Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Proteome Res ; 21(12): 2920-2935, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36356215

RESUMEN

Many of the diseases that plague society today are driven by a loss of protein quality. One method to quantify protein quality is to measure the protein folding stability (PFS). Here, we present a novel mass spectrometry (MS)-based approach for PFS measurement, iodination protein stability assay (IPSA). IPSA quantifies the PFS by tracking the surface-accessibility differences of tyrosine, histidine, methionine, and cysteine under denaturing conditions. Relative to current methods, IPSA increases protein coverage and granularity to track the PFS changes of a protein along its sequence. To our knowledge, this study is the first time the PFS of human serum proteins has been measured in the context of the blood serum (in situ). We show that IPSA can quantify the PFS differences between different transferrin iron-binding states in near in vivo conditions. We also show that the direction of the denaturation curve reflects the in vivo surface accessibility of the amino acid residue and reproducibly reports a residue-specific PFS. Along with IPSA, we introduce an analysis tool Chalf that provides a simple workflow to calculate the residue-specific PFS. The introduction of IPSA increases the potential to use protein structural stability as a structural quality metric in understanding the etiology and progression of human disease. Data is openly available at Chorusproject.org (project ID 1771).


Asunto(s)
Halogenación , Pliegue de Proteína , Humanos , Estabilidad Proteica , Transferrina/metabolismo , Espectrometría de Masas
2.
PLoS One ; 18(3): e0271008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36930604

RESUMEN

Differential scanning calorimetry (DSC) can indicate changes in structure and/or concentration of the most abundant proteins in a biological sample via heat denaturation curves (HDCs). In blood serum for example, HDC changes result from either concentration changes or altered thermal stabilities for 7-10 proteins and has previously been shown capable of differentiating between sick and healthy human subjects. Here, we compare HDCs and proteomic profiles of 50 patients experiencing joint-inflammatory symptoms, 27 of which were clinically diagnosed with rheumatoid arthritis (RA). The HDC of all 50 subjects appeared significantly different from expected healthy curves, but comparison of additional differences between the RA and the non-RA subjects allowed more specific understanding of RA samples. We used mass spectrometry (MS) to investigate the reasons behind the additional HDC changes observed in RA patients. The HDC differences do not appear to be directly related to differences in the concentrations of abundant serum proteins. Rather, the differences can be attributed to modified thermal stability of some fraction of the human serum albumin (HSA) proteins in the sample. By quantifying differences in the frequency of artificially induced post translational modifications (PTMs), we found that HSA in RA subjects had a much lower surface accessibility, indicating potential ligand or protein binding partners in certain regions that could explain the shift in HSA melting temperature in the RA HDCs. Several low abundance proteins were found to have significant changes in concentration in RA subjects and could be involved in or related to binding of HSA. Certain amino acid sites clusters were found to be less accessible in RA subjects, suggesting changes in HSA structure that may be related to changes in protein-protein interactions. These results all support a change in behavior of HSA which may give insight into mechanisms of RA pathology.


Asunto(s)
Artritis Reumatoide , Albúmina Sérica Humana , Humanos , Albúmina Sérica Humana/química , Proteómica , Unión Proteica , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA