Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 144: 109233, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984614

RESUMEN

This study was conducted to ascertain the effect of dietary Zn on growth and health status of juvenile largemouth bass (Micropterus salmoides). Six experimental diets with Zn level of 50.17, 56.74, 73.34, 86.03, 123.94, and 209.20 mg/kg, respectively were compounded using complex amino acid-chelated zinc, and were fed to juvenile fish (5.50 ± 0.10 g) for 70 d. The specific growth rate (SGR) varied with dietary Zn level in a quadratic model and peaked at the 73.34 mg/kg group, while the feeding rate exhibited an opposite trend (P < 0.05). The condition factor, hepatosomatic index and mesenteric fat index all exhibited a tendency similar with SGR (P < 0.05). Dietary Zn level affected serum total proteins, urea, triglycerides, and glucose (P < 0.05). Serum Zn and copper levels linearly increased with dietary Zn level, while serum iron and manganese showed the opposite trend. Serum superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) increased with dietary Zn level and reached a plateau at 86.03 mg/kg. Serum complement component 3 (C3), IgM, and lysozyme also were enhanced by 73.34 mg/kg Zn. Body protein content increased with zinc level up to 73.34 mg/kg, and then remained steadily. As dietary Zn level increased, hepatic lipid level increased and then reached a plateau at 86.03 mg/kg group, while glycogen increased linearly. Moreover, gene expression related to lipid and glycogen metabolism from liver transcriptome further explained the liver lipid and glycogen variations. To conclude, a dietary Zn requirement of 76.99 mg/kg was suggested for juvenile largemouth bass to improve growth, antioxidant capacity, and immune status.


Asunto(s)
Antioxidantes , Lubina , Animales , Antioxidantes/metabolismo , Suplementos Dietéticos , Dieta/veterinaria , Hígado/metabolismo , Triglicéridos/metabolismo , Glucógeno/metabolismo , Glucógeno/farmacología , Glucosa/metabolismo , Zinc/farmacología
2.
Nanotechnology ; 32(31)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33882474

RESUMEN

Nanostructured metal oxide semiconductors have received great attention used as the chemiresistive layer of gas sensor to detect the volatile organic compound recently. As indispensable complementary parts for dominative n-type semiconductors, the p-type metal oxides based gas sensors fail to be studied sufficiently, which hampers their practical applications. In this work, the p-type delafossite CuCrO2nanoparticles were synthesized, characterized, and tested for gas sensing, followed by the first principles calculations to simulate the generation of chemiresistive signal. The hydrothermal synthesis time of CuCrO2nanoparticles is optimized as 24 h with a higher proportion of oxygen vacancies but a smaller size, which is confirmed by the microscopy and spectrum characterization and allows for a prevailing gas sensitivity. Meanwhile, this CuCrO2gas sensor is proven to perform a higher selectivity to n-propanol and a low detection limit of 1 ppm. The adsorption sites and charge variations of dehydrogenation at the gas-solid interface predicted by the theoretical analysis are claimed to be crucial to such selectivity. It is an innovative approach to understand the chemiresistive gas sensing by evaluating the preference of charge transfer between the sensor and target gaseous molecule, which provides a new route to precisely design and develop the advanced sensing devices for the diverse applications.

3.
Sensors (Basel) ; 19(20)2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31600924

RESUMEN

Local electric field enhancement is crucial to detect gases for an ionization gas sensor. Nanowires grown collectively along the identical lattice orientation have been claimed to show a strong tip effect in many previous studies. Herein, we propose a novel ionization gas detector structure by using a single crystalline silicon nanowire as one electrode that is placed above the prepatterned nanotips. A significant improvement of the local electric field in its radical direction was obtained leading to an ultralow operation voltage for gas breakdown. Different from the tip of the nanowire in the reported ionization gas sensors, the gaseous discharge current in this device flows towards the sidewall in the case of a trace amount of gas environment change. Technically, this discharge current brings about a sudden temperature rise followed by a fusion of the silicon nanowire. Such unique fusibility of a single nanowire in this gas detection device suggests a novel architecture that is portable and in-site executable and can be used as an integrated gas environmental monitor.

4.
Nanotechnology ; 26(20): 205201, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25927276

RESUMEN

Using a two-strand tight-binding model and within nonequilibrium Green's function approach, we study charge transport through DNA sequences (GC)NGC and (GC)1(TA)NTA (GC)3 sandwiched between two Pt electrodes. We show that at low temperature DNA sequence (GC)NGC exhibits coherent charge carrier transport at very small bias, since the highest occupied molecular orbital in the GC base pair can be aligned with the Fermi energy of the metallic electrodes by a gate voltage. A weak distance dependent conductance is found in DNA sequence (GC)1(TA)NTA (GC)3 with large NTA. Different from the mechanism of thermally induced hopping of charges proposed by the previous experiments, we find that this phenomenon is dominated by quantum tunnelling through discrete quantum well states in the TA base pairs. In addition, ac response of this DNA junction under light illumination is also investigated. The suppression of ac conductances of the left and right lead of DNA sequences at some particular frequencies is attributed to the excitation of electrons in the DNA to the lead Fermi surface by ac potential, or the excitation of electrons in deep DNA energy levels to partially occupied energy levels in the transport window. Therefore, measuring ac response of DNA junctions can reveal a wealth of information about the intrinsic dynamics of DNA molecules.


Asunto(s)
ADN/química , Simulación por Computador , Electricidad , Luz , Iluminación , Modelos Biológicos
5.
Nanotechnology ; 25(46): 465202, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25355705

RESUMEN

We study charge transport through single benzene molecular junction (BMJ) directly sandwiched between two platinum electrodes by using a tight-binding model and the non-equilibrium Green's function approach. Pronounced negative differential conductance is observed at finite bias voltage, resulting from charge redistribution in BMJ and a Coulomb blockade effect at the interface of molecule-electrode contacts. In the presence of a transverse electric field, hysteretic switching behavior and large spin-polarization of current are obtained, indicating the potential application of BMJ for acting as a nanoscale current modulator or spintronic molecular device.

6.
Fish Physiol Biochem ; 40(1): 93-104, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23817987

RESUMEN

The solute carrier family 7A, member 7 gene encodes the light chain- y⁺L amino acid transporter-1 (y⁺LAT1) of the heterodimeric carrier responsible for cationic amino acid (CAA) transport across the basolateral membranes of epithelial cells in intestine and kidney. Rising attention has been given to y⁺LAT1 involved in CAA metabolic pathways and growth control. The molecular characterization and function analysis of y⁺LAT1 in grass carp (Ctenopharyngodon idellus) is currently unknown. In the present study, full-length cDNA (2,688 bp), which encodes y⁺LAT1 and contains a 5'-untranslated region (319 bp), an open reading frame (1,506 bp) and a 3'-untranslated region (863 bp), has been cloned from grass carp. Amino acid sequence of grass carp y⁺LAT1 contains 11 transmembrane domains and shows 95 %, 80 % and 75 % sequence similarity to zebra fish, amphibian and mammalian y⁺LAT1, respectively. The tissue distribution and expression regulation by fasting of y⁺LAT1 mRNA were analyzed using real-time PCR. Our results showed that y⁺LAT1 mRNA was highly expressed in midgut, foregut and spleen while weakly expressed in hindgut, kidney, gill, brain, heart, liver and muscle. Nutritional status significantly influenced y⁺LAT1 mRNA expression in fish tissues, such as down-regulation of y⁺LAT1 mRNA expression after fasting (14 days).


Asunto(s)
Sistema de Transporte de Aminoácidos y+L/metabolismo , Carpas/metabolismo , Proteínas de Peces/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Secuencia de Aminoácidos , Sistema de Transporte de Aminoácidos y+L/química , Sistema de Transporte de Aminoácidos y+L/genética , Animales , Secuencia de Bases , Carpas/genética , Ayuno/metabolismo , Proteínas de Peces/química , Proteínas de Peces/genética , Transportador de Aminoácidos Neutros Grandes 1/química , Transportador de Aminoácidos Neutros Grandes 1/genética , Datos de Secuencia Molecular , Filogenia , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Homología de Secuencia de Aminoácido
7.
ACS Sens ; 8(1): 289-296, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36584336

RESUMEN

As an important biomarker of lung cancer, n-propanol at the sub-ppm level is still challenging to be detected for a simple and immediate early diagnosis. In this work, a new n-propanol gas sensor with an ultralow detection limit down to 100 ppb is presented using AgCrO2 nanoparticles synthesized by a simple hydrothermal method. Compared with the congeneric CuCrO2 and commercial SnO2, AgCrO2 exhibits prevailing performances, including a higher selectivity, dynamic response, and logarithmical linearity but lower working temperature. The first-principles calculation and the energy band theoretical analysis are combined to elucidate the sensing mechanism, in which the chemical adsorption of gaseous molecules to silver followed by the dehydrogenation on chromium on the surface of AgCrO2 is responsible for the outstanding susceptibility toward n-propanol. The proposed metal oxide semiconductor gas sensor capable of sub-ppm n-propanol detection provides a route to design and optimize the sensitive material system for the advanced trace detection of the volatile organic compounds.


Asunto(s)
1-Propanol , Nanopartículas , Propanoles , Adsorción , Cromo , Gases
8.
Front Nutr ; 9: 832651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571945

RESUMEN

The aim of this study was to estimate the possible synergetic effects of the two levels of dietary dried distillers grains with solubles (DDGS) from different sources (US-imported and native) on the growth, health status, muscle texture, and muscle growth-related gene expression of juvenile grass carp. Four treatments of fish were fed with 4 isonitrogenous diets, namely, native DDGS20, native DDGS30, US-imported DDGS20, and US-imported DDGS30 for 60 days. The US-imported DDGS30 group showed the better growth and feed efficiency. Additionally, we observed a significant increase in hepatopancreatic total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in native DDGS groups. Moreover, raw muscle collagen increases considerably in the US-imported DDGS30 compared with the native DDGS30 group. In comparison with the native DDGS groups, the US-imported DDGS groups showed significantly decrease in all textural properties and fiber density, while increased fiber diameter. Dietary native DDGS inclusion significantly showed the upregulation of myog, myhc, and fgf6a expression in muscle, while the downregulation of the expression of myod and myf5. Overall, US-imported DDGS30 had a beneficial influence on growth via regulating genes involved in myogenesis and hypertrophy, the formation of collagen, but had negative impacts on antioxidant capacity and cooked muscle texture.

9.
ACS Sens ; 6(11): 4118-4125, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34706191

RESUMEN

We report a dramatic reduction of operation voltage of a CuO nanowire-based ionization gas sensor due to the crystalline-to-amorphous phase transformation. The structural change is attributed to the ion bombardment and heating effect during the initial discharge, which brings about the formation of abundant nanocrystallites and surface states favoring gaseous ionization. The gas-sensing properties of the CuO nanowire sensor are confirmed by differentiating various types or concentrations of volatile organic compounds diluted in nitrogen, with a low detection limit at the ppm level. Moreover, a sensing mechanism is proposed on the basis of charge redistribution by electron-gas collision related to the specific ionization energy. The insightful study of the electrode microstructure delivers an exploratory investigation to the effect of gas ionization toward the discharge system, which provides new approaches to develop advanced ionization gas sensors.


Asunto(s)
Nanocables , Cobre , Electrodos , Gases
10.
J Phys Condens Matter ; 24(35): 355302, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22885614

RESUMEN

The optical absorption properties of bilayer zigzag-edge graphene nanoribbons (BL-ZGNRs) with external transverse electric fields are investigated by taking into account the Coulomb interaction effect in the Hartree-Fock approximation. We study the phase transitions of BL-ZGNRs induced by external electric fields and also the optical selection rules for the incident light polarized along the longitudinal and transverse directions. We find that the excitations from the edge states are crucial for the optical properties of BL-ZGNRs in the antiferromagnetic phase. We show that the low energy part of the optical absorption can be modulated by the external transverse electric field, and there is a broad band low frequency absorption enhancement for the transverse-polarized incident light in the charge-polarized state of BL-ZGNRs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA