Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
RNA ; 23(8): 1188-1199, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28500251

RESUMEN

There is mounting evidence that the ribosome is not a static translation machinery, but a cell-specific, adaptive system. Ribosomal variations have mostly been studied at the protein level, even though the essential transcriptional functions are primarily performed by rRNAs. At the RNA level, oocyte-specific 5S rRNAs are long known for Xenopus. Recently, we described for zebrafish a similar system in which the sole maternal-type 5S rRNA present in eggs is replaced completely during embryonic development by a somatic-type. Here, we report the discovery of an analogous system for the 45S rDNA elements: 5.8S, 18S, and 28S. The maternal-type 5.8S, 18S, and 28S rRNA sequences differ substantially from those of the somatic-type, plus the maternal-type rRNAs are also replaced by the somatic-type rRNAs during embryogenesis. We discuss the structural and functional implications of the observed sequence differences with respect to the translational functions of the 5.8S, 18S, and 28S rRNA elements. Finally, in silico evidence suggests that expansion segments (ES) in 18S rRNA, previously implicated in ribosome-mRNA interaction, may have a preference for interacting with specific mRNA genes. Taken together, our findings indicate that two distinct types of ribosomes exist in zebrafish during development, each likely conducting the translation machinery in a unique way.


Asunto(s)
Embrión no Mamífero/metabolismo , ARN Ribosómico 18S/metabolismo , ARN Ribosómico 28S/metabolismo , ARN Ribosómico 5.8S/metabolismo , Ribosomas/metabolismo , Pez Cebra/metabolismo , Animales , Emparejamiento Base , Secuencia de Bases , ADN Ribosómico/genética , Embrión no Mamífero/citología , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , ARN Ribosómico 5.8S/genética , Alineación de Secuencia , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
2.
RNA ; 23(4): 446-456, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28003516

RESUMEN

5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci.


Asunto(s)
Herencia Materna , ARN Ribosómico 5S/genética , Retroelementos , Pez Cebra/genética , Animales , Mapeo Cromosómico , Cromosomas/química , Embrión no Mamífero , Desarrollo Embrionario/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Oogénesis/genética , ARN Ribosómico 5S/clasificación , ARN Ribosómico 5S/metabolismo , Secuencias Repetidas Terminales , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
3.
Genome ; 61(5): 371-378, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29425468

RESUMEN

rRNAs are non-coding RNAs present in all prokaryotes and eukaryotes. In eukaryotes there are four rRNAs: 18S, 5.8S, 28S, originating from a common precursor (45S), and 5S. We have recently discovered the existence of two distinct developmental types of rRNA: a maternal-type, present in eggs and a somatic-type, expressed in adult tissues. Lately, next-generation sequencing has allowed the discovery of new small-RNAs deriving from longer non-coding RNAs, including small-RNAs from rRNAs (srRNAs). Here, we systemically investigated srRNAs of maternal- or somatic-type 18S, 5.8S, 28S, with small-RNAseq from many zebrafish developmental stages. We identified new srRNAs for each rRNA. For 5.8S, we found srRNA consisting of the 5' or 3' halves, with only the latter having different sequence for the maternal- and somatic-types. For 18S, we discovered 21 nt srRNA from the 5' end of the 18S rRNA with a striking resemblance to microRNAs; as it is likely processed from a stem-loop precursor and present in human and mouse Argonaute-complexed small-RNA. For 28S, an abundant 80 nt srRNA from the 3' end of the 28S rRNA was found. The expression levels during embryogenesis of these srRNA indicate they are not generated from rRNA degradation and might have a role in the zebrafish development.


Asunto(s)
Proteínas Argonautas/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , ARN Ribosómico 5.8S/genética , ARN Pequeño no Traducido/genética , Pez Cebra/genética , Animales , Proteínas Argonautas/metabolismo , Secuencia de Bases , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Conformación de Ácido Nucleico , Unión Proteica , ARN Ribosómico 18S/metabolismo , ARN Ribosómico 28S/metabolismo , ARN Ribosómico 5.8S/metabolismo , ARN Pequeño no Traducido/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
4.
Microbiol Resour Announc ; 12(9): e0018923, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37555657

RESUMEN

Here, we report the genome sequences of 10 Carnation mottle virus variants. Six variants originated from a single proprietary carnation cultivar, and four were derived from four different proprietary cultivars. All variants showed nucleotide differences, but the last four did not show any variation at the amino acid level.

5.
Microbiol Resour Announc ; 12(3): e0121922, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36840552

RESUMEN

Here, we report the genome sequence of a new circular viroid-like RNA (CarSV-1) derived from Dianthus caryophyllus (carnation) leaves. The CarSV-1 genome has notable sequence similarity (62%) to the well-studied CarSV viroid-like RNA and comprises the complete hammerhead consensus sequences involved in self-cleavage. CarSV-1 co-occurs with carnation viruses, such as CarMV.

6.
Cancer Med ; 3(5): 1185-96, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25065733

RESUMEN

Oropharyngeal squamous cell carcinoma (OPSCC) is associated with human papillomavirus (HPV) in a proportion of tumors. HPV-positive OPSCC is considered a distinct molecular entity with a prognostic advantage compared to HPV-negative cases. Silencing of cancer-related genes by DNA promoter hypermethylation may play an important role in the development of OPSCC. Hence, we examined promoter methylation status in 24 common tumor suppressor genes in a group of 200 OPSCCs to determine differentially methylated genes in HPV-positive versus HPV-negative primary OPSCC. Methylation status was correlated with HPV status, clinical features, and patient survival using multivariate methods. Additionally, methylation status of 16 cervical squamous cell carcinomas (SCC) was compared with HPV-positive OPSCC. Using methylation-specific probe amplification, HPV-positive OPSCC showed a significantly higher cumulative methylation index (CMI) compared to HPV-negative OPSCC (P=0.008). For the genes CDH13, DAPK1, and RARB, both HPV-positive and HPV-negative OPSCC showed promoter hypermethylation in at least 20% of the tumors. HPV status was found to be an independent predictor of promoter hypermethylation of CADM1 (P < 0.001), CHFR (P = 0.027), and TIMP3 (P < 0.001). CADM1 and CHFR showed similar methylation patterns in OPSCC and cervical SCC, but TIMP3 showed no methylation in cervical SCC in contrast to OPSCC. Methylation status of neither individual gene nor CMI was associated with survival. These results suggest that HPV-positive tumors are to a greater extent driven by promotor hypermethylation in these tumor suppressor genes. Especially CADM1 and TIMP3 are significantly more frequently hypermethylated in HPV-positive OPSCC and CHFR in HPV-negative tumors.


Asunto(s)
Carcinoma de Células Escamosas/genética , Moléculas de Adhesión Celular/genética , Metilación de ADN , Inmunoglobulinas/genética , Neoplasias Orofaríngeas/genética , Regiones Promotoras Genéticas , Inhibidor Tisular de Metaloproteinasa-3/genética , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/virología , Molécula 1 de Adhesión Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Orofaríngeas/mortalidad , Neoplasias Orofaríngeas/patología , Neoplasias Orofaríngeas/terapia , Neoplasias Orofaríngeas/virología , Papillomaviridae/genética , Infecciones por Papillomavirus/complicaciones , Pronóstico , Factores de Riesgo , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA