Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
BMC Plant Biol ; 24(1): 415, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760683

RESUMEN

Globe artichoke (Cynara cardunculus var. scolymus; 2n = 2x = 34) is a food crop consumed for its immature flower heads. Traditionally, globe artichoke varietal types are vegetatively propagated. However, seed propagation makes it possible to treat the crop as annual, increasing field uniformity and reducing farmers costs, as well as pathogens diffusion. Despite globe artichoke's significant agricultural value and the critical role of heterosis in the development of superior varieties, the production of hybrids remains challenging without a reliable system for large-scale industrial seed production. Male sterility (MS) presents a promising avenue for overcoming these challenges by simplifying the hybridization process and enabling cost-effective seed production. However, within the Cynara genus, genic male sterility has been linked to three recessive loci in globe artichoke, with no definitive genetic mechanism elucidated to date. A 250 offsprings F2 population, derived from a cross between a MS globe artichoke and a male fertile (MF) cultivated cardoon (C. cardunculus var. altilis) and fitting a monogenic segregation model (3:1), was analyzed through BSA-seq, aiming at the identification of genomic regions/genes affecting male sterility. Four QTL regions were identified on chromosomes 4, 12, and 14. By analyzing the sequence around the highest pick on chromosome 14, a cytochrome P450 (CYP703A2) was identified, carrying a deleterious substitution (R/Q) fixed in the male sterile parent. A single dCAPS marker was developed around this SNP, allowing the discrimination between MS and MF genotypes within the population, suitable for applications in plant breeding programs. A 3D model of the protein was generated by homology modeling, revealing that the mutated amino acid is part of a highly conserved motif crucial for protein folding.


Asunto(s)
Cynara scolymus , Infertilidad Vegetal , Polen , Infertilidad Vegetal/genética , Cynara scolymus/genética , Polen/genética , Genoma de Planta , Genes de Plantas
2.
Chem Biodivers ; 21(4): e202400203, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38407466

RESUMEN

Wild cardoon (Cynara cardunculus var. sylvestris) is the ancestor of many cultivated forms, including globe artichoke (C. cardunculus var. scolymus). Four organs (receptacles, bracts, leaves and stems) of wild and cultivated artichokes (organic and conventional) were assessed considering their individual phenolic constituents (HPLC-DAD), total phenol-flavonoid content, and pharmaceutical potentials (antibacterial and antioxidant). All three sources of artichokes had the highest concentration of 1,3-dicaffeoylquinic acid (cynarin) in their receptacles and cultivated artichoke receptacles had more cynarin than wild one. On the other hand, receptacles of wild cardoon had the highest 1,5-dicaffeoylquinic acid and caffeic acid than the cultivated ones. Generally, receptacles, stems and leaves of wild cardoon were superior to both cultivated artichokes on antioxidant potential, and total phenol-flavonoid content. The rise in total phenolic content can be attributed to an increase in antioxidant capacity in all artichoke organs. Only the leaves of all different artichokes showed antibacterial activity against Gram-positive bacteria. The investigated wild cardoon was believed to be a true ancestor since a comparison of wild and cultivated varieties revealed similar trends in terms of phenolic profile and biological properties. The nutraceutical industry can profit from this invasive wild cardoon due to their strong antioxidant potential and phenolic content.


Asunto(s)
Cinamatos , Cynara scolymus , Cynara , Fenoles , Antibacterianos/farmacología , Antioxidantes/farmacología , Cynara/química , Cynara scolymus/química , Suplementos Dietéticos/análisis , Flavonoides/farmacología , Fenoles/análisis , Fenoles/química , Fenoles/farmacología
3.
Environ Toxicol ; 39(3): 1666-1681, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38031637

RESUMEN

The prevalence of chronic kidney disease (CKD) is in progress that causes kidney failure, leading to global problems. This manuscript investigated the nephroprotective effects of chicory (CLE) and/or artichoke (ALE) leaves extracts on carbon tetrachloride (CCl4 ) and gamma-irradiation (Rad)-induced chronic nephrotoxicity in rats. Rats were divided into 10 groups (10 animals/group): group 1: control, groups 2-7 rats were treated with CLE, ALE, CLE/ALE, CCl4 , Rad, and CCl4 /Rad, respectively. Groups 8 to 10, rats were intoxicated with CCl4 /Rad, and treated with CLE, ALE, and CLE/ALE extracts, respectively, for 4 weeks. The data demonstrated that CCl4 administration or Rad exposure induced high levels of urea and creatinine, with low levels of total protein and albumin in the serum. However, high levels of malondialdehyde (MDA), nitric oxide (NO), hydrogen peroxide (H2 O2 ), some pro-inflammatory markers such as interleukins (IL-1ß, IL-2, IL-6), TNF-α, NF-κB, the fibrotic marker; TGF-ß1, calcium, and copper, low contents of reduced glutathione (GSH), iron, and zinc, and suppression of the antioxidant enzymes' activity, superoxide dismutase (SOD), and catalase (CAT) were observed. In addition, the Wnt and ß-catenin protein expression ratios were up-regulated in the kidney tissues of the CCl4 , and Rad intoxicated animals. However, the combined treatment CCl4 /Rad augmented these measurements. On the other hand, CLE, ALE, and CLE/ALE treatments demonstrated nephroprotection in the kidney tissues of CCl4 /Rad intoxicated animals, in the order of CLE/ALE>ALE>CLE by ameliorating the investigated parameters. Kidney tissues' histopathological examinations confirmed these results. In conclusion, CLE and/or ALE demonstrated nephroprotection against CCl4 /Rad co-toxicity mediated by down-regulation of renal Wnt/ß-catenin protein expressions.


Asunto(s)
Cichorium intybus , Cynara scolymus , Insuficiencia Renal , Ratas , Animales , Tetracloruro de Carbono/toxicidad , Estrés Oxidativo , Cynara scolymus/metabolismo , Antioxidantes/metabolismo , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología , Extractos Vegetales/farmacología , Cateninas/metabolismo , Cateninas/farmacología , Hígado
4.
Molecules ; 29(18)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39339392

RESUMEN

The utilization of biomass ash in sustainable agriculture and increasing its fertilizing efficiency by biological agents, potentially sequestering CO2, have become important issues for the global economy. The aim of this paper was to investigate the effects of ash from sorghum (Sorghum bicolor L. Moench) and Jerusalem artichoke (Helianthus tuberosus L.) biomass, a biogas plant digestate, and a Spirodela polyrhiza extract, acting alone or synergistically, on soil fertility and the development, health and physiological properties of sorghum plants. The results show novel information concerning differences in the composition and impact of ash, depending on its origin, soil properties and sorghum plant development. Sorghum ash was more effective than that from Jerusalem artichoke. Ash used alone and preferably acting synergistically with the digestate and Spirodela polyrhiza extract greatly increased soil fertility and the growth, biomass yield and health of sorghum plants. These improvements were associated with an increased chlorophyll content in leaves, better gas exchange (photosynthesis, transpiration, stomatal conductance), greater enzyme activity (acid and alkaline phosphatase, RNase, and total dehydrogenase), and a higher biomass energy value. The developed treatments improved environmental conditions by replacing synthetic fertilizers, increasing the sequestration of CO2, solving the ash storage problem, reducing the need for pesticides, and enabling a closed circulation of nutrients between plant and soil, maintaining high soil fertility.


Asunto(s)
Biomasa , Dióxido de Carbono , Fertilizantes , Extractos Vegetales , Sorghum , Sorghum/crecimiento & desarrollo , Sorghum/metabolismo , Dióxido de Carbono/metabolismo , Extractos Vegetales/química , Suelo/química , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Fotosíntesis , Helianthus/crecimiento & desarrollo , Helianthus/metabolismo , Clorofila/metabolismo , Biocombustibles , Hojas de la Planta/metabolismo , Hojas de la Planta/química
5.
Plant Foods Hum Nutr ; 79(3): 617-623, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38907946

RESUMEN

Fermented plant-based products are rapidly gaining popularity. Jerusalem artichoke is a medicinal plant that can be used to make fermented beverages. Samples were subjected to pretreatment (ultrasound at 35 kHz for 2, 4, and 6 min, freezing at -80 °C and -17 °C) while an untreated sample was used as control. It was shown that all types of pretreatments did not lead to an increase in protein, solids, polyphenols, and carbohydrates compared to the control sample. The greatest decrease in the values of these indicators occurs when pre-freezing tubers are used for Jerusalem artichoke dispersion production. It was also found that samples frozen at -80 °C had a significantly higher concentration of Ca, Si, Mg, and P whereas untreated samples frozen at -17 °C had more Al, K, Cu, Sr, and Cr. The processing method can affect the sensory descriptors of Jerusalem artichoke tuber dispersions to different extents, but the preference was for the control sample without pre-treatment. The fermentation of Jerusalem artichoke tuber dispersions demonstrated that S. thermophilus induced the most rapid fermentation (pH 4.75 in 5 h). The highest antioxidant activity after fermentation (55.39% FRSA) was shown for L. acidophilus H9, while the highest % FRSA value during the storage period was for L. bulgaricus (67.5%) on day 5 after fermentation. The highest viability among all selected microorganisms was detected for L. bulgaricus, L. acidophilus AT-41, and B. coagulans MTCC 5856 with the increase in biomass content by 2.3, 2.27, and 2.12 log10CFU/ml after fermentation. According to the results of sensory evaluation using hybrid hedonic scale the best results were shown for samples fermented with L. bulgaricus.


Asunto(s)
Fermentación , Manipulación de Alimentos , Helianthus , Tubérculos de la Planta , Helianthus/química , Tubérculos de la Planta/química , Tubérculos de la Planta/microbiología , Manipulación de Alimentos/métodos , Antioxidantes/análisis , Ácido Láctico/metabolismo , Polifenoles/análisis , Bebidas/análisis , Humanos , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Propionatos/metabolismo
6.
Biol Pharm Bull ; 46(11): 1576-1582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37914360

RESUMEN

Chinese artichoke tuber (Stachys sieboldii Miq.) is used as an herbal medicine as well as edible food. This study examined the effect of the Chinese artichoke extracts on the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway that induces the expression of antioxidant enzymes to explore its novel characteristics. Hot water extracts exhibited relatively high ARE activity. ARE activity was observed in two fractions when the hot water extracts were separated in the presence of trifluoroacetic acid using HPLC. Conversely, the highly active fraction disappeared when the hot water extracts were separated in the absence of trifluoroacetic acid. These results indicate that acidic degradation produces active ingredients. The structural analysis of the two active fractions identified harpagide, which is an iridoid glucoside, and harpagogenin. In vitro experiments revealed that harpagide was converted into harpagogenin under acidic conditions and that harpagogenin, but not harpagide, had potent ARE activity. Therefore, this study identified harpagogenin, which is an acid hydrolysate of harpagide, as an ARE activator and suggests that Nrf2-ARE pathway activation by Chinese artichoke contributes to the antioxidative effect.


Asunto(s)
Stachys , Elementos de Respuesta Antioxidante , Antioxidantes/farmacología , Factor 2 Relacionado con NF-E2 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Stachys/química , Ácido Trifluoroacético , Agua
7.
Drug Chem Toxicol ; 46(6): 1070-1082, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36196508

RESUMEN

This study was conducted to investigate the protective potential of a pharmaceutically formulated capsule of artichoke leaf powder (ArLP) against aflatoxin B1 (AFB1)-induced hepatotoxicity in male albino rats. In the 42-day experiment, rats were divided into five equal groups: (i) control, treated with sterile water, (ii) treated with 4% DMSO as AFB1 vehicle, (iii) ArLP of 100 mg kg-1 bw, (iv) AFB1 of 72 µg kg-1 bw, and (v) AFB1 plus ArLP. Exposure of rats to AFB1 resulted in hepatotoxicity as manifested by the intensification of oxidative stress, production of free radicals and significant increase in the activity levels of liver function enzymes relative to the control. Significant reductions in both the enzymatic and non-enzymatic antioxidant markers as well as histopathological abnormalities in liver tissues were also observed. Notably, the combined administration of ArLP with AFB1 clearly reduced AFB1-mediated adverse effects leading to the normalization of most of these parameters back to control levels. These findings clearly highlight the potential benefits of artichoke dietary supplements as a safe and natural solution in counteracting the adverse hepatotoxic effects conferred by AFB1 exposure. Further research is warranted to fully dissect the biochemical and molecular mechanism of action of the observed artichoke-mediated hepatoprotection.


Asunto(s)
Aflatoxina B1 , Cynara scolymus , Suplementos Dietéticos , Extractos Vegetales , Animales , Ratas , Aflatoxina B1/toxicidad , Cynara scolymus/química , Hojas de la Planta/química , Ratas Wistar , Masculino , Extractos Vegetales/administración & dosificación , Hígado/efectos de los fármacos
8.
Prep Biochem Biotechnol ; 53(1): 101-107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36264232

RESUMEN

Jerusalem artichoke (JA) is a nutritional vegetable for human diet depending on its natural structure, especially high inulin content and it is the second inulin source for commercial production in the world, after chicory. It was aimed to investigate the inulinase production capability of Galactomyces geotrichum TS61 (GenBank accession: MN749818) using JA as an economical and effective substrate comparing with the pure chicory inulin and to optimize the fermentation using Taguchi design of experiment (DOE) in this study. Besides, the effects of sucrose on inulinase production either combined with JA or in its absence were also studied. Taguchi L16 orthogonal array was employed for optimization. Both of inulinase activities obtained from JA and pure inulin gave the maximum result at the 10th experimental run as 40.21 U/mL and 57.35 U/mL, respectively. The optimum levels were detected for each factor as, 30 g/L JA, 30 g/L sucrose, pH 5.5, and four days for time. The predicted value was found as 41.63 U/mL that was similar to the obtained result as 41.17 U/mL. Finally, inulinase activity was increased approximately 8-folds after optimization. The sucrose-free medium had similar effects with higher concentrations of JA at long incubation time. This is the first investigation about inulinase production by G. geotrichum.


Low-cost inulinase production was achieved using an economical substrateSucrose effects were investigated in detail on inulinase productionUse of Taguchi DOE supported effective enzyme production.


Asunto(s)
Cichorium intybus , Helianthus , Humanos , Inulina , Glicósido Hidrolasas , Sacarosa
9.
Molecules ; 28(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36771031

RESUMEN

The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and florets for cauliflower only) as a prerequisite for their valorization and future implementations. The metabolite profile of aqueous and organic extracts of byproducts was analyzed using the NMR-based metabolomics approach. Free amino acids, organic acids, sugars, polyols, polyphenols, amines, glucosinolates, fatty acids, phospho- and galactolipids, sterols, and sesquiterpene lactones were identified and quantified. In particular, globe artichoke byproducts are a source of health-beneficial compounds including chiro-inositol (up to 10.1 mg/g), scyllo-inositol (up to 1.8 mg/g), sesquiterpene lactones (cynaropicrin, grosheimin, dehydrocynaropicrin, up to 45.5 mg/g in total), inulins, and chlorogenic acid (up to 7.5 mg/g), whereas cauliflower byproducts enclose bioactive sulfur-containing compounds S-methyl-L-cysteine S-oxide (methiin, up to 20.7 mg/g) and glucosinolates. A variable content of all metabolites was observed depending on the crop type (globe artichoke vs. cauliflower) and the plant part (leaves vs. stalks). The results here reported can be potentially used in different ways, including the formulation of new plant biostimulants and food supplements.


Asunto(s)
Cynara scolymus , Sesquiterpenos , Cynara scolymus/química , Fenoles/química , Conservación de los Recursos Energéticos , Glucosinolatos/metabolismo , Lactonas/química , Sesquiterpenos/química , Extractos Vegetales/química
10.
Molecules ; 28(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37513230

RESUMEN

The formation of water-insoluble complexes between chitosan (ChS) and caffeoylquinic acid (CQ) derivatives present in artichoke (AE) and green coffee bean (GCBE) extracts was investigated by the equilibrium adsorption method. The UPLC/HPLC analysis revealed that the phenolic compounds accounted for 8.1% and 74.6% of AE and GCBE respectively, and CQ derivatives were the predominant compounds. According to the applied Langmuir adsorption model, anionic compounds present in natural extracts were adsorbed onto the active centers of ChS, i.e., primary amino groups. The driving forces of adsorption were electrostatic interactions between cationic groups of ChS and anionic compounds of natural extracts. Chromatographic analysis revealed that not only CQ derivatives, but also other phenolic compounds of natural extracts were attached to ChS. The release of adsorbed compounds into different media as well as the bioactive properties of complexes were also studied. With the immobilization of bioactives onto ChS, increased and prolonged ABTS•+ radical scavenging activity and decreased antifungal activity against Fusarium graminearum and Botrytis cinerea were observed compared to those of ChS. The findings of the current study highlight that the adsorption approach could be used to successfully prepare water-insoluble complexes of ChS and components of natural extracts with prolonged antioxidant activity.


Asunto(s)
Quitosano , Coffea , Cynara scolymus , Extractos Vegetales/farmacología , Extractos Vegetales/química , Coffea/química , Cynara scolymus/química , Antioxidantes/química , Fenoles/análisis , Agua
11.
J Sci Food Agric ; 103(5): 2564-2573, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36600680

RESUMEN

BACKGROUND: Artichoke (Cynara scolymus L.) bracts are agricultural wastes formed during artichoke processing. Artichoke bracts are used in fermented cereal soup tarhana to replace 10%, 20%, and 30% of wheat flour and functional, powder, sensory properties and volatile compounds of tarhana samples were investigated. RESULTS: The use of artichoke bracts in tarhana increased total (8.37-17.17 g/100 g) and insoluble dietary fiber (5.84-14.09 g/100 g), total phenolic content (2.88-3.62 mg GAE/g), and antioxidant activity (3.07-3.86 µmol TE/g) values. Replacement of wheat flour by artichoke bracts resulted in lower L*, a*, and b* values. While water absorption capacity increased, oil absorption capacity and emulsifying activity were not affected by artichoke bracts replacement. Artichoke bracts replacement in tarhana influenced powder characteristics as, decrease in bulk density, increase in Carr index, wettability, and dispersibility values. Volatiles from terpene are most abundant (64.47-27.17 mg/kg) in tarhana containing artichoke bracts, followed by volatiles from ester (42.91-25.85 mg/kg). Limonene was the main volatile compound of tarhana samples. CONCLUSION: Sensory acceptable tarhana was obtained when up to 30% artichoke bracts were used as wheat flour replacer in tarhana. The contribution to sustainability was achieved, and a healthier tarhana rich in dietary fiber was obtained by using artichoke bracts in tarhana. © 2023 Society of Chemical Industry.


Asunto(s)
Cynara scolymus , Cynara scolymus/química , Grano Comestible , Polvos , Harina , Triticum/química , Fibras de la Dieta
12.
J Anim Physiol Anim Nutr (Berl) ; 107(3): 920-927, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36245301

RESUMEN

This study aimed to examine the impact of the Jerusalem Artichoke extract (JAEx) as a feed additive on the performance, blood biochemistry, antioxidant indices, immunity, and intestinal microbiota in growing Japanese quails. In total, 270 birds were randomly divided into three groups, with six replicates of 15 birds each. The first group was fed a control diet without JAEx. The second and third groups received the control diet plus 200 and 400 ppm JAEx, respectively. The groups fed the diet containing 200 and 400 ppm JAEx had the best body weight, body weight gain and feed conversion ratio, and faster growth rate with the best performance index, compared with the control group (p < 0.05). The control quails had a lower feed intake than the JAEx-treated quails. The groups fed JAEx 200 and 400 ppm had the lowest lipid profile, blood glucose, liver enzymes, Salmonella and Escherichia coli population and the highest antioxidant indices, immune responses and Lactobacilli population number compared to the control group (p < 0.05). In conclusion, the addition of JAEx at 400 ppm followed by 200 ppm improved the productive performance, antioxidant capacity, blood biochemical and immunological indices, and intestinal microbiota in growing Japanese quails.


Asunto(s)
Coturnix , Helianthus , Animales , Coturnix/fisiología , Antioxidantes , Suplementos Dietéticos , Codorniz , Dieta/veterinaria , Peso Corporal , Inmunidad , Alimentación Animal/análisis
13.
Appl Microbiol Biotechnol ; 106(17): 5525-5538, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35896838

RESUMEN

The rhizosphere context of inulin-accumulating plants, such as Jerusalem artichoke (Helianthus tuberosus), is an ideal starting basis for the discovery of inulolytic enzymes with potential for bio fructose production. We isolated a Glutamicibacter mishrai NJAU-1 strain from this context, showing exo-inulinase activity, releasing fructose from fructans. The growth conditions (pH 9.0; 15 °C) were adjusted, and the production of inulinase by Glutamicibacter mishrai NJAU-1 increased by 90% (0.32 U/mL). Intriguingly, both levan and inulin, but not fructose and sucrose, induced the production of exo-inulinase activity. Two exo-inulinase genes (inu1 and inu2) were cloned and heterologously expressed in Pichia pastoris. While INU2 preferentially hydrolyzed longer inulins, the smallest fructan 1-kestose appeared as the preferred substrate for INU1, also efficiently degrading nystose and sucrose. Active site docking studies with GFn- and Fn-type small inulins (G is glucose, F is fructose, and n is the number of ß (2-1) bound fructose moieties) revealed subtle substrate differences between INU1 and INU2. A possible explanation about substrate specificity and INU's protein structure is then suggested. KEY POINTS: • A Glutamicibacter mishrai strain harbored exo-inulinase activity. • Fructans induced the inulolytic activity in G. mishrai while the inulolytic activity was optimized at pH 9.0 and 15 °C. • Two exo-inulinases with differential substrate specificity were characterized.


Asunto(s)
Helianthus , Fructanos , Fructosa , Glicósido Hidrolasas , Inulina , Sacarosa
14.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35409393

RESUMEN

JAK inhibition is a new strategy for treating autoimmune and inflammatory diseases. Previous studies have shown the immunoregulatory and anti-inflammatory effects of Salvia miltiorrhiza and Cynara scolymus and suggest that the bioactivity of their phenolic acids involves the JAK-STAT pathway, but it is unclear whether these effects occur through JAK inhibition. The JAK binding affinities obtained by docking Rosmarinic acid (RosA), Salvianolic acid A (SalA), Salvianolic acid C (SalC), Lithospermic acid, Salvianolic acid B and Cynarin (CY) to JAK (PDB: 6DBN) with AutoDock Vina are -8.8, -9.8, -10.7, -10.0, -10.3 and -9.7 kcal/mol, respectively. Their predicted configurations enable hydrogen bonding with the hinge region and N- and C-terminal lobes of the JAK kinase domain. The benzofuran core of SalC, the compound with the greatest binding affinity, sits near Leu959, such as Tofacitinib's pyrrolopyrimidine. A SalC derivative with a binding affinity of -12.2 kcal/mol was designed while maintaining this relationship. The docking results show follow-up studies of these phenolic acids as JAK inhibitors may be indicated. Furthermore, derivatives of SalC, RosA, CY and SalA can yield better binding affinity or bioavailability scores, indicating that their structures may be suitable as scaffolds for the design of new JAK inhibitors.


Asunto(s)
Cynara scolymus , Inhibidores de las Cinasas Janus , Salvia miltiorrhiza , Cynara scolymus/metabolismo , Inhibidores de las Cinasas Janus/farmacología , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Salvia miltiorrhiza/metabolismo , Transducción de Señal
15.
Molecules ; 27(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36363983

RESUMEN

Valorisation of food by-products has recently attracted considerable attention due to the opportunities to improve the economic and environmental sustainability of the food production chain. Large quantities of non-edible parts of the artichoke plant (Cynara cardunculus L.) comprising leaves, stems, roots, bracts, and seeds are discarded annually during industrial processing. These by-products contain many phytochemicals such as dietary fibres, phenolic acids, and flavonoids, whereby the most challenging issue concerns about the recovery of high-added value components from these by-products. The aim of this work is to develop a novel valorisation strategy for the sustainable utilisation of artichoke leaves' waste, combining green pressurised-liquid extraction (PLE), spectrophotometric assays and UPLC-HRMS phytochemical characterization, to obtain bioactive-rich extract with high antioxidant capacity. Multivariate analysis of the major selected metabolites was used to compare different solvent extraction used in PLE.


Asunto(s)
Cynara scolymus , Cynara , Cynara scolymus/química , Análisis de Datos , Cynara/metabolismo , Antioxidantes/química , Fitoquímicos/análisis , Extractos Vegetales/química , Análisis Multivariante
16.
Molecules ; 27(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36558095

RESUMEN

This study investigated the optimization of ultrasonic-assisted aqueous two-phase synchronous extraction of carbohydrates and polyphenols present in artichoke bud, evaluated their antioxidant activities in vitro, and analyzed the composition of carbohydrates and polyphenols by high-performance liquid chromatography (HPLC). The powder mass, ultrasonic time, ammonium sulfate concentration, and alcohol-water ratio were considered the influencing factors based on the single-factor experiment results, and a dual-response surface model was designed to optimize the synchronous extraction process to extract carbohydrates and polyphenols. The antioxidant activity was evaluated by measuring the scavenging capacity of ABTS+· and DPPH· and the reducing capacity of Fe3+. The optimal process conditions in this study were as follows: the powder mass of 1.4 g, ammonium sulfate concentration of 0.34 g/mL, alcohol-water ratio of 0.4, and ultrasonic time of 43 min. The polyphenol content in artichoke bud was 5.32 ± 0.13 mg/g, and the polysaccharide content was 74.78 ± 0.11 mg/g. An experiment on in vitro antioxidant activity showed that both carbohydrates and polyphenols had strong antioxidant activities, and the antioxidant activity of polyphenols was stronger than that of carbohydrates. The HPLC analysis revealed that the carbohydrates in artichoke bud were mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, and arabinose, and the molar ratio was 10.77:25.22:2.37:15.74:125.39:48.62:34.70. The polyphenols comprised chlorogenic acid, 4-dicaffeoylquinic acid, caffeic acid, 1,3-dicaffeoylqunic acid, isochlorogenic acid B, isochlorogenic acid A, cynarin, and isochlorogenic acid C, and the contents were 0.503, 0.029, 0.022, 0.017, 0.008, 0.162, 1.621, 0.030 mg/g, respectively. This study also showed that the carbohydrates and polyphenols in artichoke bud could be important natural antioxidants, and the composition analysis of HPLC provided directions for their future research. Carbohydrates and polyphenols in artichoke buds can be separated and enriched using the optimized process technology, and it is an effective means of extracting ingredients from plants.


Asunto(s)
Antioxidantes , Cynara scolymus , Antioxidantes/química , Polifenoles/análisis , Cynara scolymus/química , Sulfato de Amonio , Polvos , Galactosa/química , Agua , Extractos Vegetales/farmacología , Extractos Vegetales/química
17.
Molecules ; 27(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897911

RESUMEN

Rising global populations and enhanced standards of living in so-called developing countries have led to an increased demand of food, in particular meat, worldwide. While increasing the production of broiler meat could be a potential solution to this problem, broiler meat is plagued by health concerns, such as the development of antimicrobial resistance and lower meat quality. For this reason, the supplementation of poultry feed with vitamins and antioxidant compounds, such as polyphenols, has become an attractive prospect for research in this sector. Such supplements could be obtained by extraction of agricultural byproducts (in particular, grape pomaces and artichoke leaves and bracts), thus contributing to reductions in the total amount of waste biomass produced by the agricultural industry. In this review, the effects of poultry feed supplementation with bioactive extracts from grape pomace (skins and/or seeds), as well as extracts from artichoke leaves and bracts, were explored. Moreover, the various methods that have been employed to obtain extracts from these and other agricultural byproducts were listed and described, with a particular focus on novel, eco-friendly extraction methods (using, for example, innovative and biocompatible solvents like Deep Eutectic Solvents (DESs)) that could reduce the costs and energy consumption of these procedures, with similar or higher yields compared to standard methods.


Asunto(s)
Extractos Vegetales , Vitis , Animales , Antioxidantes/farmacología , Pollos , Industria de Alimentos , Aves de Corral
18.
J Evol Biol ; 34(2): 364-379, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33190382

RESUMEN

Congeneric parasites are unlikely to specialize on the same tissues of the same host species, likely because of strong multifarious selection against niche overlap. Exceptions where >1 congeneric species use the same tissues reveal important insights into ecological factors underlying the origins and maintenance of diversity. Larvae of sunflower maggot flies in the genus Strauzia feed on plants in the family Asteraceae. Although Strauzia tend to be host specialists, some species specialize on the same hosts. To resolve the origins of host sharing among these specialist flies, we used reduced representation genomic sequencing to infer the first multilocus phylogeny of genus Strauzia. Our results show that Helianthus tuberosus and Helianthus grosseserratus each host three different Strauzia species and that the flies co-occurring on a host are not one another's closest relatives. Though this pattern implies that host sharing is most likely the result of host shifts, these may not all be host shifts in the conventional sense of an insect moving onto an entirely new plant. Many hosts of Strauzia belong to a clade of perennial sunflowers that arose 1-2 MYA and are noted for frequent introgression and hybrid speciation events. Our divergence time estimates for all of the Helianthus-associated Strauzia are within this same time window (<1 MYA), suggesting that rapid and recent adaptive introgression and speciation in Helianthus may have instigated the diversification of Strauzia, with some flies converging upon a single plant host after their respective ancestral host plants hybridized to form a new sunflower species.


Asunto(s)
Especiación Genética , Helianthus , Herbivoria , Filogenia , Tephritidae/genética , Animales , Larva/fisiología
19.
Glycoconj J ; 38(5): 599-607, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34313918

RESUMEN

An inulin polysaccharide with a molecular weight of ~ 2600 Da was derived from Jerusalem artichoke tubers and referred to as "JAP". Previous studies have shown that inulin can improve glucose tolerance and the liver lipid profile; however, its antitumor activity remains to be examined in detail. Therefore, to investigate the possible improvement of the antitumor activity of JAP, a novel nanostructured biomaterial was constructed by capping Se nanoparticles with JAP using sodium selenite, via a redox reaction with ascorbic acid, and referred to as "JAP-SeNPs". Transmission electron microscopy revealed that the average diameter of JAP-SeNPs is ~ 50 nm, and the C:Se mass ratio in JAP-SeNPs was found to be 15.4:1 by energy-dispersive X-ray spectroscopy. The well-dispersed JAP-SeNPs exhibited a significant in vitro antiproliferative effect on mouse forestomach carcinoma cells at a concentration of 400 µg/mL when incubated for 48 h, with an inhibition rate of 41.5%. Moreover, 38.9% of later apoptotic cells were observed. These results reveal that a combination of Se and JAP can effectively enhance the antitumor activity of polysaccharides obtained from Jerusalem artichoke tubers.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma/tratamiento farmacológico , Helianthus/química , Inulina/química , Nanopartículas/química , Tubérculos de la Planta/química , Selenio/química , Animales , Antineoplásicos/química , Línea Celular , Ratones , Neoplasias Gástricas
20.
Phytother Res ; 35(12): 6607-6623, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34569671

RESUMEN

Accumulating evidence regarding the effect of artichoke on lipid profile is equivocal. We updated a previous meta-analysis on the effect of artichoke extract supplementation on lipid profile and performed dose-response analysis. We searched PubMed, Scopus, Web of Science, and Cochrane Library from inception to June 2021 using relevant keywords. Papers from identified articles were collected. Two researchers rated the certainty in the estimates using the GRADE approach. Combining 15 effect sizes from 14 studies based on the random-effects analysis, we found that artichoke significantly reduced TG (weighed mean difference [WMD]: -17.01 mg/dl, 95% CI: -23.88, -10.13, p = .011), TC (WMD: -17.01 mg/dl, 95% CI: -23.88, -10.13, p < .001), and LDL-C (WMD: -17.48 mg/dl, 95%CI: -25.44, -9.53, p < .001). No significant effect of artichoke on HDL-C level was detected (WMD: 0.78 mg/dl, 95%CI: -0.93, 2.49, p = .371). Combining the two effect sizes revealed that artichoke juice supplementation significantly reduced TG (WMD: -3.34 mg/dl, 95%CI: -5.51, -1.17, p = .003), TC (WMD: -18.04 mg/dl, 95%CI: -20.30, -15.78, p < .001), LDL-C (WMD: -1.75 mg/dl, 95%CI: -3.02, -0.48, p = .007), and HDL-C levels (WMD: -4.21 mg/dl, 95%CI: -5.49, -2.93, p < .001). In conclusion, we found that artichoke supplementation may favor CVD prevention by acting in improving the lipid profile.


Asunto(s)
Cynara scolymus , Suplementos Dietéticos , Lípidos , Extractos Vegetales/farmacología , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA