Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Asia Pac J Oncol Nurs ; 11(8): 100546, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39148936

RESUMEN

Objective: This study aimed to develop and validate a machine learning-based risk prediction model for catheter-related bloodstream infection (CRBSI) following implantation of totally implantable venous access ports (TIVAPs) in patients. Methods: A retrospective cohort study design was employed, utilizing the R software package mlr3. Various algorithms including logistic regression, naive Bayes, K nearest neighbor, classification tree, and random forest were applied. Addressing class imbalance, benchmarks were used, and model performance was assessed using the area under the curve (AUC). The final model, chosen for its superior performance, was interpreted using variable importance scores. Additionally, a nomogram was developed to calculate individualized risk probabilities, enhancing clinical utility. Results: The study involved 755 patients across both development and validation cohorts, with a TIVAP-CRBSI rate of 14.17%. The random forest model demonstrated the highest discrimination ability, achieving a validated AUC of 0.94, which was consistent in the validation cohort. Conclusions: This study successfully developed a robust predictive model for TIVAP-CRBSI risk post-implantation. Implementation of this model may aid healthcare providers in making informed decisions, thereby potentially improving patient outcomes.

2.
Emerg Med Int ; 2022: 4235316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204335

RESUMEN

Background: Totally implantable intravenous ports (TIVAPs) are mostly used for long-term intravenous infusion therapy in cancer patients and can be left in the body for long periods of time for easy management, making them a simple and safe infusion device. Although the risks associated with long-term retention of fully implantable IV ports are less than those associated with other intravenous catheters, various complications may still occur at the time of implantation or during long-term use. Purpose: To provide a scientific basis for clinical reduction of implantable intravenous port-associated infection complications by studying the risk factors for catheter-associated infection complications in patients applying implantable intravenous ports. Methods: A retrospective study was conducted on oncology patients treated with TIVAP at our hospital between January 2017 and November 2021, with a review of patients who were unplanned for extubation. Their demographic data, underlying disease status, and surgery-related data were counted to summarize and analyze the complications and related influencing factors of implantation and postimplantation. Results: A total of 70 individuals with a mean age of 56.49 ± 12.19 years were included in the study. Among them, 39 were male and 64 had the highest percentage of epithelial tumors, followed by tumors of the lymphopoiesis system and mesenchymal tumors with 4 and 2 cases, respectively. Forty-eight of these patients did not have their ports removed as planned due to the occurrence of catheter-related hematogenous infections. In univariate analysis, BMI and neutropenia were risk factors for catheter-associated infections. In the multivariate analysis, BMI (OR = 1.38, 95% CI: 1.07-1.78, p=0.013) was an independent risk factor for catheter-associated infections. Conclusions: The overall complication rate of fully implanted intravenous ports was high, but most complications improved with symptomatic management, and no deaths due to port complications were identified. Infection was the most common complication, with catheter-associated bloodstream infection being the most common cause of unplanned port extraction. Patients with a higher BMI were at high risk of developing implantable IV port-associated infections, which may be an independent risk factor for implantable IV port-associated infections.

3.
Bioorg Med Chem ; 19(15): 4626-34, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21723733

RESUMEN

Herein we report the discovery of a family of novel yet simple, amino-acid derived class I HDAC inhibitors that demonstrate isoform selectivity via access to the internal acetate release channel. Isoform selectivity criteria is discussed on the basis of X-ray crystallography and molecular modeling of these novel inhibitors bound to HDAC8, potentially revealing insights into the mechanism of enzymatic function through novel structural features revealed at the atomic level.


Asunto(s)
Ácido Acético/metabolismo , Aminoácidos/química , Aminoácidos/farmacología , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Cristalografía por Rayos X , Diseño de Fármacos , Histona Desacetilasas/química , Humanos , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
4.
Oncogenesis ; 10(1): 9, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33431797

RESUMEN

CD276 (also known as B7-H3, an immune checkpoint molecule) is aberrantly overexpressed in many cancers. However, the upregulation mechanism and in particular, whether oncogenic signaling has a role, is unclear. Here we demonstrate that a pro-oncogenic kinase PBK, the expression of which is associated with immune infiltration in nasopharyngeal carcinoma (NPC), stimulates the expression of CD276 epigenetically. Mechanistically, PBK phosphorylates MSL1 and enhances the interaction between MSL1 and MSL2, MSL3, and KAT8, the components of the MSL complex. As a consequence, PBK promotes the enrichment of MSL complex on CD276 promoter, leading to the increased histone H4 K16 acetylation and the activation of CD276 transcription. In addition, we show that CD276 is highly upregulated and associated with immune infiltrating levels in NPC. Collectively, our findings describe a novel PBK/MSL1/CD276 signaling axis, which may play an important role in immune evasion of NPC and may be targeted for cancer immunotherapy.

5.
Front Oncol ; 11: 653005, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249689

RESUMEN

Radiotherapy is one of the standard treatments for cervical cancer and head and neck cancer. However, the clinical efficacy of this treatment is limited by radioresistance. The discovery of effective prognostic biomarkers and the identification of new therapeutic targets have helped to overcome the problem of radioresistance. In this study, we show that in the context of PIK3CA mutation or amplification, high expression of fascin actin-bundling protein 1 (FSCN1) (using the median as the cut-off value) is associated with poor prognosis and radiotherapy response in cancer patients. Silencing FSCN1 enhances radiosensitivity and promotes apoptosis in cancer cells with PIK3CA alterations, and this process may be associated with the downregulation of YWHAZ. These results reveal that FSCN1 may be a key regulator of radioresistance and could be a potential target for improving radiotherapy efficacy in cervical cancer and head and neck cancer patients with PIK3CA alterations.

6.
Cell Death Dis ; 10(6): 426, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160556

RESUMEN

Accumulating evidence has indicated crucial roles for pseudogenes in human cancers. However, the roles played by pseudogenes in the pathogenesis of HCC, particularly HCC early recurrence, still incompletely elucidated. Herein, we identify a novel early recurrence related pseudogene RACGAP1P which was significantly upregulated in HCC and was associated with larger tumour size, advanced clinical stage, abnormal AFP level and shorter survival time. In vitro and in vivo experiments have shown that RACGAP1P is a prerequisite for the development of malignant characteristics of HCC cells, including cell growth and migration. Mechanistic investigations indicated that RACGAP1P elicits its oncogenic activity as a ceRNA to sequestrate miR-15-5p from its endogenous target RACGAP1, thereby leading to the upregulation of RACGAP1 and the activation of RhoA/ERK signalling. These results may provide new insights into the functional crosstalk of the pseudogene/miRNA/parent-gene genetic network during HCC early relapse and may contribute to improving the clinical intervention for this subset of HCC patients.


Asunto(s)
Carcinoma Hepatocelular/genética , Proteínas Activadoras de GTPasa/metabolismo , Neoplasias Hepáticas/genética , Sistema de Señalización de MAP Quinasas/genética , MicroARNs/metabolismo , Recurrencia Local de Neoplasia/genética , Seudogenes/genética , Proteína de Unión al GTP rhoA/metabolismo , Animales , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Transducción de Señal/genética , Regulación hacia Arriba
9.
Mol Cell Biol ; 31(14): 2867-76, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21576371

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) is a multiprotein signaling complex regulated by oncogenes and tumor suppressors. Outputs downstream of mTORC1 include ribosomal protein S6 kinase 1 (S6K1), eukaryotic translation initiation factor 4E (eIF4E), and autophagy, and their modulation leads to changes in cell growth, proliferation, and metabolism. Rapamycin, an allosteric mTORC1 inhibitor, does not antagonize equally these outputs, but the reason for this is unknown. Here, we show that the ability of rapamycin to activate autophagy in different cell lines correlates with mTORC1 stability. Rapamycin exposure destabilizes mTORC1, but in cell lines where autophagy is drug insensitive, higher levels of mTOR-bound raptor are detected than in cells where rapamycin stimulates autophagy. Using small interfering RNA (siRNA), we find that knockdown of raptor relieves autophagy and the eIF4E effector pathway from rapamycin resistance. Importantly, nonefficacious concentrations of an ATP-competitive mTOR inhibitor can be combined with rapamycin to synergistically inhibit mTORC1 and activate autophagy but leave mTORC2 signaling intact. These data suggest that partial inhibition of mTORC1 by rapamycin can be overcome using combination strategies and offer a therapeutic avenue to achieve complete and selective inhibition of mTORC1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antibióticos Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Resistencia a Medicamentos/fisiología , Fosfoproteínas/metabolismo , Sirolimus/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular , Línea Celular , Colorantes Fluorescentes/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Proteínas/genética , Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Reguladora Asociada a mTOR , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
10.
J Med Chem ; 51(15): 4672-84, 2008 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-18646745

RESUMEN

The design, synthesis and biological evaluation of a series of 4-aminopyrazolylpyrimidines as potent Trk kinase inhibitors is reported. High-throughput screening identified a promising hit in the 4-aminopyrazolylpyrimidine chemotype. Initial optimization of the series led to more potent Trk inhibitors. Further optimization using two strategies resulted in significant improvement of physical properties and led to the discovery of 10z (AZ-23), a potent, orally bioavailable Trk A/B inhibitor. The compound offers the potential to test the hypothesis that modulation of Trk activity will be of benefit in the treatment of cancer and other indications in vivo.


Asunto(s)
Aminas/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/química , Pirimidinas/síntesis química , Pirimidinas/farmacología , Receptor trkA/antagonistas & inhibidores , Animales , Línea Celular , Humanos , Masculino , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Pirimidinas/química , Ratas , Ratas Wistar , Receptor trkA/química , Receptor trkA/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA