Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
EMBO J ; 41(21): e110372, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36124865

RESUMEN

In a genome-wide screening for components of the dsDNA-break-induced IKK-NF-κB pathway, we identified scores of regulators, including tumor susceptibility gene TSG101. TSG101 is essential for DNA damage-induced formation of cellular poly(ADP-ribose) (PAR). TSG101 binds to PARP1 and is required for PARP1 activation. This function of TSG101 is independent of its role in the ESCRT-I endosomal sorting complex. In the absence of TSG101, the PAR-dependent formation of a nuclear PARP1-IKKγ signalosome, which triggers IKK activation, is impaired. According to its requirement for PARP1 and NF-κB activation, TSG101-deficient cells are defective in DNA repair and apoptosis protection. Loss of TSG101 results in PARP1 trapping at damage sites and mimics the effect of pharmacological PARP inhibition. We also show that the loss of TSG101 in connection with inactivated tumor suppressors BRCA1/2 in breast cancer cells is lethal. Our results imply TSG101 as a therapeutic target to achieve synthetic lethality in cancer treatment.


Asunto(s)
FN-kappa B , Poli ADP Ribosilación , FN-kappa B/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Daño del ADN , Reparación del ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
2.
Cell ; 146(3): 471-84, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816279

RESUMEN

Clathrin-mediated endocytosis (CME) regulates many cell physiological processes such as the internalization of growth factors and receptors, entry of pathogens, and synaptic transmission. Within the endocytic network, clathrin functions as a central organizing platform for coated pit assembly and dissociation via its terminal domain (TD). We report the design and synthesis of two compounds named pitstops that selectively block endocytic ligand association with the clathrin TD as confirmed by X-ray crystallography. Pitstop-induced inhibition of clathrin TD function acutely interferes with receptor-mediated endocytosis, entry of HIV, and synaptic vesicle recycling. Endocytosis inhibition is caused by a dramatic increase in the lifetimes of clathrin coat components, including FCHo, clathrin, and dynamin, suggesting that the clathrin TD regulates coated pit dynamics. Pitstops provide new tools to address clathrin function in cell physiology with potential applications as inhibitors of virus and pathogen entry and as modulators of cell signaling.


Asunto(s)
Clatrina/química , Clatrina/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Técnicas Citológicas/métodos , Bibliotecas de Moléculas Pequeñas , Complejo 2 de Proteína Adaptadora/metabolismo , Animales , Células Cultivadas , Invaginaciones Cubiertas de la Membrana Celular/efectos de los fármacos , Cristalografía por Rayos X , Dinaminas/metabolismo , Endocitosis , Humanos , Ratones , Estructura Terciaria de Proteína , Transducción de Señal , Sinapsis/metabolismo , Sinapsis/ultraestructura
3.
Nat Chem Biol ; 19(1): 18-27, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36109648

RESUMEN

Phosphatidylinositol 3-kinase type 2α (PI3KC2α) and related class II PI3K isoforms are of increasing biomedical interest because of their crucial roles in endocytic membrane dynamics, cell division and signaling, angiogenesis, and platelet morphology and function. Herein we report the development and characterization of PhosphatidylInositol Three-kinase Class twO INhibitors (PITCOINs), potent and highly selective small-molecule inhibitors of PI3KC2α catalytic activity. PITCOIN compounds exhibit strong selectivity toward PI3KC2α due to their unique mode of interaction with the ATP-binding site of the enzyme. We demonstrate that acute inhibition of PI3KC2α-mediated synthesis of phosphatidylinositol 3-phosphates by PITCOINs impairs endocytic membrane dynamics and membrane remodeling during platelet-dependent thrombus formation. PITCOINs are potent and selective cell-permeable inhibitors of PI3KC2α function with potential biomedical applications ranging from thrombosis to diabetes and cancer.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles , Fosfatos de Fosfatidilinositol/metabolismo
4.
Angew Chem Int Ed Engl ; 63(26): e202318485, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38608197

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal malignancy with extremely poor patient survival rates. A key reason for the poor prognosis is the lack of effective diagnostic tools to detect the disease at curable, premetastatic stages. Tumor surgical resection is PDAC's first-line treatment, however distinguishing between cancerous and healthy tissue with current imaging tools remains a challenge. In this work, we report a DOTA-based fluorescent probe targeting plectin-1 for imaging PDAC with high specificity. To enable heterogeneous functionalization of the DOTA-core with multiple targeting peptide units and the fluorophore, a novel, fully clickable synthetic route that proceeds in one pot was developed. Extensive validation of the probe set the stage for PDAC detection in mice and human tissue. Altogether, these findings may pave the way for improved clinical understanding and early detection of PDAC progression as well as more accurate resection criteria.


Asunto(s)
Medios de Contraste , Compuestos Heterocíclicos con 1 Anillo , Neoplasias Pancreáticas , Plectina , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Plectina/metabolismo , Animales , Medios de Contraste/química , Ratones , Compuestos Heterocíclicos con 1 Anillo/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/patología , Imagen Óptica
5.
Chembiochem ; 24(24): e202300555, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37769151

RESUMEN

Uridine diphosphate N-acetylglucosamine 2-epimerase (GNE) is a key enzyme in the sialic acid biosynthesis pathway. Sialic acids are primarily terminal carbohydrates on glycans and play fundamental roles in health and disease. In search of effective GNE inhibitors not based on a carbohydrate scaffold, we performed a high-throughput screening campaign of 68,640 drug-like small molecules against recombinant GNE using a UDP detection assay. We validated nine of the primary actives with an orthogonal real-time NMR assay and verified their IC50 values in the low micromolar to nanomolar range manually. Stability and solubility studies revealed three compounds for further evaluation. Thermal shift assays, analytical size exclusion, and interferometric scattering microscopy demonstrated that the GNE inhibitors acted on the oligomeric state of the protein. Finally, hydrogen-deuterium exchange mass spectrometry (HDX-MS) revealed which sections of GNE were shifted upon the addition of the inhibitors. In summary, we have identified three small molecules as GNE inhibitors with high potency in vitro, which serve as promising candidates to modulate sialic acid biosynthesis in more complex systems.


Asunto(s)
Carbohidrato Epimerasas , Ácido N-Acetilneuramínico , Humanos , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Ácidos Siálicos/química , Carbohidratos , Polisacáridos
6.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054947

RESUMEN

The cAMP-dependent aquaporin-2 (AQP2) redistribution from intracellular vesicles into the plasma membrane of renal collecting duct principal cells induces water reabsorption and fine-tunes body water homeostasis. However, the mechanisms controlling the localization of AQP2 are not understood in detail. Using immortalized mouse medullary collecting duct (MCD4) and primary rat inner medullary collecting duct (IMCD) cells as model systems, we here discovered a key regulatory role of Aurora kinase A (AURKA) in the control of AQP2. The AURKA-selective inhibitor Aurora-A inhibitor I and novel derivatives as well as a structurally different inhibitor, Alisertib, prevented the cAMP-induced redistribution of AQP2. Aurora-A inhibitor I led to a depolymerization of actin stress fibers, which serve as tracks for the translocation of AQP2-bearing vesicles to the plasma membrane. The phosphorylation of cofilin-1 (CFL1) inactivates the actin-depolymerizing function of CFL1. Aurora-A inhibitor I decreased the CFL1 phosphorylation, accounting for the removal of the actin stress fibers and the inhibition of the redistribution of AQP2. Surprisingly, Alisertib caused an increase in actin stress fibers and did not affect CFL1 phosphorylation, indicating that AURKA exerts its control over AQP2 through different mechanisms. An involvement of AURKA and CFL1 in the control of the localization of AQP2 was hitherto unknown.


Asunto(s)
Acuaporina 2/metabolismo , Aurora Quinasa A/metabolismo , Túbulos Renales Colectores/metabolismo , Actinas/metabolismo , Animales , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/genética , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Silenciador del Gen , Inmunohistoquímica , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/efectos de los fármacos , Masculino , Estructura Molecular , Fosforilación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Ratas
7.
PLoS Biol ; 15(6): e2000784, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28570591

RESUMEN

MACC1 (Metastasis Associated in Colon Cancer 1) is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC). However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.


Asunto(s)
Acetofenonas/uso terapéutico , Antineoplásicos/uso terapéutico , Benzopiranos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Factores de Transcripción/antagonistas & inhibidores , Desacopladores/uso terapéutico , Acetofenonas/efectos adversos , Acetofenonas/química , Acetofenonas/farmacología , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/química , Antineoplásicos/farmacología , Benzopiranos/efectos adversos , Benzopiranos/química , Benzopiranos/farmacología , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Genes Reporteros/efectos de los fármacos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neoplasias Hepáticas Experimentales/prevención & control , Neoplasias Hepáticas Experimentales/secundario , Ratones SCID , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Distribución Aleatoria , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas , Transactivadores , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Carga Tumoral/efectos de los fármacos , Desacopladores/efectos adversos , Desacopladores/química , Desacopladores/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Blood ; 129(1): 71-81, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27733358

RESUMEN

Classical Hodgkin lymphoma (cHL), although originating from B cells, is characterized by the virtual lack of gene products whose expression constitutes the B-cell phenotype. Epigenetic repression of B-cell-specific genes via promoter hypermethylation and histone deacetylation as well as compromised expression of B-cell-committed transcription factors were previously reported to contribute to the lost B-cell phenotype in cHL. Restoring the B-cell phenotype may not only correct a central malignant property, but it may also render cHL susceptible to clinically established antibody therapies targeting B-cell surface receptors or small compounds interfering with B-cell receptor signaling. We conducted a high-throughput pharmacological screening based on >28 000 compounds in cHL cell lines carrying a CD19 reporter to identify drugs that promote reexpression of the B-cell phenotype. Three chemicals were retrieved that robustly enhanced CD19 transcription. Subsequent chromatin immunoprecipitation-based analyses indicated that action of 2 of these compounds was associated with lowered levels of the transcriptionally repressive lysine 9-trimethylated histone H3 mark at the CD19 promoter. Moreover, the antileukemia agents all-trans retinoic acid and arsenic trioxide (ATO) were found to reconstitute the silenced B-cell transcriptional program and reduce viability of cHL cell lines. When applied in combination with a screening-identified chemical, ATO evoked reexpression of the CD20 antigen, which could be further therapeutically exploited by enabling CD20 antibody-mediated apoptosis of cHL cells. Furthermore, restoration of the B-cell phenotype also rendered cHL cells susceptible to the B-cell non-Hodgkin lymphoma-tailored small-compound inhibitors ibrutinib and idelalisib. In essence, we report here a conceptually novel, redifferentiation-based treatment strategy for cHL.


Asunto(s)
Antineoplásicos/farmacología , Linfocitos B/inmunología , Diferenciación Celular/efectos de los fármacos , Enfermedad de Hodgkin/inmunología , Transcriptoma/efectos de los fármacos , Antígenos CD19/inmunología , Antígenos CD20/inmunología , Linfocitos B/efectos de los fármacos , Inmunoprecipitación de Cromatina , Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Humanos , Fenotipo , Reacción en Cadena de la Polimerasa , Células Tumorales Cultivadas
9.
Angew Chem Int Ed Engl ; 56(49): 15746-15750, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28906057

RESUMEN

The Staphylococcus aureus ClpXP protease is an important regulator of cell homeostasis and virulence. We utilized a high-throughput screen against the ClpXP complex and identified a specific inhibitor of the ClpX chaperone that disrupts its oligomeric state. Synthesis of 34 derivatives revealed that the molecular scaffold is restrictive for diversification, with only minor changes tolerated. Subsequent analysis of the most active compound revealed strong attenuation of S. aureus toxin production, which was quantified with a customized MS-based assay platform. Transcriptome and whole-proteome studies further confirmed the global reduction of virulence and revealed characteristic signatures of protein expression in the compound-treated cells. Although these partially matched the pattern of ClpX knockout cells, further depletion of toxins was observed, leading to the intriguing perspective that additional virulence pathways may be directly or indirectly addressed by the small molecule.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Endopeptidasa Clp/antagonistas & inhibidores , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Inhibidores de Proteasas/farmacología , Proteínas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Endopeptidasa Clp/deficiencia , Endopeptidasa Clp/metabolismo , Ensayos Analíticos de Alto Rendimiento , Staphylococcus aureus Resistente a Meticilina/metabolismo , Estructura Molecular , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Virulencia
10.
Chembiochem ; 17(1): 90-101, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26478560

RESUMEN

Cytochromes P450 catalyze a variety of synthetically useful reactions. However, it is difficult to determine their physiological or artificial functions when a plethora of orphan P450 systems are present in a genome. CYP260A1 from Sorangium cellulosum So ce56 is a new member among the 21 available P450s in the strain. To identify putative substrates for CYP260A1 we used high-throughput screening of a compound library (ca. 17,000 ligands). Structural analogues of the type I hits were searched for biotechnologically relevant compounds, and this led us to select C-19 steroids as potential substrates. We identified efficient surrogate redox partners for CYP260A1, and an Escherichia coli-based whole-cell biocatalyst system was developed to convert testosterone, androstenedione, and their derivatives methyltestosterone and 11-oxoandrostenedione. A detailed (1) H and (13) C NMR characterization of the product(s) from C-19 steroids revealed that CYP260A1 is the very first 1α-steroid hydroxylase.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Myxococcales/enzimología , Esteroides/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Escherichia coli/enzimología , Secuenciación de Nucleótidos de Alto Rendimiento , Hidroxilación , Esteroides/química , Especificidad por Sustrato
11.
Proc Natl Acad Sci U S A ; 108(9): 3554-9, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21321225

RESUMEN

In histidine and tryptophan biosynthesis, two related isomerization reactions are generally catalyzed by two specific single-substrate enzymes (HisA and TrpF), sharing a similar (ß/α)(8)-barrel scaffold. However, in some actinobacteria, one of the two encoding genes (trpF) is missing and the two reactions are instead catalyzed by one bisubstrate enzyme (PriA). To unravel the unknown mechanism of bisubstrate specificity, we used the Mycobacterium tuberculosis PriA enzyme as a model. Comparative structural analysis of the active site of the enzyme showed that PriA undergoes a reaction-specific and substrate-induced metamorphosis of the active site architecture, demonstrating its unique ability to essentially form two different substrate-specific actives sites. Furthermore, we found that one of the two catalytic residues in PriA, which are identical in both isomerization reactions, is recruited by a substrate-dependent mechanism into the active site to allow its involvement in catalysis. Comparison of the structural data from PriA with one of the two single-substrate enzymes (TrpF) revealed substantial differences in the active site architecture, suggesting independent evolution. To support these observations, we identified six small molecule compounds that inhibited both PriA-catalyzed isomerization reactions but had no effect on TrpF activity. Our data demonstrate an opportunity for organism-specific inhibition of enzymatic catalysis by taking advantage of the distinct ability for bisubstrate catalysis in the M. tuberculosis enzyme.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dominio Catalítico , Histidina/biosíntesis , Isomerasas/química , Isomerasas/metabolismo , Mycobacterium tuberculosis/enzimología , Triptófano/biosíntesis , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Biocatálisis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Isomerasas/antagonistas & inhibidores , Isomerismo , Ligandos , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Estructura Secundaria de Proteína , Especificidad por Sustrato/efectos de los fármacos
12.
J Am Soc Nephrol ; 24(5): 744-58, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23559583

RESUMEN

In the principal cells of the renal collecting duct, arginine vasopressin (AVP) stimulates the synthesis of cAMP, leading to signaling events that culminate in the phosphorylation of aquaporin-2 water channels and their redistribution from intracellular domains to the plasma membrane via vesicular trafficking. The molecular mechanisms that control aquaporin-2 trafficking and the consequent water reabsorption, however, are not completely understood. Here, we used a cell-based assay and automated immunofluorescence microscopy to screen 17,700 small molecules for inhibitors of the cAMP-dependent redistribution of aquaporin-2. This approach identified 17 inhibitors, including 4-acetyldiphyllin, a selective blocker of vacuolar H(+)-ATPase that increases the pH of intracellular vesicles and causes accumulation of aquaporin-2 in the Golgi compartment. Although 4-acetyldiphyllin did not inhibit forskolin-induced increases in cAMP formation and downstream activation of protein kinase A (PKA), it did prevent cAMP/PKA-dependent phosphorylation at serine 256 of aquaporin-2, which triggers the redistribution to the plasma membrane. It did not, however, prevent cAMP-induced changes to the phosphorylation status at serines 261 or 269. Last, we identified the fungicide fluconazole as an inhibitor of cAMP-mediated redistribution of aquaporin-2, but its target in this pathway remains unknown. In conclusion, our screening approach provides a method to begin dissecting molecular mechanisms underlying AVP-mediated water reabsorption, evidenced by our identification of 4-acetyldiphyllin as a modulator of aquaporin-2 trafficking.


Asunto(s)
Acuaporina 2/metabolismo , Benzodioxoles/farmacología , Benzofuranos/farmacología , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Animales , Células Cultivadas , Colforsina/farmacología , AMP Cíclico/fisiología , Fluconazol/farmacología , Aparato de Golgi/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Microscopía Fluorescente , Fosforilación , Transporte de Proteínas/efectos de los fármacos , Ratas
13.
Front Neurol ; 15: 1370454, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872816

RESUMEN

Severe acute respiratory syndrome corona virus 2 (SARS CoV-2) is the cause of Corona virus disease 2019 (COVID-19), which turned into a pandemic in late 2019 and early 2020. SARS CoV-2 causes endothelial cell destruction and swelling, microthrombosis, constriction of capillaries, and malfunction of pericytes, all of which are detrimental to capillary integrity, angiogenesis, and healing processes. Cytokine storming has been connected to COVID-19 disease. Hypoxemia and tissue hypoxia may arise from impaired oxygen diffusion exchange in the lungs due to capillary damage and congestion. This personal view will look at how inflammation and capillary damage affect blood and tissue oxygenation, cognitive function, and the duration and intensity of COVID-19 disease. The general effects of microvascular injury, hypoxia, and capillary damage caused by COVID-19 in key organs are also covered in this point of view. Once initiated, this vicious cycle leads to diminished capillary function, which exacerbates inflammation and tissue damage, and increased inflammation due to hypoxia. Brain damage may result from low oxygen levels and high cytokines in brain tissue. In this paper we give a summary in this direction with focus on the role of the neuropeptide Substance P. On the basis of this, we discuss selected approaches to the question: "How Substance P is involved in the etiology of the COVID-19 and how results of our research could improve the prevention or therapy of corona? Thereby pointing out the role of Substance P in the post-corona syndrome and providing novel concepts for therapy and prevention.

14.
Elife ; 132024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856179

RESUMEN

Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5'-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5'-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.


Vitamin B6 is an important nutrient for optimal brain function, with deficiencies linked to impaired memory, learning and mood in various mental disorders. In older people, vitamin B6 deficiency is also associated with declining memory and dementia. Although this has been known for years, the precise role of vitamin B6 in these disorders and whether supplements can be used to treat or prevent them remained unclear. This is partly because vitamin B6 is actually an umbrella term for a small number of very similar and interchangeable molecules. Only one of these is 'bioactive', meaning it has a biological role in cells. However, therapeutic strategies aimed at increasing only the bioactive form of vitamin B6 are lacking. Previous work showed that disrupting the gene for an enzyme called pyridoxal phosphatase, which breaks down vitamin B6, improves memory and learning in mice. To investigate whether these effects could be mimicked by drug-like compounds, Brenner, Zink, Witzinger et al. used several biochemical and structural biology approaches to search for molecules that bind to and inhibit pyridoxal phosphatase. The experiments showed that a molecule called 7,8-dihydroxyflavone ­ which was previously found to improve memory and learning in laboratory animals with brain disorders ­ binds to pyridoxal phosphatase and inhibits its activity. This led to increased bioactive vitamin B6 levels in mouse brain cells involved in memory and learning. The findings of Brenner et al. suggest that inhibiting pyridoxal phosphatase to increase vitamin B6 levels in the brain could be used together with supplements. The identification of 7,8-dihydroxyflavone as a promising candidate drug is a first step in the discovery of more efficient pyridoxal phosphatase inhibitors. These will be useful experimental tools to directly study whether increasing the levels of bioactive vitamin B6 in the brain may help those with mental health conditions associated with impaired memory, learning and mood.


Asunto(s)
Inhibidores Enzimáticos , Monoéster Fosfórico Hidrolasas , Animales , Ratones , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfato de Piridoxal/metabolismo , Flavonas/farmacología , Flavonas/metabolismo , Flavonas/química , Ratones Endogámicos C57BL
15.
Thyroid ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38801167

RESUMEN

Background: 3,5,3'-Triiodothyroacetic acid (TRIAC) is a T3-receptor agonist pharmacologically used in patients to mitigate T3 resistance. It is additionally explored to treat some symptoms of patients with inactivating mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8, SLC16A2). MCT8 is expressed along the blood-brain barrier, on neurons, astrocytes, and oligodendrocytes. Hence, pathogenic variants in MCT8 limit the access of TH into and their functions within the brain. TRIAC was shown to enter the brain independently of MCT8 and to modulate expression of TH-dependent genes. The aim of the study was to identify transporters that facilitate TRIAC uptake into cells. Methods: We performed a whole-genome RNAi screen in HepG2 cells stably expressing a T3-receptor-dependent luciferase reporter gene. Validation of hits from the primary and confirmatory secondary screen involved a counter screen with siRNAs and compared the cellular response to TRIAC to the effect of T3, in order to exclude siRNAs targeting the gene expression machinery. MDCK1 cells were stably transfected with cDNA encoding C-terminally myc-tagged versions of the identified TRIAC-preferring transporters. Several individual clones were selected after immunocytochemical characterization for biochemical characterization of their 125I-TRIAC transport activities. Results: We identified SLC22A9 and SLC29A2 as transporters mediating cellular uptake of TRIAC. SLC22A9 encodes the organic anion transporter 7 (OAT7), a sodium-independent organic anion transporter expressed in the plasma membrane in brain, pituitary, liver, and other organs. Competition with the SLC22A9/OAT7 substrate estrone-3-sulfate reduced 125I-TRIAC uptake. SLC29A2 encodes the equilibrative nucleoside transporter 2 (ENT2), which is ubiquitously expressed, including pituitary and brain. Coincubation with the SLC29A2/ENT2 inhibitor nitrobenzyl-6-thioinosine reduced 125I-TRIAC uptake. Moreover, ABCD1, an ATP-dependent peroxisomal pump, was identified as a 125I-TRIAC exporter in transfected MDCK1 cells. Conclusions: Knowledge of TRIAC transporter expression patterns, also during brain development, may thus in the future help to interpret observations on TRIAC effects, as well as understand why TRIAC may not show a desirable effect on cells or organs not expressing appropriate transporters. The identification of ABCD1 highlights the sensitivity of our established screening assay, but it may not hold significant relevance for patients undergoing TRIAC treatment.

16.
Front Neurol ; 14: 1210194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456637

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) causes coronavirus disease 2019 (COVID-19), which became a pandemic in late 2019 and early 2020. Apart from many other symptoms of this infection, such as loss of smell and taste, rashes, body aches, fatigue, and psychological and cardiac symptoms, it also causes vasodilation in response to inflammation via nitric oxide release. SARS CoV-2 affects microcirculation, resulting in the swelling and damage of endothelial cells, micro thrombosis, constriction of capillaries, and damage to pericytes that are vital for the integrity of capillaries, angiogenesis, and the healing process. Cytokine storming has been associated with COVID-19 illness. Capillary damage and congestion may cause limited diffusion exchange of oxygen in the lungs and hence hypoxemia and tissue hypoxia occur. This perspective study will explore the involvement of capillary damage and inflammation by their interference with blood and tissue oxygenation as well as brain function in the persistent symptoms and severity of COVID-19. The overall effects of capillary damage due to COVID-19, microvascular damage, and hypoxia in vital organs are also discussed in this perspective. Once initiated, this vicious cycle causes inflammation due to hypoxia, resulting in limited capillary function, which in turn causes inflammation and tissue damage. Low oxygen levels and high cytokines in brain tissue may lead to brain damage. The after-effects may be in the form of psychological symptoms such as mood changes, anxiety, depression, and many others that need to be investigated.

17.
Elife ; 122023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843983

RESUMEN

Inositol hexakisphosphate kinases (IP6Ks) are emerging as relevant pharmacological targets because a multitude of disease-related phenotypes has been associated with their function. While the development of potent IP6K inhibitors is gaining momentum, a pharmacological tool to distinguish the mammalian isozymes is still lacking. Here, we implemented an analog-sensitive approach for IP6Ks and performed a high-throughput screen to identify suitable lead compounds. The most promising hit, FMP-201300, exhibited high potency and selectivity toward the unique valine gatekeeper mutants of IP6K1 and IP6K2, compared to the respective wild-type (WT) kinases. Biochemical validation experiments revealed an allosteric mechanism of action that was corroborated by hydrogen deuterium exchange mass spectrometry measurements. The latter analysis suggested that displacement of the αC helix, caused by the gatekeeper mutation, facilitates the binding of FMP-201300 to an allosteric pocket adjacent to the ATP-binding site. FMP-201300 therefore serves as a valuable springboard for the further development of compounds that can selectively target the three mammalian IP6Ks; either as analog-sensitive kinase inhibitors or as an allosteric lead compound for the WT kinases.


Asunto(s)
Fosfotransferasas (Aceptor del Grupo Fosfato) , Ácido Fítico , Animales , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Fosfatos de Inositol/metabolismo , Mamíferos/metabolismo
18.
PLoS One ; 18(2): e0278325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36745631

RESUMEN

Microglia are the immune effector cells of the central nervous system (CNS) and react to pathologic events with a complex process including the release of nitric oxide (NO). NO is a free radical, which is toxic for all cells at high concentrations. To target an exaggerated NO release, we tested a library of 16 544 chemical compounds for their effect on lipopolysaccharide (LPS)-induced NO release in cell line and primary neonatal microglia. We identified a compound (C1) which significantly reduced NO release in a dose-dependent manner, with a low IC50 (252 nM) and no toxic side effects in vitro or in vivo. Target finding strategies such as in silico modelling and mass spectroscopy hint towards a direct interaction between C1 and the nitric oxide synthase making C1 a great candidate for specific intra-cellular interaction with the NO producing machinery.


Asunto(s)
Microglía , Óxido Nítrico , Recién Nacido , Humanos , Microglía/metabolismo , Óxido Nítrico/metabolismo , Enfermedades Neuroinflamatorias , Óxido Nítrico Sintasa de Tipo II/metabolismo , Línea Celular , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo
19.
J Med Chem ; 66(21): 14866-14896, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37905925

RESUMEN

Tryptophan hydroxylases catalyze the first and rate-limiting step in the biosynthesis of serotonin, a well-known neurotransmitter that plays an important role in multiple physiological functions. A reduction of serotonin levels, especially in the brain, can cause dysregulation leading to depression or insomnia. In contrast, overproduction of peripheral serotonin is associated with symptoms like carcinoid syndrome and pulmonary arterial hypertension. Recently, we developed a class of TPH inhibitors based on xanthine-benzimidazoles, characterized by a tripartite-binding mode spanning the binding sites of the cosubstrate pterin and the substrate tryptophan and by chelation of the catalytic iron ion. Herein, we describe the structure-based development of a second generation of xanthine-imidiazopyridines and -imidazothiazoles designed to inhibit TPH1 in the periphery while preventing the interaction with TPH2 in the brain. Lead compound 32 (TPT-004) shows superior pharmacokinetic and pharmacodynamic properties as well as efficacy in preclinical models of peripheral serotonin attenuation and colorectal tumor growth.


Asunto(s)
Triptófano Hidroxilasa , Triptófano , Triptófano/metabolismo , Xantina , Serotonina/metabolismo
20.
iScience ; 26(5): 106593, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37250320

RESUMEN

Ischemic cardiomyopathy, driven by loss of cardiomyocytes and inadequate proliferative response, persists to be a major global health problem. Using a functional high-throughput screening, we assessed differential proliferative potential of 2019 miRNAs after transient hypoxia by transfecting both miR-inhibitor and miR-mimic libraries in human iPSC-CM. Whereas miR-inhibitors failed to enhance EdU uptake, overexpression of 28 miRNAs substantially induced proliferative activity in hiPSC-CM, with an overrepresentation of miRNAs belonging to the primate-specific C19MC-cluster. Two of these miRNAs, miR-515-3p and miR-519e-3p, increased markers of early and late mitosis, indicative of cell division, and substantially alter signaling pathways relevant for cardiomyocyte proliferation in hiPSC-CM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA