Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 39(43): 8424-8438, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31511429

RESUMEN

Discriminating between auditory signals of different affective value is critical for the survival and success of social interaction of an individual. Anatomical, electrophysiological, imaging, and optogenetics approaches have established that the auditory cortex (AC) by providing auditory information to the lateral amygdala (LA) via long-range excitatory glutamatergic projections has an impact on sound-driven aversive/fear behavior. Here we test the hypothesis that the LA also receives GABAergic projections from the cortex. We addressed this fundamental question by taking advantage of optogenetics, anatomical, and electrophysiology approaches and directly examining the functional effects of cortical GABAergic inputs to LA neurons of the mouse (male/female) AC. We found that the cortex, via cortico-lateral-amygdala somatostatin neurons (CLA-SOM), has a direct inhibitory influence on the output of the LA principal neurons. Our results define a CLA long-range inhibitory circuit (CLA-SOM inhibitory projections → LA principal neurons) underlying the control of spike timing/generation in LA and LA-AC projecting neurons, and attributes a specific function to a genetically defined type of cortical long-range GABAergic neurons in CLA communication.SIGNIFICANCE STATEMENT It is very well established that cortical auditory inputs to the lateral amygdala are exclusively excitatory and that cortico-amygdala neuronal activity has been shown to be involved in sound-driven aversive/fear behavior. Here, for the first time, we show that the lateral amygdala receives long-range GABAergic projection from the auditory cortex and these form direct monosynaptic inhibitory connections onto lateral amygdala principal neurons. Our results define a cellular basis for direct inhibitory communication from auditory cortex to the lateral amygdala, suggesting that the timing and ratio of excitation and inhibition, two opposing forces in the mammalian cerebral cortex, can dynamically affect the output of the lateral amygdala, providing a general mechanism for fear/aversive behavior driven by auditory stimuli.


Asunto(s)
Amígdala del Cerebelo/fisiología , Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Neuronas/fisiología , Amígdala del Cerebelo/metabolismo , Animales , Corteza Auditiva/metabolismo , Vías Auditivas/metabolismo , Miedo/fisiología , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Ratones , Ratones Transgénicos , Inhibición Neural/fisiología , Neuronas/metabolismo , Somatostatina/metabolismo
2.
Cereb Cortex ; 28(8): 2817-2833, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29077796

RESUMEN

In the auditory cortex (AC), corticofugal projections arise from each level of the auditory system and are considered to provide feedback "loops" important to modulate the flow of ascending information. It is well established that the cortex can influence the response of neurons in the superior colliculus (SC) via descending corticofugal projections. However, little is known about the relative contribution of different pyramidal neurons to these projections in the SC. We addressed this question by taking advantage of anterograde and retrograde neuronal tracing to directly examine the laminar distribution, long-range projections, and electrophysiological properties of pyramidal neurons projecting from the AC to the SC of the mouse brain. Here we show that layer 5 cortico-superior-collicular pyramidal neurons act as bandpass filters, resonating with a broad peak at ∼3 Hz, whereas layer 6 neurons act as low-pass filters. The dissimilar subthreshold properties of layer 5 and layer 6 cortico-superior-collicular pyramidal neurons can be described by differences in the hyperpolarization-activated cyclic nucleotide-gated cation h-current (Ih). Ih also reduced the summation of short trains of artificial excitatory postsynaptic potentials injected at the soma of layer 5, but not layer 6, cortico-superior-collicular pyramidal neurons, indicating a differential dampening effect of Ih on these neurons.


Asunto(s)
Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Células Piramidales/fisiología , Colículos Superiores/citología , Colículos Superiores/fisiología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Axones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Dendritas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Red Nerviosa/fisiología , Técnicas de Placa-Clamp , Células Piramidales/citología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción Genética
3.
Cereb Cortex ; 28(4): 1154-1167, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28174907

RESUMEN

Anatomical studies have shown that the majority of callosal axons are glutamatergic. However, a small proportion of callosal axons are also immunoreactive for glutamic acid decarboxylase, an enzyme required for gamma-aminobutyric acid (GABA) synthesis and a specific marker for GABAergic neurons. Here, we test the hypothesis that corticocortical parvalbumin-expressing (CC-Parv) neurons connect the two hemispheres of multiple cortical areas, project through the corpus callosum, and are a functional part of the local cortical circuit. Our investigation of this hypothesis takes advantage of viral tracing and optogenetics to determine the anatomical and electrophysiological properties of CC-Parv neurons of the mouse auditory, visual, and motor cortices. We found a direct inhibitory pathway made up of parvalbumin-expressing (Parv) neurons which connects corresponding cortical areas (CC-Parv neurons → contralateral cortex). Like other Parv cortical neurons, these neurons provide local inhibition onto nearby pyramidal neurons and receive thalamocortical input. These results demonstrate a previously unknown long-range inhibitory circuit arising from a genetically defined type of GABAergic neuron that is engaged in interhemispheric communication.


Asunto(s)
Corteza Auditiva/citología , Cuerpo Calloso/citología , Neuronas GABAérgicas/fisiología , Vías Nerviosas/fisiología , Animales , Corteza Auditiva/fisiología , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Estimulación Eléctrica , Femenino , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Optogenética , Parvalbúminas/genética , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Transfección , Proteína 2 de Transporte Vesicular de Glutamato
4.
Elife ; 122023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665123

RESUMEN

Cortical GABAergic interneurons (INs) represent a diverse population of mainly locally projecting cells that provide specialized forms of inhibition to pyramidal neurons and other INs. Most recent work on INs has focused on subtypes distinguished by expression of Parvalbumin (PV), Somatostatin (SST), or Vasoactive Intestinal Peptide (VIP). However, a fourth group that includes neurogliaform cells (NGFCs) has been less well characterized due to a lack of genetic tools. Here, we show that these INs can be accessed experimentally using intersectional genetics with the gene Id2. We find that outside of layer 1 (L1), the majority of Id2 INs are NGFCs that express high levels of neuropeptide Y (NPY) and exhibit a late-spiking firing pattern, with extensive local connectivity. While much sparser, non-NGFC Id2 INs had more variable properties, with most cells corresponding to a diverse group of INs that strongly expresses the neuropeptide CCK. In vivo, using silicon probe recordings, we observed several distinguishing aspects of NGFC activity, including a strong rebound in activity immediately following the cortical down state during NREM sleep. Our study provides insights into IN diversity and NGFC distribution and properties, and outlines an intersectional genetics approach for further study of this underappreciated group of INs.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Neuropéptidos , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Neuropéptido Y/metabolismo , Neuropéptidos/metabolismo , Parvalbúminas/metabolismo , Células Piramidales/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
5.
Psychopharmacology (Berl) ; 239(9): 2985-2996, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35796814

RESUMEN

RATIONALE: Learning the association between rewards and predictive cues is critical for appetitive behavioral responding. The mesolimbic dopamine system is thought to play an integral role in establishing these cue-reward associations. The dopamine response to cues can signal differences in reward value, though this emerges only after significant training. This suggests that the dopamine system may differentially regulate behavioral responding depending on the phase of training. OBJECTIVES: The purpose of this study was to determine whether antagonizing dopamine receptors elicited different effects on behavior depending on the phase of training or the type of Pavlovian task. METHODS: Separate groups of male rats were trained on Pavlovian tasks in which distinct audio cues signaled either differences in reward size or differences in reward rate. The dopamine receptor antagonist flupenthixol was systemically administered prior to either the first ten sessions of training (acquisition phase) or the second ten sessions of training (expression phase), and we monitored the effect of these manipulations for an additional ten training sessions. RESULTS: We identified acute effects of dopamine receptor antagonism on conditioned responding, the latency to respond, and post-reward head entries in both Pavlovian tasks. Interestingly, dopamine receptor antagonism during the expression phase produced persistent deficits in behavioral responding only in rats trained on the reward size Pavlovian task. CONCLUSIONS: Together, our results illustrate that dopamine's control over behavior in Pavlovian tasks depends upon one's prior training experience and the information signaled by the cues.


Asunto(s)
Condicionamiento Operante , Dopamina , Animales , Condicionamiento Clásico , Señales (Psicología) , Dopamina/metabolismo , Antagonistas de Dopamina/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Receptores Dopaminérgicos , Recompensa
6.
Front Neural Circuits ; 14: 45, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32792912

RESUMEN

Previous studies have shown that cortico-striatal pathways link auditory signals to action-selection and reward-learning behavior through excitatory projections. Only recently it has been demonstrated that long-range GABAergic cortico-striatal somatostatin-expressing neurons in the auditory cortex project to the dorsal striatum, and functionally inhibit the main projecting neuronal population, the spiny projecting neuron. Here we tested the hypothesis that parvalbumin-expressing neurons of the auditory cortex can also send long-range projections to the auditory striatum. To address this fundamental question, we took advantage of viral and non-viral anatomical tracing approaches to identify cortico-striatal parvalbumin neurons (CS-Parv inhibitory projections → auditory striatum). Here, we describe their anatomical distribution in the auditory cortex and determine the anatomical and electrophysiological properties of layer 5 CS-Parv neurons. We also analyzed their characteristic voltage-dependent membrane potential gamma oscillation, showing that intrinsic membrane mechanisms generate them. The inherent membrane mechanisms can also trigger intermittent and irregular bursts (stuttering) of the action potential in response to steps of depolarizing current pulses.


Asunto(s)
Corteza Auditiva/citología , Cuerpo Estriado/citología , Neuronas GABAérgicas/citología , Animales , Corteza Auditiva/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Ratones , Inhibición Neural , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Parvalbúminas/metabolismo
7.
Front Cell Neurosci ; 12: 53, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29559891

RESUMEN

Previous studies have shown that parvalbumin-expressing neurons (CC-Parv neurons) connect the two hemispheres of motor and sensory areas via the corpus callosum, and are a functional part of the cortical circuit. Here we test the hypothesis that layer 5 CC-Parv neurons possess anatomical and molecular mechanisms which dampen excitability and modulate the gating of interhemispheric inhibition. In order to investigate this hypothesis we use viral tracing to determine the anatomical and electrophysiological properties of layer 5 CC-Parv and parvalbumin-expressing (Parv) neurons of the mouse auditory cortex (AC). Here we show that layer 5 CC-Parv neurons had larger dendritic fields characterized by longer dendrites that branched farther from the soma, whereas layer 5 Parv neurons had smaller dendritic fields characterized by shorter dendrites that branched nearer to the soma. The layer 5 CC-Parv neurons are characterized by delayed action potential (AP) responses to threshold currents, lower firing rates, and lower instantaneous frequencies compared to the layer 5 Parv neurons. Kv1.1 containing K+ channels are the main source of the AP repolarization of the layer 5 CC-Parv and have a major role in determining both the spike delayed response, firing rate and instantaneous frequency of these neurons.

8.
Elife ; 52016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27159237

RESUMEN

Anatomical and physiological studies have led to the assumption that the dorsal striatum receives exclusively excitatory afferents from the cortex. Here we test the hypothesis that the dorsal striatum receives also GABAergic projections from the cortex. We addressed this fundamental question by taking advantage of optogenetics and directly examining the functional effects of cortical GABAergic inputs to spiny projection neurons (SPNs) of the mouse auditory and motor cortex. We found that the cortex, via corticostriatal somatostatin neurons (CS-SOM), has a direct inhibitory influence on the output of the striatum SPNs. Our results describe a corticostriatal long-range inhibitory circuit (CS-SOM inhibitory projections → striatal SPNs) underlying the control of spike timing/generation in SPNs and attributes a specific function to a genetically defined type of cortical interneuron in corticostriatal communication.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Cuerpo Estriado/anatomía & histología , Cuerpo Estriado/fisiología , Inhibición Neural , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Animales , Neuronas GABAérgicas/fisiología , Ratones , Optogenética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA