Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Immunol ; 206(8): 1957-1965, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33692147

RESUMEN

MHC class I molecules play an important role in adaptive immune responses against intracellular pathogens. These molecules are highly polymorphic, and many allotypes have been characterized. In a transplantation setting, a mismatch between MHC allotypes may initiate an alloimmune response. Rhesus macaques (Macaca mulatta, Mamu) are valuable as a preclinical model species in transplantation research as well as to evaluate the safety and efficacy of vaccine candidates. In both lines of research, the availability of nonhuman primate MHC-reactive mAbs may enable in vitro monitoring and detection of presence of particular Mamu molecules. In this study, we screened a collection of thoroughly characterized HLA class I-specific human mAbs for cross-reactivity with rhesus macaque MHC class I allotypes. Two mAbs, OK4F9 and OK4F10, recognize an epitope that is defined by isoleucine (I) at amino acid position 142 that is present on the Indian rhesus macaque Mamu-B*008:01 allotype, which is an allotype known to be associated with elite control of SIV replication. The reactive pattern of a third mAb, MUS4H4, is more complex and includes an epitope shared on Mamu-A2*05:01 and -B*001:01-encoded Ags. This is the first description, to our knowledge, of human HLA-reactive mAbs that can recognize Mamu allotypes, and these can be useful tools for in vitro monitoring the presence of the relevant allelic products. Moreover, OK4F9 and OK4F10 can be powerful mAbs for application in SIV-related research.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/inmunología , VIH-1/fisiología , Antígenos HLA/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Síndrome de Inmunodeficiencia Adquirida/genética , Alelos , Animales , Anticuerpos Monoclonales/metabolismo , Reacciones Cruzadas , Predisposición Genética a la Enfermedad , Antígenos HLA/genética , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Alotipos de Inmunoglobulinas , Células K562 , Macaca mulatta , Polimorfismo Genético , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Replicación Viral
2.
Immunogenetics ; 74(3): 313-326, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35291021

RESUMEN

The role of natural killer (NK) cells is tightly modulated by interactions of killer cell immunoglobulin-like receptors (KIR) with their ligands of the MHC class I family. Several characteristics of the KIR gene products are conserved in primate evolution, like the receptor structures and the variegated expression pattern. At the genomic level, however, the clusters encoding the KIR family display species-specific diversity, reflected by differential gene expansions and haplotype architecture. The human KIR cluster is extensively studied in large cohorts from various populations, which revealed two KIR haplotype groups, A and B, that represent more inhibitory and more activating functional profiles, respectively. So far, genomic KIR analyses in large outbred populations of non-human primate species are lacking. In this study, we roughly quadrupled the number of rhesus macaques studied for their KIR transcriptome (n = 298). Using segregation analysis, we defined 112 unique KIR region configurations, half of which display a more inhibitory profile, whereas the other half has a more activating potential. The frequencies and functional potential of these profiles might mirror the human KIR haplotype groups. However, whereas the human group A and B KIR haplotypes are confined to largely fixed organizations, the haplotypes in macaques feature highly variable gene content. Moreover, KIR homozygosity was hardly encountered in this panel of macaques. This study exhibits highly diverse haplotype architectures in humans and macaques, which nevertheless might have an equivalent effect on the modulation of NK cell activity.


Asunto(s)
Hominidae , Receptores KIR , Animales , Haplotipos/genética , Humanos , Células Asesinas Naturales/metabolismo , Macaca mulatta/genética , Receptores KIR/genética , Receptores KIR/metabolismo
3.
Immunogenetics ; 74(4): 409-429, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35084546

RESUMEN

The major histocompatibility complex (MHC) plays a key role in immune defense, and the Mhc genes of cynomolgus macaque display a high degree of polymorphism. Based on their geographic distribution, different populations of cynomolgus macaques are recognized. Here we present the characterization of the Mhc class I and II repertoire of a large pedigreed group of cynomolgus macaques originating from the mainland north of the isthmus of Kra (N = 42). Segregation analyses resulted in the definition of 81 unreported Mafa-A/B/DRB/DQ/DP haplotypes, which include 32 previously unknown DRB regions. In addition, we report 13 newly defined Mafa-A/B/DRB/DQ/DP haplotypes in a group of cynomolgus macaques originating from the mainland south of the isthmus of Kra/Maritime Southeast Asia (N = 16). A relatively high level of sharing of Mafa-A (51%) and Mafa-B (40%) lineage groups is observed between the populations native to the north and the south of isthmus of Kra. At the allelic level, however, the Mafa-A/B haplotypes seem to be characteristic of a population. An overall comparison of all currently known data revealed that each geographic population has its own specific combinations of Mhc class I and II haplotypes. This illustrates the dynamic evolution of the cynomolgus macaque Mhc region, which was most likely generated by recombination and maintained by selection due to the differential pathogenic pressures encountered in different geographic areas.


Asunto(s)
Genes MHC Clase I , Complejo Mayor de Histocompatibilidad , Alelos , Animales , Genes MHC Clase I/genética , Haplotipos/genética , Macaca fascicularis/genética , Complejo Mayor de Histocompatibilidad/genética
4.
J Immunol ; 204(7): 1770-1786, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32111732

RESUMEN

The killer cell Ig-like receptors (KIR) modulate immune responses through interactions with MHC class I molecules. The KIR region in large cohorts of rhesus and cynomolgus macaque populations were characterized, and the experimental design enabled the definition of a considerable number of alleles (n = 576) and haplotypes, which are highly variable with regard to architecture. Although high levels of polymorphism were recorded, only a few alleles are shared between species and populations. The rapid evolution of allelic polymorphism, accumulated by point mutations, was further confirmed by the emergence of a novel KIR allele in a rhesus macaque family. In addition to allelic variation, abundant orthologous and species-specific KIR genes were identified, the latter of which are frequently generated by fusion events. The concerted action of both genetic mechanisms, in combination with differential selective pressures at the population level, resulted in the unparalleled rapid evolution of the KIR gene region in two closely related macaque species. The variation of the KIR gene repertoire at the species and population level might have an impact on the outcome of preclinical studies with macaque models.


Asunto(s)
Macaca fascicularis/genética , Macaca mulatta/genética , Receptores KIR/genética , Alelos , Animales , Evolución Molecular , Haplotipos/genética , Antígenos de Histocompatibilidad Clase I/genética , Polimorfismo Genético/genética
5.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32075930

RESUMEN

The major histocompatibility complex (MHC) class I region of humans, chimpanzees (Pan troglodytes), and bonobos (Pan paniscus) is highly similar, and orthologues of HLA-A, -B, and -C are present in both Pan species. Based on functional characteristics, the different HLA-A allotypes are classified into different supertypes. One of them, the HLA A03 supertype, is widely distributed among different human populations. All contemporary known chimpanzee and bonobo MHC class I A allotypes cluster genetically into one of the six HLA-A families, the HLA-A1/A3/A11/A30 family. We report here that the peptide-binding motif of the Patr-A*05:01 allotype, which is commonly present in a cohort of western African chimpanzees, has a strong preference for binding peptides with basic amino acids at the carboxyl terminus. This phenomenon is shared with the family members of the HLA A03 supertype. Based on the chemical similarities in the peptide-binding pocket, we inferred that the preference for binding peptides with basic amino acids at the carboxyl terminus is widely present among the human, chimpanzee, and bonobo MHC-A allotypes. Subsequent in silico peptide-binding predictions illustrated that these allotypes have the capacity to target conserved parts of the proteome of human immunodeficiency virus type 1 (HIV-1) and the simian immunodeficiency virus SIVcpz.IMPORTANCE Most experimentally infected chimpanzees seem to control an HIV-1 infection and are therefore considered to be relatively resistant to developing AIDS. Contemporary free-ranging chimpanzees may carry SIVcpz, and there is evidence for AIDS-like symptoms in these free-ranging animals, whereas SIV infections in bonobos appear to be absent. In humans, the natural control of an HIV-1 infection is strongly associated with the presence of particular HLA class I allotypes. The ancestor of the contemporary living chimpanzees and bonobos survived a selective sweep targeting the MHC class I repertoire. We have put forward a hypothesis that this may have been caused by an ancestral retroviral infection similar to SIVcpz. Characterization of the relevant MHC allotypes may contribute to understanding the shaping of their immune repertoire. The abundant presence of MHC-A allotypes that prefer peptides with basic amino acids at the C termini suggests that these molecules may contribute to the control of retroviral infections in humans, chimpanzees, and bonobos.


Asunto(s)
Genes MHC Clase I/inmunología , Antígeno HLA-A3/inmunología , Primates/inmunología , Alelos , Secuencia de Aminoácidos , Animales , VIH-1/inmunología , Antígeno HLA-A3/metabolismo , Antígenos de Histocompatibilidad , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Pan paniscus/inmunología , Pan troglodytes/inmunología , Péptidos/metabolismo , Filogenia , Unión Proteica/inmunología , Infecciones por Retroviridae/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología
6.
Trends Immunol ; 39(10): 768-771, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30126696

RESUMEN

The immunological factors that could explain the near absence of malaria parasites in bonobos are not yet understood. The MHC class I system, however, may play an important role, as particular bonobo allotypes show functional similarities to HLA-B*53/B*78, which are considered to confer protection against malaria in humans.


Asunto(s)
Genotipo , Antígenos HLA/genética , Antígenos HLA-B/genética , Antígenos de Histocompatibilidad Clase I/genética , Malaria/genética , Pan paniscus/inmunología , Alelos , Animales , Predisposición Genética a la Enfermedad , Humanos , Malaria/inmunología , Polimorfismo Genético , Alineación de Secuencia
7.
BMC Evol Biol ; 20(1): 119, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933484

RESUMEN

BACKGROUND: Many species are threatened with extinction as their population sizes decrease with changing environments or face novel pathogenic threats. A reduction of genetic diversity at major histocompatibility complex (MHC) genes may have dramatic effects on populations' survival, as these genes play a key role in adaptive immunity. This might be the case for chimpanzees, the MHC genes of which reveal signatures of an ancient selective sweep likely due to a viral epidemic that reduced their population size a few million years ago. To better assess how this past event affected MHC variation in chimpanzees compared to humans, we analysed several indexes of genetic diversity and linkage disequilibrium across seven MHC genes on four cohorts of chimpanzees and we compared them to those estimated at orthologous HLA genes in a large set of human populations. RESULTS: Interestingly, the analyses uncovered similar patterns of both molecular diversity and linkage disequilibrium across the seven MHC genes in chimpanzees and humans. Indeed, in both species the greatest allelic richness and heterozygosity were found at loci A, B, C and DRB1, the greatest nucleotide diversity at loci DRB1, DQA1 and DQB1, and both significant global linkage disequilibrium and the greatest proportions of haplotypes in linkage disequilibrium were observed at pairs DQA1 ~ DQB1, DQA1 ~ DRB1, DQB1 ~ DRB1 and B ~ C. Our results also showed that, despite some differences among loci, the levels of genetic diversity and linkage disequilibrium observed in contemporary chimpanzees were globally similar to those estimated in small isolated human populations, in contrast to significant differences compared to large populations. CONCLUSIONS: We conclude, first, that highly conserved mechanisms shaped the diversity of orthologous MHC genes in chimpanzees and humans. Furthermore, our findings support the hypothesis that an ancient demographic decline affecting the chimpanzee populations - like that ascribed to a viral epidemic - exerted a substantial effect on the molecular diversity of their MHC genes, albeit not more pronounced than that experienced by HLA genes in human populations that underwent rapid genetic drift during humans' peopling history. We thus propose a model where chimpanzees' MHC genes regenerated molecular variation through recombination/gene conversion and/or balancing selection after the selective sweep.


Asunto(s)
Evolución Molecular , Variación Genética , Antígenos HLA-D/genética , Hominidae/genética , Desequilibrio de Ligamiento , Pan troglodytes , Alelos , Animales , Frecuencia de los Genes , Genética de Población , Haplotipos , Humanos , Pan troglodytes/genética
8.
Immunogenetics ; 72(1-2): 37-47, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31781789

RESUMEN

The Killer-cell Immunoglobulin-like Receptors (KIR) are encoded by a diverse group of genes, which are characterized by allelic polymorphism, gene duplications, and recombinations, which may generate recombinant entities. The number of reported macaque KIR sequences is steadily increasing, and these data illustrate a gene system that may match or exceed the complexity of the human KIR cluster. This report lists the names of quality controlled and annotated KIR genes/alleles with all the relevant references for two different macaque species: rhesus and cynomolgus macaques. Numerous recombinant KIR genes in these species necessitate a revision of some of the earlier-published nomenclature guidelines. In addition, this report summarizes the latest information on the Immuno Polymorphism Database (IPD)-NHKIR Database, which contains annotated KIR sequences from four non-human primate species.


Asunto(s)
Bases de Datos Factuales , Inmunogenética , Macaca mulatta/genética , Polimorfismo Genético , Receptores KIR/genética , Receptores KIR/inmunología , Terminología como Asunto , Animales
9.
Immunogenetics ; 72(1-2): 131-132, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31745605

RESUMEN

The original version of this article contained a spelling error in the Acknowledgments regarding the name of the funding organisation supporting GM and JAH. UKRI-BBSCR should have been UKRI-BBSRC, as is now indicated correctly below.

10.
Immunogenetics ; 72(1-2): 25-36, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31624862

RESUMEN

The major histocompatibility complex (MHC) is central to the innate and adaptive immune responses of jawed vertebrates. Characteristic of the MHC are high gene density, gene copy number variation, and allelic polymorphism. Because apes and monkeys are the closest living relatives of humans, the MHCs of these non-human primates (NHP) are studied in depth in the context of evolution, biomedicine, and conservation biology. The Immuno Polymorphism Database (IPD)-MHC NHP Database (IPD-MHC NHP), which curates MHC data of great and small apes, as well as Old and New World monkeys, has been upgraded. The curators of the database are responsible for providing official designations for newly discovered alleles. This nomenclature report updates the 2012 report, and summarizes important nomenclature issues and relevant novel features of the IPD-MHC NHP Database.


Asunto(s)
Bases de Datos Genéticas , Complejo Mayor de Histocompatibilidad/genética , Primates/genética , Primates/inmunología , Alelos , Animales , Cercopithecidae/genética , Hominidae/genética , Complejo Mayor de Histocompatibilidad/fisiología , Filogenia , Platirrinos/genética , Polimorfismo Genético , Terminología como Asunto
11.
J Immunol ; 200(5): 1692-1701, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29358278

RESUMEN

The killer-cell Ig-like receptors (KIRs) play a central role in the immune recognition in infection, pregnancy, and transplantation through their interactions with MHC class I molecules. KIR genes display abundant copy number variation as well as high levels of polymorphism. As a result, it is challenging to characterize this structurally dynamic region. KIR haplotypes have been analyzed in different species using conventional characterization methods, such as Sanger sequencing and Roche/454 pyrosequencing. However, these methods are time-consuming and often failed to define complete haplotypes, or do not reach allele-level resolution. In addition, most analyses were performed on genomic DNA, and thus were lacking substantial information about transcription and its corresponding modifications. In this paper, we present a single-molecule real-time sequencing approach, using Pacific Biosciences Sequel platform to characterize the KIR transcriptomes in human and rhesus macaque (Macaca mulatta) families. This high-resolution approach allowed the identification of novel Mamu-KIR alleles, the extension of reported allele sequences, and the determination of human and macaque KIR haplotypes. In addition, multiple recombinant KIR genes were discovered, all located on contracted haplotypes, which were likely the result of chromosomal rearrangements. The relatively high number of contracted haplotypes discovered might be indicative of selection on small KIR repertoires and/or novel fusion gene products. This next-generation method provides an improved high-resolution characterization of the KIR cluster in humans and macaques, which eventually may aid in a better understanding and interpretation of KIR allele-associated diseases, as well as the immune response in transplantation and reproduction.


Asunto(s)
Haplotipos/genética , Receptores KIR/genética , Transcriptoma/genética , Alelos , Animales , Variaciones en el Número de Copia de ADN/genética , Reordenamiento Génico/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Macaca mulatta , Polimorfismo Genético/genética
12.
Int J Immunogenet ; 47(3): 243-260, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32358905

RESUMEN

The major histocompatibility complex (MHC) is one of the most gene-dense regions of the mammalian genome. Multiple genes within the human MHC (HLA) show extensive polymorphism, and currently, more than 26,000 alleles divided over 39 different genes are known. Nonhuman primate (NHP) species are grouped into great and lesser apes and Old and New World monkeys, and their MHC is studied mostly because of their important role as animal models in preclinical research or in connection with conservation biology purposes. The evolutionary equivalents of many of the HLA genes are present in NHP species, and these genes may also show abundant levels of polymorphism. This review is intended to provide a comprehensive comparison relating to the organization and polymorphism of human and NHP MHC regions.


Asunto(s)
Evolución Molecular , Hominidae/genética , Complejo Mayor de Histocompatibilidad/genética , Alelos , Animales , Hominidae/clasificación , Hominidae/inmunología , Humanos , Complejo Mayor de Histocompatibilidad/inmunología , Filogenia , Primates
13.
Immunogenetics ; 71(1): 13-23, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30159708

RESUMEN

Chimpanzees have been used for some time as an animal model in research on immune-related diseases in humans. The major histocompatibility complex (MHC) region of the chimpanzee has also been the subject of studies in which the attention was mainly on the class I genes. Although full-length sequence information is available on the DRB region genes, such detailed information is lacking for the other class II genes and, if present, is based mainly on exon 2 sequences. In the present study, full-length sequencing was performed on DQ, DP, and DRA genes in a cohort of 67 pedigreed animals, thereby allowing a thorough analysis of the MHC class II repertoire. The results demonstrate that the number of MHC class II lineages and alleles is relatively low, whereas haplotype diversity (combination of genes/alleles on a chromosome) seems to have been maximised by crossing-over processes.


Asunto(s)
Genes MHC Clase II , Haplotipos , Pan troglodytes/genética , Alelos , Animales , Variación Genética , Antígenos HLA-DP/genética , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Pan troglodytes/inmunología
14.
Immunogenetics ; 71(8-9): 545-559, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31384962

RESUMEN

Butyrophilins (BTN), specifically BTN3A, play a central role in the modulation of γδ T cells, which are mainly present in gut and mucosal tissues. BTN3A1 is known, for example, to activate Vγ9Vδ2 T cells by means of a phosphoantigen interaction. In the extended HLA region, three genes are located, designated BTN3A1, BTN3A2 and BTN3A3, which were also defined in rhesus macaques. In contrast to humans, rhesus monkeys have an additional gene, BTN3A3Like, which has the features of a pseudogene. cDNA analysis of 32 Indian rhesus and 16 cynomolgus macaques originating from multiple-generation families revealed that all three genes are oligomorphic, and the deduced amino acids display limited variation. The macaque BTN3A alleles segregated together with MHC alleles, proving their location in the extended (Major Histocompatibility Complex) MHC. BTN3A nearly full-length transcripts of macaques and humans cluster tightly together in the phylogenetic tree, suggesting that the genes represent true orthologs of each other. Despite the limited level of polymorphism, 15 Mamu- and 14 Mafa-BTN3A haplotypes were defined, and, as in humans, all three BTN3A genes are transcribed in PBMCs and colon tissues. In addition to regular full-length transcripts, a high number of various alternative splicing (AS) products were observed for all BTN3A alleles, which may result in different isoforms. The comparable function of certain subsets of γδ T cells in human and non-human primates in concert with high levels of sequence conservation observed for the BTN3A transcripts presents the opportunity to study these not yet well understood molecules in macaques as a model species.


Asunto(s)
Antígenos CD/genética , Butirofilinas/genética , Antígenos de Histocompatibilidad/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Secuencia de Aminoácidos , Animales , Butirofilinas/metabolismo , Secuencia Conservada , Femenino , Haplotipos , Humanos , Macaca mulatta , Masculino , Filogenia , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Homología de Secuencia , Linfocitos T/metabolismo
15.
J Immunol ; 198(8): 3157-3169, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28264973

RESUMEN

The immune and reproductive functions of human NK cells are regulated by interactions of the C1 and C2 epitopes of HLA-C with C1-specific and C2-specific lineage III killer cell Ig-like receptors (KIR). This rapidly evolving and diverse system of ligands and receptors is restricted to humans and great apes. In this context, the orangutan has particular relevance because it represents an evolutionary intermediate, one having the C1 epitope and corresponding KIR but lacking the C2 epitope. Through a combination of direct sequencing, KIR genotyping, and data mining from the Great Ape Genome Project, we characterized the KIR alleles and haplotypes for panels of 10 Bornean orangutans and 19 Sumatran orangutans. The orangutan KIR haplotypes have between 5 and 10 KIR genes. The seven orangutan lineage III KIR genes all locate to the centromeric region of the KIR locus, whereas their human counterparts also populate the telomeric region. One lineage III KIR gene is Bornean specific, one is Sumatran specific, and five are shared. Of 12 KIR gene-content haplotypes, 5 are Bornean specific, 5 are Sumatran specific, and 2 are shared. The haplotypes have different combinations of genes encoding activating and inhibitory C1 receptors that can be of higher or lower affinity. All haplotypes encode an inhibitory C1 receptor, but only some haplotypes encode an activating C1 receptor. Of 130 KIR alleles, 55 are Bornean specific, 65 are Sumatran specific, and 10 are shared.


Asunto(s)
Evolución Molecular , Pongo/genética , Pongo/inmunología , Receptores KIR/genética , Alelos , Animales , Cromosomas Artificiales Bacterianos , Haplotipos , Filogenia , Reacción en Cadena de la Polimerasa , Especificidad de la Especie
16.
J Immunol ; 199(10): 3679-3690, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29021373

RESUMEN

In different macaque species, the MHC A2*05 gene is present in abundance, and its gene products are characterized by low cell-surface expression and a highly conserved peptide-binding cleft. We have characterized the peptide-binding motif of Mamu-A2*05:01, and elucidated the binding capacity for virus-derived peptides. The macaque A2*05 allotype prefers the basic amino acid arginine at the second position of the peptide, and hydrophobic and polar amino acids at the C-terminal end. These preferences are shared with HLA-B*27 and Mamu-B*008, molecules shown to be involved in elite control in human HIV type 1 and macaque SIV infections, respectively. In contrast, however, Mamu-A2*05 preferentially binds 8-mer peptides. Retention in the endoplasmic reticulum seems to be the cause of the lower cell-surface expression. Subsequent peptide-binding studies have illustrated that Mamu-A2*05:01 is able to bind SIV-epitopes known to evoke a strong CD8+ T cell response in the context of the Mamu-B*008 allotype in SIV-infected rhesus macaques. Thus, the macaque A2*05 gene encodes a specialized MHC class I molecule, and is most likely transported to the cell surface only when suitable peptides become available.


Asunto(s)
Epítopos de Linfocito T/metabolismo , Infecciones por VIH/inmunología , VIH/fisiología , Antígenos de Histocompatibilidad Clase I/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Linfocitos T Citotóxicos/inmunología , Animales , Presentación de Antígeno , Línea Celular , Epítopos de Linfocito T/genética , Predisposición Genética a la Enfermedad , Antígenos VIH/metabolismo , Infecciones por VIH/genética , Antígeno HLA-B27/genética , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunidad Celular , Macaca , Péptidos/metabolismo , Unión Proteica , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Carga Viral , Replicación Viral
17.
Nucleic Acids Res ; 45(D1): D860-D864, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899604

RESUMEN

The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) collects and expertly curates sequences of the major histocompatibility complex from non-human species and provides the infrastructure and tools to enable accurate analysis. Since the first release of the database in 2003, IPD-MHC has grown and currently hosts a number of specific sections, with more than 7000 alleles from 70 species, including non-human primates, canines, felines, equids, ovids, suids, bovins, salmonids and murids. These sequences are expertly curated and made publicly available through an open access website. The IPD-MHC Database is a key resource in its field, and this has led to an average of 1500 unique visitors and more than 5000 viewed pages per month. As the database has grown in size and complexity, it has created a number of challenges in maintaining and organizing information, particularly the need to standardize nomenclature and taxonomic classification, while incorporating new allele submissions. Here, we describe the latest database release, the IPD-MHC 2.0 and discuss planned developments. This release incorporates sequence updates and new tools that enhance database queries and improve the submission procedure by utilizing common tools that are able to handle the varied requirements of each MHC-group.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Complejo Mayor de Histocompatibilidad/genética , Animales , Complejo Mayor de Histocompatibilidad/inmunología , Programas Informáticos , Navegador Web
18.
Immunol Rev ; 267(1): 228-45, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26284481

RESUMEN

Researchers dealing with the human leukocyte antigen (HLA) class I and killer immunoglobulin receptor (KIR) multi-gene families in humans are often wary of the complex and seemingly different situation that is encountered regarding these gene families in Old World monkeys. For the sake of comparison, the well-defined and thoroughly studied situation in humans has been taken as a reference. In macaques, both the major histocompatibility complex class I and KIR gene families are plastic entities that have experienced various rounds of expansion, contraction, and subsequent recombination processes. As a consequence, haplotypes in macaques display substantial diversity with regard to gene copy number variation. Additionally, for both multi-gene families, differential levels of polymorphism (allelic variation), and expression are observed as well. A comparative genetic approach has allowed us to answer questions related to ancestry, to shed light on unique adaptations of the species' immune system, and to provide insights into the genetic events and selective pressures that have shaped the range of these gene families.


Asunto(s)
Variación Genética/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Macaca mulatta/inmunología , Receptores KIR/inmunología , Animales , Variaciones en el Número de Copia de ADN/genética , Variaciones en el Número de Copia de ADN/inmunología , Evolución Molecular , Variación Genética/genética , Haplotipos , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Macaca mulatta/genética , Familia de Multigenes/genética , Familia de Multigenes/inmunología , Receptores KIR/genética
19.
Immunogenetics ; 70(10): 689-691, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30283990

RESUMEN

The authors regret that an error was present in the Fig. 5 of the above article; some digits in the DRB allele-designations in Fig. 5 have been lost, and are incorrectly presented by only two digits. The correct allele-designations should have been four (or six) digits. The correct Figure is now presented correctly.

20.
Immunogenetics ; 70(10): 619-623, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30027299

RESUMEN

The IPD-MHC Database is the official repository for non-human MHC sequences, overseen and supported by the Comparative MHC Nomenclature Committee, providing access to curated MHC data and associated analysis tools. To address the increasing amount and complexity of data being submitted, an entirely upgraded version of the IPD-MHC Database was recently released to maintain IPD-MHC as the central platform for the comparison of curated MHC data. As a consequence, a new level of nomenclature standardisation is required between the different species to enable data submission and to allow the unambiguous inter- and intra-species comparison of alleles. However, any changes must retain the flexibility demanded by the unique biology of different taxonomic groups. Here, we describe the rationale for a standardised nomenclature system and summarise the changes that have been driven by the requirements of implementing the IPD-MHC database. This modified nomenclature system is essential to maintain the current functionality of IPD-MHC and provide a scalable future-proof database organisation to fully exploit the bioinformatic tools used for analysis.


Asunto(s)
Bases de Datos Genéticas , Antígenos de Histocompatibilidad/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Alelos , Animales , Bovinos , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Antígenos de Histocompatibilidad/genética , Humanos , Complejo Mayor de Histocompatibilidad/genética , Ovinos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA