Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pathogens ; 12(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37111466

RESUMEN

Streptococcus agalactiae (Group B Streptococcus, GBS) is the leading cause of neonatal sepsis and meningitis but has been recently isolated from non-pregnant adults with underlying medical conditions like diabetes. Despite diabetes being a key risk factor for invasive disease, the pathological consequences during GBS infection remain poorly characterized. Here, we demonstrate the pathogenicity of the GBS90356-ST17 and COH1-ST17 strains in streptozotocin-induced diabetic mice. We show that GBS can spread through the bloodstream and colonize several tissues, presenting a higher bacterial count in diabetic-infected mice when compared to non-diabetic-infected mice. Histological sections of the lungs showed inflammatory cell infiltration, collapsed septa, and red blood cell extravasation in the diabetic-infected group. A significant increase in collagen deposition and elastic fibers were also observed in the lungs. Moreover, the diabetic group presented red blood cells that adhered to the valve wall and disorganized cardiac muscle fibers. An increased expression of KC protein, IL-1ß, genes encoding immune cell markers, and ROS (reactive oxygen species) production was observed in diabetic-infected mice, suggesting GBS promotes high levels of inflammation when compared to non-diabetic animals. Our data indicate that efforts to reverse the epidemic of diabetes could considerably reduce the incidence of invasive infection, morbidity and mortality due to GBS.

2.
Trop Med Infect Dis ; 7(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36136627

RESUMEN

The World Health Organization indicates that more than 1.5 billion people are infected with geohelminths. Soil-transmitted helminths prevail mostly in tropical and subtropical regions, in areas with inadequate hygiene and sanitation conditions, and basic health education problems. Nematode eggs are structures of resistance and infection by fecal-oral transmission. When STH eggs are ingested, they can infect the potential host, causing abdominal pain, diarrhea, anemia, malnutrition, and physical-cognitive impacts in children. Taking advantage of the increasing employment of three-dimensional models of these structured based on light microscopy images to improve the research area and education could be an alternative to improve health education and spread scientific information on transmission and prevention. The objective of this work was to produce 3D printed models from bi-dimensional images of eggs based on their real morphological and morphometric characteristics. The virtual models were reconstructed from the acquisition and selection of images obtained using light microscopy. After selecting referential images, we constructed the models based on the vectorization of the egg structures. After vectorization, 3D modeling was performed and printed in PLA. 3D models have a high potential to contribute to the advanced morphological studies and teaching of parasitological sciences, enriching the teaching-learning process applicable in presential or remote teaching of basic education, undergraduate, and post-graduation classes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA