Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Clin Genet ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988293

RESUMEN

ANK3 encodes ankyrin-G, a protein involved in neuronal development and signaling. Alternative splicing gives rise to three ankyrin-G isoforms comprising different domains with distinct expression patterns. Mono- or biallelic ANK3 variants are associated with non-specific syndromic intellectual disability in 14 individuals (seven with monoallelic and seven with biallelic variants). In this study, we describe the clinical features of 13 additional individuals and review the data on a total of 27 individuals (16 individuals with monoallelic and 11 with biallelic ANK3 variants) and demonstrate that the phenotype for biallelic variants is more severe. The phenotypic features include language delay (92%), autism spectrum disorder (76%), intellectual disability (78%), hypotonia (65%), motor delay (68%), attention deficit disorder (ADD) or attention deficit hyperactivity disorder (ADHD) (57%), sleep disturbances (50%), aggressivity/self-injury (37.5%), and epilepsy (35%). A notable phenotypic difference was presence of ataxia in three individuals with biallelic variants, but in none of the individuals with monoallelic variants. While the majority of the monoallelic variants are predicted to result in a truncated protein, biallelic variants are almost exclusively missense. Moreover, mono- and biallelic variants appear to be localized differently across the three different ankyrin-G isoforms, suggesting isoform-specific pathological mechanisms.

2.
J Biol Chem ; 298(9): 102272, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35850303

RESUMEN

The axon initial segment (AIS) has characteristically dense clustering of voltage-gated sodium channels (Nav), cell adhesion molecule Neurofascin 186 (Nfasc), and neuronal scaffold protein Ankyrin-G (AnkG) in neurons, which facilitates generation of an action potential and maintenance of axonal polarity. However, the mechanisms underlying AIS assembly, maintenance, and plasticity remain poorly understood. Here, we report the high-resolution crystal structure of the AnkG ankyrin repeat (ANK repeat) domain in complex with its binding site in the Nfasc cytoplasmic tail that shows, in conjunction with binding affinity assays with serial truncation variants, the molecular basis of AnkG-Nfasc binding. We confirm AnkG interacts with the FIGQY motif in Nfasc, and we identify another region required for their high affinity binding. Our structural analysis revealed that ANK repeats form 4 hydrophobic or hydrophilic layers in the AnkG inner groove that coordinate interactions with essential Nfasc residues, including F1202, E1204, and Y1212. Moreover, we show disruption of the AnkG-Nfasc complex abolishes Nfasc enrichment at the AIS in cultured mouse hippocampal neurons. Finally, our structural and biochemical analysis indicated that L1 syndrome-associated mutations in L1CAM, a member of the L1 immunoglobulin family proteins including Nfasc, L1CAM, NrCAM, and CHL1, compromise binding with ankyrins. Taken together, these results define the mechanisms underlying AnkG-Nfasc complex formation and show that AnkG-dependent clustering of Nfasc is required for AIS integrity.


Asunto(s)
Repetición de Anquirina , Ancirinas , Segmento Inicial del Axón , Moléculas de Adhesión Celular , Factores de Crecimiento Nervioso , Animales , Ancirinas/química , Segmento Inicial del Axón/química , Sitios de Unión , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Cristalografía por Rayos X , Ratones , Factores de Crecimiento Nervioso/química , Factores de Crecimiento Nervioso/genética , Molécula L1 de Adhesión de Célula Nerviosa/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Dominios Proteicos
3.
Metab Brain Dis ; 38(7): 2369-2381, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37256467

RESUMEN

Neuropsychiatric disorders have a high incidence worldwide. Kinesins, a family of microtubule-based molecular motor proteins, play essential roles in intracellular and axonal transport. Variants of kinesins have been found to be related to many diseases, including neurodevelopmental/neurodegenerative disorders. Kinesin-12 (also known as Kif15) was previously found to affect the frequency of both directional microtubule transports. However, whether Kif15 deficiency impacts mood in mice is yet to be investigated. In this study, we used the CRISPR/Cas9 method to obtain Kif15-/- mice. In behavioral tests, Kif15-/- female mice exhibited prominent depressive characteristics. Further studies showed that the expression of BDNF was significantly decreased in the frontal cortex, corpus callosum, and hippocampus of Kif15-/- mice, along with the upregulation of Interleukin-6 and Interleukin-1ß in the corpus callosum. In addition, the expression patterns of AnkG were notably changed in the developing brain of Kif15-/- mice. Based on our previous studies, we suggested that this appearance of altered AnkG was due to the maladjustment of the microtubule patterns induced by Kif15 deficiency. The distribution of PSD95 in neurites notably decreased after cultured neurons treated with the Kif15 inhibitor, but total PSD95 protein level was not impacted, which revealed that Kif15 may contribute to PSD95 transportation. This study suggested that Kif15 may serve as a potential target for future depression studies.


Asunto(s)
Depresión , Cinesinas , Animales , Femenino , Ratones , Depresión/genética , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo
4.
J Biol Chem ; 296: 100507, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33675749

RESUMEN

Cardiovascular disease (CVD) remains the most common cause of adult morbidity and mortality in developed nations. As a result, predisposition for CVD is increasingly important to understand. Ankyrins are intracellular proteins required for the maintenance of membrane domains. Canonical ankyrin-G (AnkG) has been shown to be vital for normal cardiac function, specifically cardiac excitability, via targeting and regulation of the cardiac voltage-gated sodium channel. Noncanonical (giant) AnkG isoforms play a key role in neuronal membrane biogenesis and excitability, with evidence for human neurologic disease when aberrant. However, the role of giant AnkG in cardiovascular tissue has yet to be explored. Here, we identify giant AnkG in the myocardium and identify that it is enriched in 1-week-old mice. Using a new mouse model lacking giant AnkG expression in myocytes, we identify that young mice displayed a dilated cardiomyopathy phenotype with aberrant electrical conduction and enhanced arrhythmogenicity. Structural and electrical dysfunction occurred at 1 week of age, when giant AnkG was highly expressed and did not appreciably change in adulthood until advanced age. At a cellular level, loss of giant AnkG results in delayed and early afterdepolarizations. However, surprisingly, giant AnkG cKO myocytes display normal INa, but abnormal myocyte contractility, suggesting unique roles of the large isoform in the heart. Finally, transcript analysis provided evidence for unique pathways that may contribute to the structural and electrical findings shown in giant AnkG cKO animals. In summary, we identify a critical role for giant AnkG that adds to the diversity of ankyrin function in the heart.


Asunto(s)
Corazón/fisiología , Miocitos Cardíacos/fisiología , Neuronas/fisiología , Proteínas de Transporte de Fosfato/fisiología , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Ratones Noqueados , Miocitos Cardíacos/citología , Neuronas/citología
5.
J Biol Chem ; 297(2): 100958, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34274317

RESUMEN

Nephrotic syndrome (NS) is a common kidney disorder caused by dysfunction of the glomerular filtration barrier. Some genetic mutations identified in NS patients cause amino acid substitutions of kidney ankyrin repeat-containing (KANK) proteins, which are scaffold proteins that regulate actin polymerization, microtubule targeting, and cell adhesion via binding to various molecules, including the kinesin motor protein KIF21A. However, the mechanisms by which these mutations lead to NS are unclear. Here, we unexpectedly found that the eukaryotic translation initiation factor 4A1 (eIF4A1) interacts with an NS-associated KANK2 mutant (S684F) but not the wild-type protein. Biochemical and structural analyses revealed that the pathological mutation induces abnormal binding of eIF4A1 to KANK2 at the physiological KIF21A-binding site. Competitive binding assays further indicated that eIF4A1 can compete with KIF21A to interact with the S684F mutant of KANK2. In cultured mouse podocytes, this S684F mutant interfered with the KANK2/KIF21A interaction by binding to eIF4A1, and failed to rescue the focal adhesion or cell adhesion that had been reduced or morphologically changed by KANK2 knockout. These structural, biochemical, and cellular results not only provide mechanistic explanations for the podocyte defects caused by the S684F mutation, but also show how a gain-of-binding mutation can lead to a loss-of-function effect.


Asunto(s)
Cinesinas , Síndrome Nefrótico , Animales , Adhesión Celular , Línea Celular , Proteínas del Citoesqueleto/metabolismo , Adhesiones Focales/metabolismo , Cinesinas/metabolismo , Ratones , Microtúbulos/metabolismo , Mutación , Podocitos/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(39): 19717-19726, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31451636

RESUMEN

Giant ankyrin-G (gAnkG) coordinates assembly of axon initial segments (AISs), which are sites of action potential generation located in proximal axons of most vertebrate neurons. Here, we identify a mechanism required for normal neural development in humans that ensures ordered recruitment of gAnkG and ß4-spectrin to the AIS. We identified 3 human neurodevelopmental missense mutations located in the neurospecific domain of gAnkG that prevent recruitment of ß4-spectrin, resulting in a lower density and more elongated pattern for gAnkG and its partners than in the mature AIS. We found that these mutations inhibit transition of gAnkG from a closed configuration with close apposition of N- and C-terminal domains to an extended state that is required for binding and recruitment of ß4-spectrin, and normally occurs early in development of the AIS. We further found that the neurospecific domain is highly phosphorylated in mouse brain, and that phosphorylation at 2 sites (S1982 and S2619) is required for the conformational change and for recruitment of ß4-spectrin. Together, these findings resolve a discrete intermediate stage in formation of the AIS that is regulated through phosphorylation of the neurospecific domain of gAnkG.


Asunto(s)
Ancirinas/genética , Segmento Inicial del Axón/metabolismo , Citoesqueleto de Actina/metabolismo , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Ancirinas/metabolismo , Segmento Inicial del Axón/fisiología , Axones/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Ratones Noqueados , Mutación , Neuronas/metabolismo , Vertebrados/metabolismo
7.
Neurogenetics ; 22(4): 263-269, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34218362

RESUMEN

ANK3 encodes multiple isoforms of ankyrin-G, resulting in variegated tissue expression and function, especially regarding its role in neuronal development. Based on the zygosity, location, and type, ANK3 variants result in different neurodevelopmental phenotypes. Autism spectrum disorder has been associated with heterozygous missense variants in ANK3, whereas a more severe neurodevelopmental phenotype is caused by isoform-dependent, autosomal-dominant, or autosomal-recessive loss-of-function variants. Here, we present four individuals affected by a variable neurodevelopmental phenotype harboring a heterozygous frameshift or nonsense variant affecting all ANK3 transcripts. Thus, we provide further evidence of an isoform-based phenotypic continuum underlying ANK3-associated pathologies and expand its phenotypic spectrum.


Asunto(s)
Ancirinas/genética , Trastorno del Espectro Autista/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Niño , Humanos , Pérdida de Heterocigocidad , Masculino , Mutación Missense/genética , Fenotipo , Isoformas de Proteínas/genética
8.
J Cell Sci ; 132(18)2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31427429

RESUMEN

Nup358 (also known as RanBP2) is a member of the large nucleoporin family that constitutes the nuclear pore complex. Depending on the cell type and the physiological state, Nup358 interacts with specific partner proteins and influences distinct mechanisms independent of its role in nucleocytoplasmic transport. Here, we provide evidence that Nup358 associates selectively with the axon initial segment (AIS) of mature neurons, mediated by the AIS scaffold protein ankyrin-G (AnkG, also known as Ank3). The N-terminus of Nup358 is demonstrated to be sufficient for its localization at the AIS. Further, we show that Nup358 is expressed as two isoforms, one full-length and another shorter form of Nup358. These isoforms differ in their subcellular distribution in neurons and expression level during neuronal development. Overall, the present study highlights an unprecedented localization of Nup358 within the AIS and suggests its involvement in neuronal function.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Ancirinas/metabolismo , Axones/metabolismo , Embrión de Mamíferos/metabolismo , Chaperonas Moleculares/metabolismo , Neuronas/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Animales , Ancirinas/genética , Western Blotting , Células HeLa , Humanos , Inmunoprecipitación , Ratones , Chaperonas Moleculares/genética , Proteínas de Complejo Poro Nuclear/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
9.
Biochem Biophys Res Commun ; 578: 28-34, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34534742

RESUMEN

Alzheimer's disease (AD) is the most frequent neurodegenerative disease and a common dementia in elderly individuals. Previous studies found a strong correlation between axon initial segment (AIS) defects and AD, but it remains unclear whether AD itself changes the arrangement of AIS components, and the mechanisms by which adaptor proteins and ion channels in the AIS are disturbed in AD are not well understood. With super-resolution structured illumination microscopy (SIM) revealing axonal structures, here we imaged the lattice structure of completely assembled AIS in APP/PS1 neurons. By analyzing the images with Gaussian fitting and 1D mean autocorrelation, we found dual spacings (∼200 nm and ∼370 nm) of Ankyrin-G (AnkG), Nav1.2 and ßIV-spectrin in AD model APP/PS1 mice due to the low-expressed 480-kDa AnkG. To identify the roles of each AnkG isoform, two isoforms were separately expressed in neurons from AnkG conditional knockout mice. Mice rescued with 270-kDa AnkG displayed dual spacings of AnkG components in cultured neurons and impaired in spatial memory, while transgenic mice expressing 480-kDa AnkG showed a normal molecular distribution in the AIS and normal cognitive performance. Our findings provide new insight into the mechanisms underlying impaired cognition associated with neurodegenerative diseases such as AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Ancirinas/metabolismo , Axones/patología , Cognición/fisiología , Proteínas del Tejido Nervioso/metabolismo , Espectrina/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Ancirinas/genética , Axones/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Noqueados , Microscopía , Proteínas del Tejido Nervioso/genética , Isoformas de Proteínas , Espectrina/genética
10.
Europace ; 23(5): 775-780, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33324992

RESUMEN

AIMS: The early repolarization syndrome (ERS) can cause ventricular fibrillation (VF) and sudden death in young, otherwise healthy individuals. There are limited data suggesting that ERS might be heritable. The aim of this study was to characterize the clinical phenotype and to identify a causal variant in an affected family using an exome-sequencing approach. METHODS AND RESULTS: Early repolarization syndrome was diagnosed according to the recently proposed Shanghai ERS Score. After sequencing of known ERS candidate genes, whole-exome sequencing (WES) was performed. The index patient (23 years, female) showed a dynamic inferolateral early repolarization (ER) pattern and electrical storm with intractable VF. Isoproterenol enabled successful termination of electrical storm with no recurrence on hydroquinidine therapy during 33 months of follow-up. The index patient's brother (25 years) had a persistent inferior ER pattern with malignant features and a history of syncope. Both parents were asymptomatic and showed no ER pattern. While there was no pathogenic variant in candidate genes, WES detected a novel missense variant affecting a highly conserved residue (p. H2245R) in the ANK3 gene encoding Ankyrin-G in the two siblings and the father. CONCLUSION: We identified two siblings with a malignant ERS phenotype sharing a novel ANK3 variant. A potentially pathogenic role of the novel ANK3 variant is suggested by the direct interaction of Ankyrin-G with the cardiac sodium channel, however, more patients with ANK3 variants and ERS would be required to establish ANK3 as novel ERS susceptibility gene. Our study provides additional evidence that ERS might be a heritable condition.


Asunto(s)
Electrocardiografía , Hermanos , Adulto , China , Femenino , Humanos , Masculino , Fibrilación Ventricular/diagnóstico , Fibrilación Ventricular/genética , Secuenciación del Exoma , Adulto Joven
11.
Dev Biol ; 446(1): 119-131, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30562487

RESUMEN

Epithelial cell polarity, adhesion, proliferation, differentiation and survival are essential for morphogenesis of various organs and tissues including the ocular lens. The molecular mechanisms regulating the lens epithelial phenotype however, are not well understood. Here we investigated the role of scaffolding protein ankyrin-G (AnkG) in mouse lens development by conditional suppression of AnkG expression using the Cre-LoxP recombination approach. AnkG, which serves to link integral membrane proteins to the spectrin/actin cytoskeleton, was found to distribute predominantly to the lateral membranes of lens epithelium with several isoforms of the protein being detected in the mouse lens. Conditional deficiency of AnkG impaired mouse lens morphogenesis starting from embryonic stage E15.5, with neonatal (P1) AnkG cKO lenses exhibiting overt abnormalities in shape, size, epithelial cell height, sheet length and lateral membrane assembly together with defective fiber cell orientation relative to lenses from littermate AnkG floxed or Cre expressing mice. Severe disruptions in E-cadherin/ß-catenin-based adherens junctions, and the membrane organization of spectrin-actin cytoskeleton, ZO-1, connexin-50 and Na+-K+-ATPase were noted in AnkG deficient lenses, along with detection in lens epithelium of α-smooth muscle actin, a marker of epithelial to mesenchymal transition. Moreover, lens epithelial cell proliferation and survival were severely compromised while differentiation appears to be normal in AnkG deficient mouse lenses. Collectively, these results indicate that AnkG regulates establishment of the epithelial phenotype via lateral membrane assembly, stabilization of E-cadherin-based cell-cell junctions, polarity and membrane organization of transport and adhesion proteins and the spectrin-actin skeleton, and provide evidence for an obligatory role for AnkG in lens morphogenesis and growth.


Asunto(s)
Ancirinas/genética , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cristalino/metabolismo , Morfogénesis/genética , Animales , Animales Recién Nacidos , Ancirinas/deficiencia , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular/genética , Polaridad Celular/genética , Transición Epitelial-Mesenquimal/genética , Epitelio/embriología , Epitelio/metabolismo , Cristalino/embriología , Cristalino/crecimiento & desarrollo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fenotipo
12.
Proc Natl Acad Sci U S A ; 114(1): 154-159, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27994149

RESUMEN

KCNQ2/3 (Kv7.2/7.3) channels and voltage-gated sodium channels (VGSCs) are enriched in the axon initial segment (AIS) where they bind to ankyrin-G and coregulate membrane potential in central nervous system neurons. The molecular mechanisms supporting coordinated regulation of KCNQ and VGSCs and the cellular mechanisms governing KCNQ trafficking to the AIS are incompletely understood. Here, we show that fibroblast growth factor 14 (FGF14), previously described as a VGSC regulator, also affects KCNQ function and localization. FGF14 knockdown leads to a reduction of KCNQ2 in the AIS and a reduction in whole-cell KCNQ currents. FGF14 positively regulates KCNQ2/3 channels in a simplified expression system. FGF14 interacts with KCNQ2 at a site distinct from the FGF14-VGSC interaction surface, thus enabling the bridging of NaV1.6 and KCNQ2. These data implicate FGF14 as an organizer of channel localization in the AIS and provide insight into the coordination of KCNQ and VGSC conductances in the regulation of membrane potential.


Asunto(s)
Segmento Inicial del Axón/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Potenciales de la Membrana/fisiología , Ancirinas/metabolismo , Células Cultivadas , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/genética , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Canales de Sodio Activados por Voltaje/metabolismo
13.
Proc Natl Acad Sci U S A ; 112(4): 1214-9, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25552561

RESUMEN

GABAA-receptor-based interneuron circuitry is essential for higher order function of the human nervous system and is implicated in schizophrenia, depression, anxiety disorders, and autism. Here we demonstrate that giant ankyrin-G (480-kDa ankyrin-G) promotes stability of somatodendritic GABAergic synapses in vitro and in vivo. Moreover, giant ankyrin-G forms developmentally regulated and cell-type-specific micron-scale domains within extrasynaptic somatodendritic plasma membranes of pyramidal neurons. We further find that giant ankyrin-G promotes GABAergic synapse stability through opposing endocytosis of GABAA receptors, and requires a newly described interaction with GABARAP, a GABAA receptor-associated protein. We thus present a new mechanism for stabilization of GABAergic interneuron synapses and micron-scale organization of extrasynaptic membrane that provides a rationale for studies linking ankyrin-G genetic variation with psychiatric disease and abnormal neurodevelopment.


Asunto(s)
Ancirinas/metabolismo , Endocitosis , Neuronas GABAérgicas/metabolismo , Células Piramidales/metabolismo , Receptores de GABA-A/metabolismo , Membranas Sinápticas/metabolismo , Animales , Ancirinas/genética , Proteínas Reguladoras de la Apoptosis , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Neuronas GABAérgicas/patología , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Trastornos Mentales/patología , Ratones , Proteínas Asociadas a Microtúbulos , Células Piramidales/patología , Receptores de GABA-A/genética , Membranas Sinápticas/genética , Membranas Sinápticas/patología
14.
Proc Natl Acad Sci U S A ; 112(4): 957-64, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25552556

RESUMEN

Axon initial segments (AISs) and nodes of Ranvier are sites of clustering of voltage-gated sodium channels (VGSCs) in nervous systems of jawed vertebrates that facilitate fast long-distance electrical signaling. We demonstrate that proximal axonal polarity as well as assembly of the AIS and normal morphogenesis of nodes of Ranvier all require a heretofore uncharacterized alternatively spliced giant exon of ankyrin-G (AnkG). This exon has sequence similarity to I-connectin/Titin and was acquired after the first round of whole-genome duplication by the ancestral ANK2/ANK3 gene in early vertebrates before development of myelin. The giant exon resulted in a new nervous system-specific 480-kDa polypeptide combining previously known features of ANK repeats and ß-spectrin-binding activity with a fibrous domain nearly 150 nm in length. We elucidate previously undescribed functions for giant AnkG, including recruitment of ß4 spectrin to the AIS that likely is regulated by phosphorylation, and demonstrate that 480-kDa AnkG is a major component of the AIS membrane "undercoat' imaged by platinum replica electron microscopy. Surprisingly, giant AnkG-knockout neurons completely lacking known AIS components still retain distal axonal polarity and generate action potentials (APs), although with abnormal frequency. Giant AnkG-deficient mice live to weaning and provide a rationale for survival of humans with severe cognitive dysfunction bearing a truncating mutation in the giant exon. The giant exon of AnkG is required for assembly of the AIS and nodes of Ranvier and was a transformative innovation in evolution of the vertebrate nervous system that now is a potential target in neurodevelopmental disorders.


Asunto(s)
Ancirinas , Axones/metabolismo , Evolución Molecular , Exones , Nódulos de Ranvier , Transducción de Señal , Potenciales de Acción/genética , Animales , Ancirinas/genética , Ancirinas/metabolismo , Ratones , Ratones Noqueados , Mutación , Estructura Terciaria de Proteína , Nódulos de Ranvier/genética , Nódulos de Ranvier/metabolismo , Ratas
15.
J Neurosci ; 36(16): 4421-33, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27098687

RESUMEN

The axon initial segment (AIS) is required for generating action potentials and maintaining neuronal polarity. Significant progress has been made in deciphering the basic building blocks composing the AIS, but the underlying mechanisms required for AIS formation remains unclear. The scaffolding protein ankyrin-G is the master-organizer of the AIS. Microtubules and their interactors, particularly end-binding proteins (EBs), have emerged as potential key players in AIS formation. Here, we show that the longest isoform of ankyrin-G (480AnkG) selectively associates with EBs via its specific tail domain and that this interaction is crucial for AIS formation and neuronal polarity in cultured rodent hippocampal neurons. EBs are essential for 480AnkG localization and stabilization at the AIS, whereas 480AnkG is required for the specific accumulation of EBs in the proximal axon. Our findings thus provide a conceptual framework for understanding how the cooperative relationship between 480AnkG and EBs induces the assembly of microtubule-AIS structures in the proximal axon. SIGNIFICANCE STATEMENT: Neuronal polarity is crucial for the proper function of neurons. The assembly of the axon initial segment (AIS), which is the hallmark of early neuronal polarization, relies on the longest 480 kDa ankyrin-G isoform. The microtubule cytoskeleton and its interacting proteins were suggested to be early key players in the process of AIS formation. In this study, we show that the crosstalk between 480 kDa ankyrin-G and the microtubule plus-end tracking proteins, EBs, at the proximal axon is decisive for AIS assembly and neuronal polarity. Our work thus provides insight into the functional mechanisms used by 480 kDa ankyrin-G to drive the AIS formation and thereby to establish neuronal polarity.


Asunto(s)
Ancirinas/metabolismo , Axones/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Axones/ultraestructura , Células COS , Polaridad Celular/fisiología , Células Cultivadas , Chlorocebus aethiops , Femenino , Ratones , Neuronas/metabolismo , Neuronas/ultraestructura , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley
16.
J Neurosci ; 36(7): 2111-8, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26888923

RESUMEN

Auditory nerve excitation and thus hearing depend on spike-generating ion channels and their placement along the axons of auditory nerve fibers (ANFs). The developmental expression patterns and native axonal locations of voltage-gated ion channels in ANFs are unknown. Therefore, we examined the development of heminodes and nodes of Ranvier in the peripheral axons of type I ANFs in the rat cochlea with immunohistochemistry and confocal microscopy. Nodal structures presumably supporting presensory spiking formed between postnatal days 5 (P5) and P7, including Ankyrin-G, NaV1.6, and Caspr. These immature nodal structures lacked low-voltage-activated KV1.1 which was not enriched at juxtaparanodes until approximately P13, concurrent with the developmental onset of acoustic hearing function. Anatomical alignment of ANF spike-initiating heminodes relative to excitatory input from inner hair cell (IHC) ribbon synapses continued until approximately P30. High-voltage-activated KV3.1b and KV2.2 were expressed in mutually exclusive domains: KV3.1b was strictly localized to nodes and heminodes, whereas KV2.2 expression began at the juxtaparanodes and continued centrally along the first internode. At spike-initiating heminodes in the distal osseous spiral lamina, NaV1.1 partly overlapped NaV1.6 and ankyrin-G. ANFs displayed KV7.2 and KV7.3 at heminodes, nodes, internodes, and the unmyelinated synaptic terminal segments beneath IHCs in the organ of Corti. In response to sound, spikes are initiated at the heminode, which is tightly coupled to the IHC ribbon synapse ∼20-40 µm away. These results show that maturation of nodal alignment and ion channel content may underlie postnatal improvements of ANF excitability and discharge synchrony. SIGNIFICANCE STATEMENT: Acoustic and electrical hearing depends on rapid, reliable, and precise spike generation in auditory nerve fibers. A limitation of current models and therapies is a lack of information on the identities and topographies of underlying ion channels. We report the developmental profile of the auditory nerve spike generator with a focus on NaV1.1, NaV1.6, KV1.1, KV2.2, KV3.1b, KV7.2, and KV7.3 in relation to the scaffold ankyrin-G. Molecular anatomy of the spike generator matures in the weeks after developmental onset of hearing function. Subcellular positioning of voltage-gated ion channels will enable multicompartmental modeling of auditory nerve responses elicited by afferent chemical neurotransmission from hair cells and modulated by efferent neurotransmitters or evoked by extracellular field stimulation from a cochlear implant.


Asunto(s)
Nervio Coclear/fisiología , Audición/fisiología , Canales de Potasio/fisiología , Canales de Sodio/fisiología , Animales , Ancirinas/genética , Axones/fisiología , Cóclea/citología , Cóclea/crecimiento & desarrollo , Cóclea/fisiología , Nervio Coclear/crecimiento & desarrollo , Femenino , Células Ciliadas Auditivas Internas/fisiología , Masculino , Fibras Nerviosas/fisiología , Órgano Espiral/crecimiento & desarrollo , Órgano Espiral/fisiología , Terminales Presinápticos/fisiología , Nódulos de Ranvier/fisiología , Ratas , Ratas Wistar , Lámina Espiral/crecimiento & desarrollo , Lámina Espiral/fisiología , Sinapsis/fisiología
17.
J Neurosci ; 34(9): 3443-53, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24573300

RESUMEN

The axon initial segment (AIS) is the site of spike initiation in neurons. Previous studies revealed that spatial distribution of the AIS varies greatly among neurons to meet their specific needs. However, when and how this differentiation arises is unknown. Neurons in the avian nucleus laminaris (NL) are binaural coincidence detectors for sound localization and show differentiation in the distribution of the AIS, with shorter length and a more distal position from the soma with an increase in tuning frequency. We studied these characteristics of the AIS in NL neurons of the chicken during development and found that the AIS differentiates in its distribution after initial formation, and this is driven by activity-dependent and activity-independent mechanisms that differentially regulate distal and proximal boundaries of the AIS. Before hearing onset, the ankyrinG-positive AIS existed at a wide stretch of proximal axon regardless of tuning frequency, but Na+ channels were only partially distributed within the AIS. Shortly after hearing onset, Na+ channels accumulated along the entire AIS, which started shortening and relocating distally to a larger extent in neurons with higher tuning frequencies. Ablation of inner ears abolished the shortening of the AIS without affecting the position of its proximal boundary, indicating that both distal and proximal AIS boundaries are disassembled during development, and the former is dependent on afferent activity. Thus, interaction of these activity-dependent and activity-independent mechanisms determines the cell-specific distribution of the AIS in NL neurons and plays a critical role in establishing the function of sound localization circuit.


Asunto(s)
Vías Auditivas , Axones/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/citología , Potenciales de Acción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Ancirinas/metabolismo , Vías Auditivas/embriología , Vías Auditivas/crecimiento & desarrollo , Vías Auditivas/metabolismo , Embrión de Pollo , Pollos , Núcleo Coclear/citología , Núcleo Coclear/embriología , Núcleo Coclear/crecimiento & desarrollo , Simulación por Computador , Femenino , Técnicas In Vitro , Masculino , Modelos Neurológicos , Glicoproteína Asociada a Mielina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Fosfopiruvato Hidratasa/metabolismo
18.
bioRxiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38948770

RESUMEN

The axon initial segment (AIS) constitutes not only the site of action potential initiation, but also a hub for activity-dependent modulation of output generation. Recent studies shedding light on AIS function used predominantly post-hoc approaches since no robust murine in vivo live reporters exist. Here, we introduce a reporter line in which the AIS is intrinsically labeled by an ankyrin-G-GFP fusion protein activated by Cre recombinase, tagging the native Ank3 gene. Using confocal, superresolution, and two-photon microscopy as well as whole-cell patch-clamp recordings in vitro, ex vivo, and in vivo, we confirm that the subcellular scaffold of the AIS and electrophysiological parameters of labeled cells remain unchanged. We further uncover rapid AIS remodeling following increased network activity in this model system, as well as highly reproducible in vivo labeling of AIS over weeks. This novel reporter line allows longitudinal studies of AIS modulation and plasticity in vivo in real-time and thus provides a unique approach to study subcellular plasticity in a broad range of applications.

19.
Pathol Res Pract ; 255: 155164, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38324966

RESUMEN

Confirmatory diagnosis of celiac disease (CD) include histopathology of duodenal biopsy and tissue trans-glutaminase-IgA. Identification of tissue-specific histological markers is warranted to improve the diagnosis. A genetic study in CD identified the association of ankyrin-G that connects E-cadherin with ß2-spectrin in epithelial cells of the duodenal tissue. We attempted to investigate the differential expression of ankyrin-G, E-cadherin and ß2-spectrin in duodenal biopsy of CD subjects compared to non-CD controls. Duodenal tissue was collected from 83 study participants, of which 50 were CD, and 33 were non-CD controls. Whole RNA was isolated from 32 CD and 23 non-CD controls from available tissues, and differential mRNA expression was measured using real-time PCR. Tissue sections from 18 CD cases and 10 non-CD controls were immunostained using monoclonal antibodies. Tissue immunohistochemistry were evaluated for differential expression and pattern of expression. RT-PCR revealed significantly reduced expression of ankyrin-G (fold change=0.63; p=0.03) and E-cadherin (fold change=0.50; p=0.02) among CD subjects compared to non-CD controls. Tissue immunohistochemistry confirmed the reduced expression of ankyrin-G and E-cadherin in CD. Differential expression is grossly limited within the outer columnar epithelial cell layer. Expression fold change of E-cadherin was seen to partially correlate with the serum tTG level (r=0.4; p=0.04). In CD, reduced expression of two key cytoskeletal proteins (ankyrin-G and E-cadherin) in duodenum mucosa was observed, which indicates its implication in disease biology and could be tested as a tissue-specific biomarker for CD. Functional studies may unravel the specific contribution of these proteins in CD pathophysiology.


Asunto(s)
Enfermedad Celíaca , Humanos , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/patología , Ancirinas , Espectrina , Transglutaminasas/metabolismo , Duodeno/patología , Biopsia , Mucosa Intestinal/patología , Cadherinas
20.
Neurobiol Dis ; 60: 61-79, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23969238

RESUMEN

Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed.


Asunto(s)
Axones/metabolismo , Axones/patología , Calpaína/fisiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Humanos , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA