Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Methods Mol Biol ; 2561: 245-259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36399274

RESUMEN

Recent technical advances in mass spectrometry, as applied to the analytical chemistry of lipid molecules, enable the simultaneous detection of the multiplicity of lipid complex species present in the human brain. This, in combination with quantitative studies carried out in plasma samples, helps to identify disease biomarkers including for Alzheimer's disease (AD). Mass spectrometry imaging (MSI) is particularly powerful for the anatomical localization of lipids in brain slices, identifying lipid modifications in postmortem frozen samples from AD patients.Human brain tissues are sectioned in a cryostat and then covered with a chemical matrix, such as mercaptobenzothiazole (MBT) or α-cyano-4-hydroxycinnamic acid (CHCA), to ionize the lipid molecules either by sublimation or by spraying. We describe the use of matrix-assisted laser desorption ionization (MALDI) in an LTQ-Orbitrap-XL mass spectrometer to scan brain tissue slices with high spatial resolution, analyzing 50 µm cell layers. The lipid spectra obtained for each pixel are transformed to color-coded intensity maps of hundreds of lipid species included those within a single tissue slice.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Química Encefálica , Encéfalo , Lípidos/análisis
2.
Sci Rep ; 11(1): 18343, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526552

RESUMEN

Composite Fenton nanocatalyst was prepared by water-based in situ creation of Fe3O4 nanoparticles integrated within the self-assembly 3D reduced graphene oxide (rGO) aerogel. The hybrid applied for the degradation of Acid Green 25 (AG-25) organic dye in an aqueous solution, in the presence of H2O2. By investigating the conditions that maximize the dye adsorption by the 3D composite, it was found that the pH of the solution should be adjusted between the pKa of the functional groups present on the rGO surface (carboxylic acid) and that of the dye (sulfonic acid) to promote electrostatic interactions dye-3D structure. Performed under these conditions, Fenton degradation of AG-25 in presence of H2O2 was completed in less than 30 min, including all the intermediate products, as demonstrated by MALDI-TOF-MS analysis of the aqueous solution after discoloration. Moreover, this was achieved in a solution with as high a dye concentration of 0.5 mg/mL, with only 10 mg of 3D composite catalyst, at room temperature and without additional energy input. The high performance was attributed to the creation of charge-transfer complex between rGO and Fe3O4 nanoparticles throughout covalent bond C-O-Fe, the formation of which was promoted by the in situ synthesis procedure. For the first time, up to the authors' knowledge, AG-25 degradation mechanism was proposed.

3.
Front Physiol ; 10: 770, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293441

RESUMEN

Non-alcoholic steatohepatitis (NASH) is the leading cause of chronic liver injury and the third most common reason for liver transplantations in Western countries. It is unclear so far how different fat sources in Western diets (WD) influence the development of NASH. Our study investigates the impact of non-trans fat (NTF) and corn oil (Corn) as fat source in a WD mouse model of steatohepatitis on disease development and progression. C57BL/6J wildtype (WT) mice were fed "standard" WD (WD-Std), WD-NTF or WD-Corn for 24 weeks. WT animals treated with WD-NTF exhibit distinct features of the metabolic syndrome compared to WD-Std and WD-Corn. This becomes evident by a worsened insulin resistance and elevated serum ALT, cholesterol and triglyceride (TG) levels compared to WD-Corn. Animals fed WD-Corn on the contrary tend to a weakened disease progression in the described parameters. After 24 weeks feeding with WD-NTF and WD-Std, WD-Corn lead to a comparable steatohepatitis initiation by histomorphological changes and immune cell infiltration compared to WD-Std. Immune cell infiltration results in a significant increase in mRNA expression of the pro-inflammatory cytokines IL-6 and TNF-α, which is more pronounced in WD-NTF compared to WD-Std and WD-Corn. Interestingly the fat source has no impact on the composition of accumulating fat within liver tissue as determined by matrix-assisted laser desorption/ionization mass spectrometry imaging of multiple lipid classes. The described effects of different fat sources on the development of steatohepatitis finally resulted in variations in fibrosis development. Animals treated with WD-NTF displayed massive collagen accumulation, whereas WD-Corn even seems to protect from extracellular matrix deposition. Noteworthy, WD-Corn provokes massive histomorphological modifications in epididymal white adipose tissue (eWAT) and severe accumulation of extracellular matrix which are not apparent in WD-Std and WD-NTF treatment. Different fat sources in WD-Std contribute to strong steatohepatitis development in WT mice after 24 weeks treatment. Surprisingly, corn oil provokes histomorphological changes in eWAT tissue. Accordingly, both WD-NTF and WD-Corn appear suitable as alternative dietary treatment to replace "standard" WD-Std as a diet mouse model of steatohepatitis whereas WD-Corn leads to strong changes in eWAT morphology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA