lung biopsy is a primary evaluation technique for the fibrotic status of ILDs, and is also a major risk factor for triggering acute deterioration. Fibroblast activation protein (FAP) is a long-known surface biomarker of activated fibroblasts, but its expression pattern and diagnostic implications in ILDs are poorly defined. Objectives: The present study aims to comprehensively investigate whether the expression intensity of FAP could be used as a potential readout to estimate or measure the amounts of activated fibroblasts in ILD lungs quantitatively. Methods: FAP expression in human primary lung fibroblasts as well as in clinical lung specimens was first tested using multiple experimental methods, including real-time quantitative PCR (qPCR), Western blot, immunofluorescence staining, deep learning measurement of whole slide immunohistochemistry, as well as single-cell sequencing. In addition, FAP-targeted positron emission tomography/computed tomography imaging PET/CT was applied to various types of patients with ILD, and the correlation between the uptake of FAP tracer and pulmonary function parameters was analyzed. Measurements and Main Results: Here, it was revealed, for the first time, FAP expression was upregulated significantly in the early phase of lung fibroblast activation event in response to a low dose of profibrotic cytokine. Single-cell sequencing data further indicate that nearly all FAP-positive cells in ILD lungs were collagen-producing fibroblasts. Immunohistochemical analysis validated that FAP expression level was closely correlated with the abundance of fibroblastic foci on human lung biopsy sections from patients with ILDs. We found that the total standard uptake value (SUV) of FAP inhibitor (FAPI) PET (SUVtotal) was significantly related to lung function decline in patients with ILD. Conclusions: Our results strongly support that in vitro and in vivo detection of FAP can assess the profibrotic activity of ILDs, which may aid in early diagnosis and the selection of an appropriate therapeutic window.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Enfermedades Pulmonares Intersticiales/patología , Pulmón/patología , Fibrosis , Fibroblastos/metabolismo
12.
Ecotoxicol Environ Saf ; 278: 116403, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710145

RESUMEN

RATIONALE: Diesel engine exhaust (DEE) is associated with the development and exacerbation of asthma. Studies have shown that DEE can aggravate allergen-induced eosinophilic inflammation in lung. However, it remains not clear that whether DEE alone could initiate non-allergic eosinophilic inflammation and airway hyperresponsiveness (AHR) through innate lymphoid cells (ILCs) pathway. OBJECTIVE: This study aims to investigate the airway inflammation and hyperresponsiveness and its relationship with ILC after DEE exposure. METHOD: Non-sensitized BALB/c mice were exposed in the chamber of diesel exhaust or filtered air for 2, 4, and 6 weeks (4 h/day, 6 days/week). Anti-CD4 mAb or anti-Thy1.2 mAb was administered by intraperitoneal injection to inhibit CD4+T or ILCs respectively. AHR、airway inflammation and ILCs were assessed. RESULT: DEE exposure induced significantly elevated level of neutrophils, eosinophils, collagen content at 4, 6 weeks. Importantly, the airway AHR was only significant in the 4weeks-DEE exposure group. No difference of the functional proportions of Th2 cells was found between exposure group and control group. The proportions of IL-5+ILC2, IL-17+ILC significantly increased in 2, 4weeks-DEE exposure group. After depletion of CD4+T cells, both the proportion of IL-5+ILC2 and IL-17A ILCs was higher in the 4weeks-DEE exposure group which induced AHR, neutrophilic and eosinophilic inflammation accompanied by the IL-5, IL-17A levels. CONCLUSION: Diesel engine exhaust alone can imitate asthmatic characteristics in mice model. Lung-resident ILCs are one of the major effectors cells responsible for a mixed Th2/Th17 response and AHR.


Asunto(s)
Contaminantes Atmosféricos , Linfocitos , Ratones Endogámicos BALB C , Emisiones de Vehículos , Animales , Emisiones de Vehículos/toxicidad , Ratones , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Contaminantes Atmosféricos/toxicidad , Inflamación/inducido químicamente , Eosinófilos/inmunología , Eosinófilos/efectos de los fármacos , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/inducido químicamente , Femenino , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Masculino
13.
J Allergy Clin Immunol ; 151(5): 1259-1268, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36736798

RESUMEN

BACKGROUND: Timely medical intervention in severe cases of coronavirus disease 2019 (COVID-19) and better understanding of the disease's pathogenesis are essential for reducing mortality, but early classification of severe cases and its progression is challenging. OBJECTIVE: We investigated the levels of circulating phospholipid metabolites and their relationship with COVID-19 severity, as well as the potential role of phospholipids in disease progression. METHODS: We performed nontargeted lipidomic analysis of plasma samples (n = 150) collected from COVID-19 patients (n = 46) with 3 levels of disease severity, healthy individuals, and subjects with metabolic disease. RESULTS: Phospholipid metabolism was significantly altered in COVID-19 patients. Results of a panel of phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) and of phosphatidylethanolamine and lysophosphatidylethanolamine (LPE) ratios were significantly correlated with COVID-19 severity, in which 16 phospholipid ratios were shown to distinguish between patients with severe disease, mild disease, and healthy controls, 9 of which were at variance with those in subjects with metabolic disease. In particular, relatively lower ratios of circulating (PC16:1/22:6)/LPC 16:1 and (PE18:1/22:6)/LPE 18:1 were the most indicative of severe COVID-19. The elevation of levels of LPC 16:1 and LPE 18:1 contributed to the changes of related lipid ratios. An exploratory functional study of LPC 16:1 and LPE 18:1 demonstrated their ability in causing membrane perturbation, increased intracellular calcium, cytokines, and apoptosis in cellular models. CONCLUSION: Significant Lands cycle remodeling is present in patients with severe COVID-19, suggesting a potential utility of selective phospholipids with functional consequences in evaluating COVID-19's severity and pathogenesis.


Asunto(s)
COVID-19 , Fosfolípidos , Humanos , Fosfolípidos/metabolismo , Lisofosfatidilcolinas/metabolismo
14.
J Allergy Clin Immunol ; 152(3): 622-632, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37178731

RESUMEN

BACKGROUND: Cough-variant asthma (CVA) may respond differently to antiasthmatic treatment. There are limited data on the heterogeneity of CVA. OBJECTIVE: We aimed to classify patients with CVA using cluster analysis based on clinicophysiologic parameters and to unveil the underlying molecular pathways of these phenotypes with transcriptomic data of sputum cells. METHODS: We applied k-mean clustering to 342 newly physician-diagnosed patients with CVA from a prospective multicenter observational cohort using 10 prespecified baseline clinical and pathophysiologic variables. The clusters were compared according to clinical features, treatment response, and sputum transcriptomic data. RESULTS: Three stable CVA clusters were identified. Cluster 1 (n = 176) was characterized by female predominance, late onset, normal lung function, and a low proportion of complete resolution of cough (60.8%) after antiasthmatic treatment. Patients in cluster 2 (n = 105) presented with young, nocturnal cough, atopy, high type 2 inflammation, and a high proportion of complete resolution of cough (73.3%) with a highly upregulated coexpression gene network that related to type 2 immunity. Patients in cluster 3 (n = 61) had high body mass index, long disease duration, family history of asthma, low lung function, and low proportion of complete resolution of cough (54.1%). TH17 immunity and type 2 immunity coexpression gene networks were both upregulated in clusters 1 and 3. CONCLUSION: Three clusters of CVA were identified with different clinical, pathophysiologic, and transcriptomic features and responses to antiasthmatics treatment, which may improve our understanding of pathogenesis and help clinicians develop individualized cough treatment in asthma.


Asunto(s)
Antiasmáticos , Asma , Femenino , Masculino , Humanos , Tos , Estudios Prospectivos , Fenotipo , Antiasmáticos/uso terapéutico
15.
J Infect Dis ; 228(3): 261-269, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37005365

RESUMEN

BACKGROUND: China has been using inactivated coronavirus disease 2019 (COVID-19) vaccines as primary series and booster doses to protect the population from severe to fatal COVID-19. We evaluated primary and booster vaccine effectiveness (VE) against Omicron BA.2 infection outcomes. METHODS: This was a 13-province retrospective cohort study of quarantined close contacts of BA.2-infected individuals. Outcomes were BA.2 infection, COVID-19 pneumonia or worse, and severe/critical COVID-19. Absolute VE was estimated by comparison with an unvaccinated group. RESULTS: There were 289 427 close contacts ≥3 years old exposed to Omicron BA.2 cases; 31 831 turned nucleic acid amplification test-positive during quarantine, 97.2% with mild or asymptomatic infection, 2.6% with COVID-19 pneumonia, and 0.15% with severe/critical COVID-19. None died. Adjusted VE (aVE) against any infection was 17% for primary series and 22% when boosted. Primary series aVE in adults >18 years was 66% against COVID-19 pneumonia or worse and 91% against severe/critical COVID-19. Booster dose aVE was 74% against pneumonia or worse, and 93% against severe/critical COVID-19. CONCLUSIONS: Inactivated COVID-19 vaccines provided modest protection from infection, very good protection against pneumonia, and excellent protection against severe/critical COVID-19. Booster doses are necessary to provide strongest protection.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Preescolar , COVID-19/prevención & control , Estudios Retrospectivos , China/epidemiología , Infecciones Asintomáticas
16.
Mol Biol Evol ; 39(5)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35535514

RESUMEN

Highly diversified astigmatic mites comprise many medically important human household pests such as house dust mites causing ∼1-2% of all allergic diseases globally; however, their evolutionary origin and diverse lifestyles including reversible parasitism have not been illustrated at the genomic level, which hampers allergy prevention and our exploration of these household pests. Using six high-quality assembled and annotated genomes, this study not only refuted the monophyly of mites and ticks, but also thoroughly explored the divergence of Acariformes and the diversification of astigmatic mites. In monophyletic Acariformes, Prostigmata known as notorious plant pests first evolved, and then rapidly evolving Astigmata diverged from soil oribatid mites. Within astigmatic mites, a wide range of gene families rapidly expanded via tandem gene duplications, including ionotropic glutamate receptors, triacylglycerol lipases, serine proteases and UDP glucuronosyltransferases. Gene diversification after tandem duplications provides many genetic resources for adaptation to sensing environmental signals, digestion, and detoxification in rapidly changing household environments. Many gene decay events only occurred in the skin-burrowing parasitic mite Sarcoptes scabiei. Throughout the evolution of Acariformes, massive horizontal gene transfer events occurred in gene families such as UDP glucuronosyltransferases and several important fungal cell wall lytic enzymes, which enable detoxification and digestive functions and provide perfect drug targets for pest control. This comparative study sheds light on the divergent evolution and quick adaptation to human household environments of astigmatic mites and provides insights into the genetic adaptations and even control of human household pests.


Asunto(s)
Adaptación Fisiológica , Genómica , Adaptación Fisiológica/genética , Genoma , Humanos , Uridina Difosfato
17.
N Engl J Med ; 382(18): 1708-1720, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32109013

RESUMEN

BACKGROUND: Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. METHODS: We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. RESULTS: The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. CONCLUSIONS: During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.).


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Brotes de Enfermedades , Pandemias , Neumonía Viral , Adolescente , Adulto , Anciano , COVID-19 , Niño , China/epidemiología , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/terapia , Femenino , Fiebre/etiología , Humanos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Neumonía Viral/complicaciones , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Neumonía Viral/terapia , SARS-CoV-2 , Adulto Joven
18.
Mol Genet Genomics ; 298(4): 823-836, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059908

RESUMEN

Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , Humanos , COVID-19/diagnóstico , Ácidos Nucleicos Libres de Células/genética
19.
Virol J ; 20(1): 277, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017515

RESUMEN

BACKGROUND: In a randomized trial, Lianhuaqingwen (LHQW) capsule was effective for accelerating symptom recovery among patients with coronavirus disease 2019 (COVID-19). However, the lack of blinding and limited sample sizes decreased the level of clinical evidence. OBJECTIVES: To evaluate the efficacy and safety of LHQW capsule in adults with mild-to-moderate COVID-19. METHODS: We conducted a double-blind randomized controlled trial in adults with mild-to-moderate COVID-19 (17 sites from China, Thailand, Philippine and Vietnam). Patients received standard-of-care alone or plus LHQW capsules (4 capsules, thrice daily) for 14 days. The primary endpoint was the median time to sustained clinical improvement or resolution of nine major symptoms. RESULTS: The full-analysis set consisted of 410 patients in LHQW capsules and 405 in placebo group. LHQW significantly shortened the primary endpoint in the full-analysis set (4.0 vs. 6.7 days, hazards ratio: 1.63, 95% confidence interval: 1.39-1.90). LHQW capsules shortened the median time to sustained clinical improvement or resolution of stuffy or runny nose (2.8 vs. 3.7 days), sore throat (2.0 vs. 2.6 days), cough (3.2 vs. 4.9 days), feeling hot or feverish (1.0 vs. 1.3 days), low energy or tiredness (1.3 vs. 1.9 days), and myalgia (1.5 vs. 2.0 days). The duration to sustained clinical improvement or resolution of shortness of breath, headache, and chills or shivering did not differ significantly between the two groups. Safety was comparable between the two groups. No serious adverse events were reported. INTERPRETATION: LHQW capsules promote recovery of mild-to-moderate COVID-19 via accelerating symptom resolution and were well tolerated. Trial registration ChiCTR2200056727 .


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Adulto , Humanos , Método Doble Ciego , Medicamentos Herbarios Chinos/uso terapéutico , Resultado del Tratamiento
20.
BMC Infect Dis ; 23(1): 440, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386364

RESUMEN

BACKGROUND: Hydrogen/oxygen therapy contribute to ameliorate dyspnea and disease progression in patients with respiratory diseases. Therefore, we hypothesized that hydrogen/oxygen therapy for ordinary coronavirus disease 2019 (COVID-19) patients might reduce the length of hospitalization and increase hospital discharge rates. METHODS: This retrospective, propensity-score matched (PSM) case-control study included 180 patients hospitalized with COVID-19 from 3 centers. After assigned in 1:2 ratios by PSM, 33 patients received hydrogen/oxygen therapy and 55 patients received oxygen therapy included in this study. Primary endpoint was the length of hospitalization. Secondary endpoints were hospital discharge rates and oxygen saturation (SpO2). Vital signs and respiratory symptoms were also observed. RESULTS: Findings confirmed a significantly lower median length of hospitalization (HR = 1.91; 95% CIs, 1.25-2.92; p < 0.05) in the hydrogen/oxygen group (12 days; 95% CI, 9-15) versus the oxygen group (13 days; 95% CI, 11-20). The higher hospital discharge rates were observed in the hydrogen/oxygen group at 21 days (93.9% vs. 74.5%; p < 0.05) and 28 days (97.0% vs. 85.5%; p < 0.05) compared with the oxygen group, except for 14 days (69.7% vs. 56.4%). After 5-day therapy, patients in hydrogen/oxygen group exhibited a higher level of SpO2 compared with that in the oxygen group (98.5%±0.56% vs. 97.8%±1.0%; p < 0.001). In subgroup analysis of patients received hydrogen/oxygen, patients aged < 55 years (p = 0.028) and without comorbidities (p = 0.002) exhibited a shorter hospitalization (median 10 days). CONCLUSION: This study indicated that hydrogen/oxygen might be a useful therapeutic medical gas to enhance SpO2 and shorten length of hospitalization in patients with ordinary COVID-19. Younger patients or those without comorbidities are likely to benefit more from hydrogen/oxygen therapy.


Asunto(s)
COVID-19 , Humanos , Estudios de Casos y Controles , Estudios Retrospectivos , COVID-19/terapia , Oxígeno/uso terapéutico , Hidrógeno/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA