Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Food Sci Technol ; 60(3): 835-844, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908369

RESUMEN

A present study aimed at evaluating sardine sauce quality used a treatment combination of pineapple fruit extract, and fermentation times. It used a completely randomized design with a factorial pattern. The results showed a pineapple fruit extracts and fermentation times affected significantly on sardine sauce quality (P < 0.05). There was an interaction between pineapple fruit extract and fermentation times on sardine sauce quality. A pineapple fruit extract of 10% and fermentation times of 13 days produced sardine sauce best quality, with a protein content (17.38%), moisture (74.45%), omega-3 (19.68%), pH (5.23), taste value of 3.68, color of 4.52, and aroma of 2.99, respectively, but, consumers did not like it so much. It has passed a National Standard of Indonesia, which sets the minimum level of protein of 5%, and pH ranges from 5.0 to 6.0.

2.
J Bacteriol ; 197(4): 676-87, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25313394

RESUMEN

Photoautotrophic bacteria have developed mechanisms to maintain K(+) homeostasis under conditions of changing ionic concentrations in the environment. Synechocystis sp. strain PCC 6803 contains genes encoding a well-characterized Ktr-type K(+) uptake transporter (Ktr) and a putative ATP-dependent transporter specific for K(+) (Kdp). The contributions of each of these K(+) transport systems to cellular K(+) homeostasis have not yet been defined conclusively. To verify the functionality of Kdp, kdp genes were expressed in Escherichia coli, where Kdp conferred K(+) uptake, albeit with lower rates than were conferred by Ktr. An on-chip microfluidic device enabled monitoring of the biphasic initial volume recovery of single Synechocystis cells after hyperosmotic shock. Here, Ktr functioned as the primary K(+) uptake system during the first recovery phase, whereas Kdp did not contribute significantly. The expression of the kdp operon in Synechocystis was induced by extracellular K(+) depletion. Correspondingly, Kdp-mediated K(+) uptake supported Synechocystis cell growth with trace amounts of external potassium. This induction of kdp expression depended on two adjacent genes, hik20 and rre19, encoding a putative two-component system. The circadian expression of kdp and ktr peaked at subjective dawn, which may support the acquisition of K(+) required for the regular diurnal photosynthetic metabolism. These results indicate that Kdp contributes to the maintenance of a basal intracellular K(+) concentration under conditions of limited K(+) in natural environments, whereas Ktr mediates fast potassium movements in the presence of greater K(+) availability. Through their distinct activities, both Ktr and Kdp coordinate the responses of Synechocystis to changes in K(+) levels under fluctuating environmental conditions.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Synechocystis/metabolismo , Transporte Biológico , Regulación Bacteriana de la Expresión Génica , Operón , Potasio/metabolismo , Synechocystis/genética
3.
Plant Cell ; 23(1): 81-93, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21239645

RESUMEN

Flowering plant reproduction requires precise delivery of the sperm cells to the ovule by a pollen tube. Guidance signals from female cells are being identified; however, how pollen responds to those cues is largely unknown. Here, we show that two predicted cation/proton exchangers (CHX) in Arabidopsis thaliana, CHX21 and CHX23, are essential for pollen tube guidance. Male fertility was unchanged in single chx21 or chx23 mutants. However, fertility was impaired in chx21 chx23 double mutant pollen. Wild-type pistils pollinated with a limited number of single and double mutant pollen producing 62% fewer seeds than those pollinated with chx23 single mutant pollen, indicating that chx21 chx23 pollen is severely compromised. Double mutant pollen grains germinated and grew tubes down the transmitting tract, but the tubes failed to turn toward ovules. Furthermore, chx21 chx23 pollen tubes failed to enter the micropyle of excised ovules. Green fluorescent protein-tagged CHX23 driven by its native promoter was localized to the endoplasmic reticulum of pollen tubes. CHX23 mediated K(+) transport, as CHX23 expression in Escherichia coli increased K(+) uptake and growth in a pH-dependent manner. We propose that by modifying localized cation balance and pH, these transporters could affect steps in signal reception and/or transduction that are critical to shifting the axis of polarity and directing pollen growth toward the ovule.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Óvulo Vegetal/crecimiento & desarrollo , Tubo Polínico/crecimiento & desarrollo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Clonación Molecular , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Mutagénesis Insercional , Mutación , Infertilidad Vegetal/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Potasio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética
4.
J Bacteriol ; 192(19): 5063-70, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20656904

RESUMEN

The Na+-dependent K+ uptake KtrABE system is essential for the adaptation of Synechocystis to salinity stress and high osmolality. While KtrB forms the K+-translocating pore, the role of the subunits KtrA and KtrE for Ktr function remains elusive. Here, we characterized the role of KtrA and KtrE in Ktr-mediated K+ uptake and in modulating Na+ dependency. Expression of KtrB alone in a K+ uptake-deficient Escherichia coli strain conferred low K+ uptake activity that was not stimulated by Na+. Coexpression of both KtrA and KtrE with KtrB increased the K+ transport activity in a Na+-dependent manner. KtrA and KtrE were found to be localized to the plasma membrane in Synechocystis. Site-directed mutagenesis was used to analyze the role of single charged residues in KtrB for Ktr function. Replacing negatively charged residues facing the extracellular space with residues of the opposite charge increased the apparent Km for K+ in all cases. However, none of the mutations eliminated the Na+ dependency of Ktr-mediated K+ transport. Mutations of residues on the cytoplasmic side had larger effects on K+ uptake activity than those of residues on the extracellular side. Further analysis revealed that replacement of R262, which is well conserved among Ktr/Trk/HKT transporters in the third extracellular loop, by Glu abolished transport activity. The atomic-scale homology model indicated that R262 might interact with E247 and D261. Based on these data, interaction of KtrA and KtrE with KtrB increased the K+ uptake rate and conferred Na+ dependency.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Synechocystis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Transporte Biológico/genética , Transporte Biológico/fisiología , Prueba de Complementación Genética , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Synechocystis/genética
5.
Channels (Austin) ; 11(6): 510-516, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28933647

RESUMEN

The Arabidopsis K+ channel KAT1 complements in K+-limited medium the growth of the K+ uptake defective Saccharomyces cerevisiae mutant strain CY162, while another K+ channel, AKT2, does not. To gain insight into the structural basis for this difference, we constructed 12 recombinant chimeric channels from these two genes. When expressed in CY162, only three of these chimeras fully rescued the growth of CY162 under K+-limited conditions. We conclude that the transmembrane core region of KAT1 is important for its activity in S. cerevisiae. This involves not only the pore region but also parts of its voltage-sensor domain.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oocitos/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Saccharomyces cerevisiae/metabolismo , Xenopus laevis/metabolismo , Animales
6.
PLoS One ; 5(4): e10118, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20404935

RESUMEN

Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK) in the genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a K(+)-uptake-system deficient E. coli strain, was able to recover growth of these organisms. The protein functions as a potassium selective ion channel when expressed in Chinese hamster ovary cells. The location of SynK in cyanobacteria in both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K(+) channel) family member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel, opening the way to functional studies.


Asunto(s)
Canales de Potasio/análisis , Synechocystis/química , Arabidopsis/genética , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Clonación Molecular , Cianobacterias/química , Cianobacterias/genética , Evolución Molecular , Fotosíntesis , Canales de Potasio/genética , Synechocystis/genética , Tilacoides/química
7.
Channels (Austin) ; 1(3): 161-71, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18690031

RESUMEN

Studies suggest that Ktr/Trk/HKT-type transporters have evolved from multiple gene fusions of simple K(+) channels of the KcsA type into proteins that span the membrane at least eight times. Several positively charged residues are present in the eighth transmembrane segment, M2(D), in the transporters but not K(+) channels. Some models of ion transporters require a barrier to prevent free diffusion of ions down their electrochemical gradient, and it is possible that the positively charged residues within the transporter pore may prevent transporters from being channels. Here we studied the functional role of these positive residues in three Ktr/Trk/HKT-type transporters (Synechocystis KtrB-mediated K(+) uniporter, Arabidopsis AtHKT1-mediated Na(+) uniporter and wheat TaHKT1-mediated K(+)/Na(+) symporter) by examining K(+) uptake rates in E. coli, electrophysiological measurements in oocytes and growth rates of E. coli and yeast. The conserved Arg near the middle of the M2(D) segment was essential for the K(+) transport activity of KtrB and plant HKTs. Combined replacement of several positive residues in TaHKT1 showed that the positive residue at the beginning of the M2(D), which is conserved in many K(+) channels, also contributed to cation transport activity. This positive residue and the conserved Arg both face towards the ion conducting pore side. We introduced an atomic-scale homology model for predicting amino acid interactions. Based on the experimental results and the model, we propose that a salt bridge(s) exists between positive residues in the M2(D) and conserved negative residues in the pore region to reduce electrostatic repulsion against cation permeation caused by the positive residue(s). This salt bridge may help stabilize the transporter configuration, and may also prevent the conformational change that occurs in channels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Proteínas de Plantas/metabolismo , Simportadores/metabolismo , Synechocystis/metabolismo , Triticum/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Técnicas de Transferencia de Gen , Potenciales de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Oocitos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Potasio/metabolismo , Desnaturalización Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Análisis de Secuencia de Proteína , Sodio/metabolismo , Simportadores/química , Simportadores/genética , Synechocystis/genética , Factores de Tiempo , Xenopus laevis , Levaduras/crecimiento & desarrollo , Levaduras/metabolismo
8.
J Bacteriol ; 188(22): 7985-7, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16980470

RESUMEN

Mutation of a conserved His-157 in the second pore loop of KtrB drastically reduced the activity of the K+ transporter from Synechocystis sp. strain PCC 6803. This result suggests that His-157 plays an essential role in the K+ transport activity of the transporter system.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Histidina/fisiología , Potasio/metabolismo , Synechocystis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas de Transporte de Catión/genética , Cationes/metabolismo , Histidina/genética , Datos de Secuencia Molecular , Mutación Puntual , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA