Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.198
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107236, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552741

RESUMEN

The complement system serves as the first line of defense against invading pathogens by promoting opsonophagocytosis and bacteriolysis. Antibody-dependent activation of complement occurs through the classical pathway and relies on the activity of initiating complement proteases of the C1 complex, C1r and C1s. The causative agent of Lyme disease, Borrelia burgdorferi, expresses two paralogous outer surface lipoproteins of the OspEF-related protein family, ElpB and ElpQ, that act as specific inhibitors of classical pathway activation. We have previously shown that ElpB and ElpQ bind directly to C1r and C1s with high affinity and specifically inhibit C2 and C4 cleavage by C1s. To further understand how these novel protease inhibitors function, we carried out a series of hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments using ElpQ and full-length activated C1s as a model of Elp-protease interaction. Comparison of HDX-MS profiles between unbound ElpQ and the ElpQ/C1s complex revealed a putative C1s-binding site on ElpQ. HDX-MS-guided, site-directed ElpQ mutants were generated and tested for direct binding to C1r and C1s using surface plasmon resonance. Several residues within the C-terminal region of ElpQ were identified as important for protease binding, including a single conserved tyrosine residue that was required for ElpQ- and ElpB-mediated complement inhibition. Collectively, our study identifies key molecular determinants for classical pathway protease recognition by Elp proteins. This investigation improves our understanding of the unique complement inhibitory mechanism employed by Elp proteins which serve as part of a sophisticated complement evasion system present in Lyme disease spirochetes.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Borrelia burgdorferi , Vía Clásica del Complemento , Humanos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/inmunología , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/genética , Complemento C1r/metabolismo , Complemento C1r/genética , Complemento C1s/metabolismo , Complemento C1s/genética , Complemento C1s/química , Vía Clásica del Complemento/inmunología , Lipoproteínas/metabolismo , Lipoproteínas/genética , Lipoproteínas/química , Lipoproteínas/inmunología , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Unión Proteica
2.
Proc Natl Acad Sci U S A ; 119(13): e2117770119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35312359

RESUMEN

Spirochetal pathogens, such as the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, encode an abundance of lipoproteins; however, due in part to their evolutionary distance from more well-studied bacteria, such as Proteobacteria and Firmicutes, few spirochetal lipoproteins have assigned functions. Indeed, B. burgdorferi devotes almost 8% of its genome to lipoprotein genes and interacts with its environment primarily through the production of at least 80 surface-exposed lipoproteins throughout its tick vector­vertebrate host lifecycle. Several B. burgdorferi lipoproteins have been shown to serve roles in cellular adherence or immune evasion, but the functions for most B. burgdorferi surface lipoproteins remain unknown. In this study, we developed a B. burgdorferi lipoproteome screening platform utilizing intact spirochetes that enables the identification of previously unrecognized host interactions. As spirochetal survival in the bloodstream is essential for dissemination, we targeted our screen to C1, the first component of the classical (antibody-initiated) complement pathway. We identified two high-affinity C1 interactions by the paralogous lipoproteins, ElpB and ElpQ (also termed ErpB and ErpQ, respectively). Using biochemical, microbiological, and biophysical approaches, we demonstrate that ElpB and ElpQ bind the activated forms of the C1 proteases, C1r and C1s, and represent a distinct mechanistic class of C1 inhibitors that protect the spirochete from antibody-mediated complement killing. In addition to identifying a mode of complement inhibition, our study establishes a lipoproteome screening methodology as a discovery platform for identifying direct host­pathogen interactions that are central to the pathogenesis of spirochetes, such as the Lyme disease agent.


Asunto(s)
Proteínas Bacterianas , Borrelia burgdorferi , Complemento C1q , Evasión Inmune , Lipoproteínas , Enfermedad de Lyme , Proteínas Bacterianas/inmunología , Borrelia burgdorferi/inmunología , Complemento C1q/inmunología , Humanos , Inmunoglobulinas/inmunología , Lipoproteínas/inmunología , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Proteoma/inmunología
3.
Proc Natl Acad Sci U S A ; 119(47): e2208274119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36383602

RESUMEN

Lyme spirochetes have coevolved with ticks to optimize transmission to hosts using tick salivary molecules (TSMs) to counteract host defenses. TSMs modulate various molecular events at the tick-host interface. Lymphotoxin-beta receptor (LTßR) is a vital immune receptor and plays protective roles in host immunity against microbial infections. We found that Ltbr knockout mice were more susceptible to Lyme disease spirochetes, suggesting the involvement of LTßR signaling in tick-borne Borrelia infection. Further investigation showed that a 15-kDa TSM protein from Ixodes persulcatus (I. persulcatus salivary protein; IpSAP) functioned as an immunosuppressant to facilitate the transmission and infection of Lyme disease spirochetes. IpSAP directly interacts with LTßR to block its activation, thus inhibiting the downstream signaling and consequently suppressing immunity. IpSAP immunization provided mice with significant protection against I. persulcatus-mediated Borrelia garinii infection. Notably, the immunization showed considerable cross-protection against other Borrelia infections mediated by other ixodid ticks. One of the IpSAP homologs from other ixodid ticks showed similar effects on Lyme spirochete transmission. Together, our findings suggest that LTßR signaling plays an important role in blocking the transmission and pathogenesis of tick-borne Lyme disease spirochetes, and that IpSAP and its homologs are promising candidates for broad-spectrum vaccine development.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Ratones , Animales , Borrelia burgdorferi/genética , Saliva , Ixodes/fisiología , Receptor beta de Linfotoxina
4.
J Infect Dis ; 229(4): 1209-1214, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37824827

RESUMEN

Lyme neuroborreliosis (LNB) is a complex neuroinflammatory disorder caused by Borrelia burgdorferi, which is transmitted through tick bites. Epigenetic alterations, specifically DNA methylation (DNAm), could play a role in the host immune response during infection. In this study, we present the first genome-wide analysis of DNAm in peripheral blood mononuclear cells from patients with LNB and those without LNB. Using a network-based approach, we highlighted HLA genes at the core of these DNAm changes, which were found to be enriched in immune-related pathways. These findings shed light on the role of epigenetic modifications in the LNB pathogenesis that should be confirmed and further expanded upon in future studies.


Asunto(s)
Borrelia burgdorferi , Neuroborreliosis de Lyme , Humanos , Neuroborreliosis de Lyme/genética , Metilación de ADN , Leucocitos Mononucleares , Borrelia burgdorferi/genética
5.
J Bacteriol ; 206(2): e0034023, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38214528

RESUMEN

Glycerol utilization as a carbohydrate source by Borreliella burgdorferi, the Lyme disease spirochete, is critical for its successful colonization and persistence in the tick vector. The expression of the glpFKD (glp) operon, which encodes proteins for glycerol uptake/utilization, must be tightly regulated during the enzootic cycle of B. burgdorferi. Previous studies have established that the second messenger cyclic di-GMP (c-di-GMP) is required for the activation of glp expression, while an alternative sigma factor RpoS acts as a negative regulator for glp expression. In the present study, we report identification of a cis element within the 5´ untranslated region of glp that exerts negative regulation of glp expression. Further genetic screen of known and predicted DNA-binding proteins encoded in the genome of B. burgdorferi uncovered that overexpressing Borrelia host adaptation regulator (BadR), a known global regulator, dramatically reduced glp expression. Similarly, the badR mutant significantly increased glp expression. Subsequent electrophoretic mobility shift assay analyses demonstrated that BadR directly binds to this cis element, thereby repressing glp independent of RpoS-mediated repression. The efficiency of BadR binding was further assessed in the presence of c-di-GMP and various carbohydrates. This finding highlights multi-layered positive and negative regulatory mechanisms employed by B. burgdorferi to synchronize glp expression throughout its enzootic cycle.IMPORTANCEBorreliella burgdorferi, the Lyme disease pathogen, must modulate its gene expression differentially to adapt successfully to its two disparate hosts. Previous studies have demonstrated that the glycerol uptake and utilization operon, glpFKD, plays a crucial role in spirochetal survival within ticks. However, the glpFKD expression must be repressed when B. burgdorferi transitions to the mammalian host. In this study, we identified a specific cis element responsible for the repression of glpFKD. We further pinpointed Borrelia host adaptation regulator as the direct binding protein to this cis element, thereby repressing glpFKD expression. This discovery paves the way for a deeper exploration of how zoonotic pathogens sense distinct hosts and switch their carbon source utilization during transmission.


Asunto(s)
Borrelia burgdorferi , Borrelia , Enfermedad de Lyme , Garrapatas , Animales , Borrelia/genética , Borrelia/metabolismo , Glicerol/metabolismo , Adaptación al Huésped , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Operón , Regulación Bacteriana de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo
6.
Traffic ; 23(12): 558-567, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224049

RESUMEN

Intracellular compartmentalization of ligands, receptors and signaling molecules has been recognized as an important regulator of inflammation. The toll-like receptor (TLR) 2 pathway utilizes the trafficking molecule adaptor protein 3 (AP-3) to activate interleukin (IL)-6 signaling from within phagosomal compartments. To better understand the vesicular pathways that may contribute to intracellular signaling and cooperate with AP-3, we performed a vesicular siRNA screen. We identified Rab8 and Rab11 GTPases as important in IL-6 induction upon stimulation with the TLR2 ligand Pam3 CSK4 or the pathogen, Borrelia burgdorferi (Bb), the causative agent of Lyme disease. These Rabs were recruited to late and lysosomal stage phagosomes and co-transported with TLR2 signaling adaptors and effectors, such as MyD88, TRAM and TAK1, in an AP-3-dependent manner. Our data support a model where AP-3 mediates the recruitment of recycling and secretory vesicles and the assembly of signaling complexes at the phagosome.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Borrelia burgdorferi/metabolismo , Ligandos , Enfermedad de Lyme/genética , Enfermedad de Lyme/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Fagosomas/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Proteínas de Unión al GTP rab , Animales , Ratones
7.
Infect Immun ; 92(4): e0008424, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38470113

RESUMEN

Camelid-derived, single-domain antibodies (VHHs) have proven to be extremely powerful tools in defining the antigenic landscape of immunologically heterogeneous surface proteins. In this report, we generated a phage-displayed VHH library directed against the candidate Lyme disease vaccine antigen, outer surface protein A (OspA). Two alpacas were immunized with recombinant OspA serotype 1 from Borrelia burgdorferi sensu stricto strain B31, in combination with the canine vaccine RECOMBITEK Lyme containing lipidated OspA. The phage library was subjected to two rounds of affinity enrichment ("panning") against recombinant OspA, yielding 21 unique VHHs within two epitope bins, as determined through competition enzyme linked immunosorbent assays (ELISAs) with a panel of OspA-specific human monoclonal antibodies. Epitope refinement was conducted by hydrogen exchange-mass spectrometry. Six of the monovalent VHHs were expressed as human IgG1-Fc fusion proteins and shown to have functional properties associated with protective human monoclonal antibodies, including B. burgdorferi agglutination, outer membrane damage, and complement-dependent borreliacidal activity. The VHHs displayed unique reactivity profiles with the seven OspA serotypes associated with B. burgdorferi genospecies in the United States and Europe consistent with there being unique epitopes across OspA serotypes that should be considered when designing and evaluating multivalent Lyme disease vaccines.


Asunto(s)
Lipoproteínas , Enfermedad de Lyme , Anticuerpos de Dominio Único , Animales , Perros , Humanos , Vacunas contra Enfermedad de Lyme , Epítopos , Anticuerpos Antibacterianos , Vacunas Bacterianas , Proteínas de la Membrana Bacteriana Externa , Enfermedad de Lyme/prevención & control , Antígenos de Superficie , Anticuerpos Monoclonales
8.
Infect Immun ; 92(6): e0009024, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38700336

RESUMEN

bb0616 of Borrelia burgdorferi, the Lyme disease pathogen, encodes a hypothetical protein of unknown function. In this study, we showed that BB0616 was not surface-exposed or associated with the membrane through localization analyses using proteinase K digestion and cell partitioning assays. The expression of bb0616 was influenced by a reduced pH but not by growth phases, elevated temperatures, or carbon sources during in vitro cultivation. A transcriptional start site for bb0616 was identified by using 5' rapid amplification of cDNA ends, which led to the identification of a functional promoter in the 5' regulatory region upstream of bb0616. By analyzing a bb0616-deficient mutant and its isogenic complemented counterparts, we found that the infectivity potential of the mutant was significantly attenuated. The inactivation of bb0616 displayed no effect on borrelial growth in the medium or resistance to oxidative stress, but the mutant was significantly more susceptible to osmotic stress. In addition, the production of global virulence regulators such as BosR and RpoS as well as virulence-associated outer surface lipoproteins OspC and DbpA was reduced in the mutant. These phenotypes were fully restored when gene mutation was complemented with a wild-type copy of bb0616. Based on these findings, we concluded that the hypothetical protein BB0616 is required for the optimal infectivity of B. burgdorferi, potentially by impacting B. burgdorferi virulence gene expression as well as survival of the spirochete under stressful conditions.


Asunto(s)
Proteínas Bacterianas , Borrelia burgdorferi , Regulación Bacteriana de la Expresión Génica , Enfermedad de Lyme , Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidad , Borrelia burgdorferi/metabolismo , Animales , Ratones , Enfermedad de Lyme/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regiones Promotoras Genéticas , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Virulencia , Ratones Endogámicos C3H , Factor sigma/genética , Factor sigma/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sitio de Iniciación de la Transcripción , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Prueba de Complementación Genética , Concentración de Iones de Hidrógeno
9.
Infect Immun ; 92(4): e0001824, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38514468

RESUMEN

Borrelia burgdorferi, the spirochetal agent of Lyme disease, utilizes a variety of strategies to evade and suppress the host immune response, which enables it to chronically persist in the host. The resulting immune response is characterized by unusually strong IgM production and a lack of long-term protective immunity. Previous studies in mice have shown that infection with B. burgdorferi also broadly suppresses host antibody responses against unrelated antigens. Here, we show that mice infected with B. burgdorferi and concomitantly immunized with recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein had an abrogated antibody response to the immunization. To further define how long this humoral immune suppression lasts, mice were immunized at 2, 4, and 6 weeks post-infection. Suppression of host antibody production against the SARS-CoV-2 spike protein peaked at 2 weeks post-infection but continued for all timepoints measured. Antibody responses against the SARS-CoV-2 spike protein were also assessed following antibiotic treatment to determine whether this immune suppression persists or resolves following clearance of B. burgdorferi. Host antibody production against the SARS-CoV-2 spike protein returned to baseline following antibiotic treatment; however, anti-SARS-CoV-2 IgM remained high, comparable to levels found in B. burgdorferi-infected but untreated mice. Thus, our data demonstrate restored IgG responses following antibiotic treatment but persistently elevated IgM levels, indicating lingering effects of B. burgdorferi infection on the immune system following treatment.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Glicoproteína de la Espiga del Coronavirus , Ratones , Humanos , Animales , Inmunidad Humoral , Inmunoglobulina M , Antibacterianos , Anticuerpos Antibacterianos
10.
Emerg Infect Dis ; 30(7): 1374-1379, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38916563

RESUMEN

Lyme disease surveillance based on provider and laboratory reports underestimates incidence. We developed an algorithm for automating surveillance using electronic health record data. We identified potential Lyme disease markers in electronic health record data (laboratory tests, diagnosis codes, prescriptions) from January 2017-December 2018 in 2 large practice groups in Massachusetts, USA. We calculated their sensitivities and positive predictive values (PPV), alone and in combination, relative to medical record review. Sensitivities ranged from 57% (95% CI 47%-69%) for immunoassays to 87% (95% CI 70%-100%) for diagnosis codes. PPVs ranged from 53% (95% CI 43%-61%) for diagnosis codes to 58% (95% CI 50%-66%) for immunoassays. The combination of a diagnosis code and antibiotics within 14 days or a positive Western blot had a sensitivity of 100% (95% CI 86%-100%) and PPV of 82% (95% CI 75%-89%). This algorithm could make Lyme disease surveillance more efficient and consistent.


Asunto(s)
Registros Electrónicos de Salud , Enfermedad de Lyme , Humanos , Enfermedad de Lyme/epidemiología , Massachusetts/epidemiología , Vigilancia de la Población , Algoritmos , Historia del Siglo XXI
11.
Mol Microbiol ; 119(6): 711-727, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086029

RESUMEN

PlzA is a c-di-GMP-binding protein crucial for adaptation of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi during its enzootic life cycle. Unliganded apo-PlzA is important for vertebrate infection, while liganded holo-PlzA is important for survival in the tick; however, the biological function of PlzA has remained enigmatic. Here, we report that PlzA has RNA chaperone activity that is inhibited by c-di-GMP binding. Holo- and apo-PlzA bind RNA and accelerate RNA annealing, while only apo-PlzA can strand displace and unwind double-stranded RNA. Guided by the crystal structure of PlzA, we identified several key aromatic amino acids protruding from the N- and C-terminal domains that are required for RNA-binding and unwinding activity. Our findings illuminate c-di-GMP as a switch controlling the RNA chaperone activity of PlzA, and we propose that complex RNA-mediated modulatory mechanisms allow PlzA to regulate gene expression during both the vector and host phases of the B. burgdorferi life cycle.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Grupo Borrelia Burgdorferi/genética , Enfermedad de Lyme/genética , ARN/metabolismo
12.
J Clin Microbiol ; 62(5): e0013924, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38597655

RESUMEN

We compared the performance of a new modified two-tier testing (MTTT) platform, the Diasorin Liaison chemiluminescent immunoassay (CLIA), to the Zeus enzyme-linked immunoassay (ELISA) MTTT and to Zeus ELISA/Viramed immunoblot standard two-tier testing (STTT) algorithm. Of 537 samples included in this study, 91 (16.9%) were positive or equivocal by one or more screening tests. Among these 91 samples, only 57 samples were concordant positive by first-tier screening tests, and only 19 of 57 were concordant by the three second-tier methods. For IgM results, positive percent agreement (PPA) was 68.1% for Diasorin versus 89.4% for Zeus compared to immunoblot. By contrast, the PPA for IgG for both Diasorin and Zeus was 100%. Using a 2-out-of-3 consensus reference standard, the PPAs for IgM were 75.6%, 97.8%, and 95.6% for Diasorin, Zeus, and immunoblot, respectively. The difference between Zeus MTTT and Diasorin MTTT for IgM detection was significant (P = 0.0094). PPA for both Diasorin and Zeus MTTT IgG assays was 100% but only 65.9% for immunoblot STTT (P = 0.0005). In total, second-tier positive IgM and/or IgG results were reported for 57 samples by Diasorin MTTT, 63 by Zeus MTTT, and 54 by Viramed STTT. While Diasorin CLIA MTTT had a much more rapid, automated, and efficient workflow, Diasorin MTTT was less sensitive for the detection of IgM than Zeus MTTT and STTT including in 5 early Lyme cases that were IgM negative but IgG positive. IMPORTANCE: The laboratory diagnosis of Lyme disease relies upon the detection of antibodies to Borrelia species. Standard two tier testing (STTT) methods rely upon immunoblots which have clinical and technical limitations. Modified two-tier testing (MTTT) methods have recently become available and are being widely adopted. There are limited independent data available assessing the performance of MTTT and STTT methods.


Asunto(s)
Algoritmos , Anticuerpos Antibacterianos , Inmunoglobulina G , Inmunoglobulina M , Enfermedad de Lyme , Sensibilidad y Especificidad , Pruebas Serológicas , Humanos , Enfermedad de Lyme/diagnóstico , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/sangre , Inmunoglobulina M/sangre , Inmunoglobulina G/sangre , Pruebas Serológicas/métodos , Pruebas Serológicas/normas , Anticuerpos Antibacterianos/sangre , Mediciones Luminiscentes/métodos , Immunoblotting/métodos
13.
Appl Environ Microbiol ; : e0082224, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899883

RESUMEN

Borrelia burgdorferi, a Lyme disease spirochete, causes a range of acute and chronic maladies in humans. However, a primary vertebrate reservoir in the United States, the white-footed deermouse Peromyscus leucopus, is reported not to have reduced fitness following infection. Although laboratory strains of Mus musculus mice have successfully been leveraged to model acute human Lyme disease, the ability of these rodents to model B. burgdorferi-P. leucopus interactions remains understudied. Here, we compared infection of P. leucopus with B. burgdorferi B31 with infection of the traditional B. burgdorferi murine models-C57BL/6J and C3H/HeN Mus musculus, which develop signs of inflammation akin to human disease. We find that B. burgdorferi was able to reach much higher burdens (10- to 30-times higher) in multiple M. musculus skin sites and that the overall dynamics of infection differed between the two rodent species. We also found that P. leucopus remained transmissive to larval Ixodes scapularis for a far shorter period than either M. musculus strain. In line with these observations, we found that P. leucopus does launch a modest but sustained inflammatory response against B. burgdorferi in the skin, which we hypothesize leads to reduced bacterial viability and rodent-to-tick transmission in these hosts. Similarly, we also observe evidence of inflammation in infected P. leucopus hearts. These observations provide new insight into reservoir species and the B. burgdorferi enzootic cycle.IMPORTANCEA Lyme disease-causing bacteria, Borrelia burgdorferi, must alternate between infecting a vertebrate host-usually rodents or birds-and ticks. In order to be successful in that endeavor, the bacteria must avoid being killed by the vertebrate host before it can infect a new larval tick. In this work, we examine how B. burgdorferi and one of its primary vertebrate reservoirs, Peromyscus leucopus, interact during an experimental infection. We find that B. burgdorferi appears to colonize its natural host less successfully than conventional laboratory mouse models, which aligns with a sustained seemingly anti-bacterial response by P. leucopus against the microbe. These data enhance our understanding of P. leucopus host-pathogen interactions and could potentially serve as a foundation to uncover ways to disrupt the spread of B. burgdorferi in nature.

14.
J Biomed Sci ; 31(1): 28, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438941

RESUMEN

BACKGROUND: Ticks are vectors of various pathogens, including tick-borne encephalitis virus causing TBE and bacteria such as Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum causing e.g. viral-bacterial co-infections (TBE + LB/HGA), which pose diagnostic and therapeutic problems. Since these infections are usually accompanied by inflammation and oxidative stress causing metabolic modifications, including phospholipids, the aim of the study was to assess the level of polyunsaturated fatty acids and their metabolism (ROS- and enzyme-dependent) products in the blood plasma of patients with TBE and TBE + LB/HGA before and after pharmacotherapy. METHODS: The total antioxidant status was determined using 2,20-azino-bis-3-ethylbenzothiazolin-6-sulfonic acid. The phospholipid and free fatty acids were analysed by gas chromatography. Lipid peroxidation was estimated by measuring small molecular weight reactive aldehyde, malondialdehyde and neuroprostanes. The reactive aldehyde was determined using gas chromatography coupled with mass spectrometry. The activity of enzymes was examined spectrophotometrically. An analysis of endocannabinoids and eicosanoids was performed using a Shimadzu UPLC system coupled with an electrospray ionization source to a Shimadzu 8060 Triple Quadrupole system. Receptor expression was measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS: The reduced antioxidant status as a result of infection was accompanied by a decrease in the level of phospholipid arachidonic acid (AA) and docosahexaenoic acid (DHA) in TBE, an increase in DHA in co-infection and in free DHA in TBE with an increase in the level of lipid peroxidation products. The enhanced activity of enzymes metabolizing phospholipids and free PUFAs increased the level of endocannabinoids and eicosanoids, while decreased 15-PGJ2 and PGE2 was accompanied by activation of granulocyte receptors before pharmacotherapy and only tending to normalize after treatment. CONCLUSION: Since classical pharmacotherapy does not prevent disorders of phospholipid metabolism, the need to support treatment with antioxidants may be suggested.


Asunto(s)
Anaplasma phagocytophilum , Borrelia burgdorferi , Coinfección , Virus de la Encefalitis Transmitidos por Garrapatas , Garrapatas , Humanos , Animales , Metabolismo de los Lípidos , Antioxidantes , Endocannabinoides , Bacterias , Aldehídos , Eicosanoides , Fosfolípidos
15.
Artículo en Inglés | MEDLINE | ID: mdl-38676855

RESUMEN

BACKGROUND: Tick-borne diseases, caused by bacterial pathogens, pose a growing threat to public health in Europe. This paper provides an overview of the historical context of the discovery of the most impactful pathogens transmitted by ticks, including Borrelia burgdorferi sensu lato, Rickettsia spp., Anaplasma spp., Francisella spp., Ehrlichia spp., and Neoehrlichia mikurensis. Understanding the historical context of their discovery provides insight into the evolution of our understanding of these pathogens. METHODS AND RESULTS: Systematic investigation of the prevalence and transmission dynamics of these bacterial pathogens is provided, highlighting the intricate relationships among ticks, host organisms, and the environment. Epidemiology is explored, providing an in-depth analysis of clinical features associated with infections. Diagnostic methodologies undergo critical examination, with a spotlight on technological advancements that enhance detection capabilities. Additionally, the paper discusses available treatment options, addressing existing therapeutic strategies and considering future aspects. CONCLUSIONS: By integrating various pieces of information on these bacterial species, the paper aims to provide a comprehensive resource for researchers and healthcare professionals addressing the impact of bacterial tick-borne diseases in Europe. This review underscores the importance of understanding the complex details influencing bacterial prevalence and transmission dynamics to better combat these emerging public health threats.

16.
Infection ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980540

RESUMEN

PURPOSE: Diagnosis of (European) Lyme neuroborreliosis has been based on clinical presentation, cerebrospinal fluid (CSF) pleocytosis and demonstration of intrathecal borrelial antibody synthesis (ITBAS) to document Borrelia burgdorferi s. l. INFECTION: It is not known if other criteria to document Borrelia infection may contribute to the diagnosis. METHODS: We compared the sensitivity of three individual criteria (ITBAS, CSF Borrelia culture, and the presence of erythema migrans [EM]) to confirm the diagnosis of early Lyme neuroborreliosis in 280 patients ≥ 15 years of age evaluated at a Lyme borreliosis outpatient clinic in Slovenia. The patients had either radicular pain of new onset or involvement of a cranial nerve but without radicular pain, each in conjunction with CSF pleocytosis. Evaluation was of patients who had each of the three confirmatory criteria assessed, and for whom at least one criterion was positive. RESULTS: Analysis of 280 patients, 120 women and 160 men, median age 57 (range 15-84) years, revealed that ITBAS was the most frequently observed positive criterion (85.4%), followed by EM (52.9%), and by a positive CSF Borrelia culture (9.6%). Of the 280 patients, 154 (55%) met only one criterion (43.2% ITBAS only, 10.7% EM only, and 1.1% positive CSF culture only), whereas 42.1% met two criteria. Only 2.9% of patients were positive by all three criteria. CONCLUSION: Although ITBAS was the most frequent criterion for confirmation for Borrelia infection, the presence of EM alone confirmed an additional 10.7% of patients and a positive CSF Borrelia culture alone added another 1.1%.

17.
Mol Ther ; 31(9): 2702-2714, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37533256

RESUMEN

Lyme disease is the most common vector-borne infectious disease in the United States, in part because a vaccine against it is not currently available for humans. We propose utilizing the lipid nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP) platform to generate a Lyme disease vaccine like the successful clinical vaccines against SARS-CoV-2. Of the antigens expressed by Borrelia burgdorferi, the causative agent of Lyme disease, outer surface protein A (OspA) is the most promising candidate for vaccine development. We have designed and synthesized an OspA-encoding mRNA-LNP vaccine and compared its immunogenicity and protective efficacy to an alum-adjuvanted OspA protein subunit vaccine. OspA mRNA-LNP induced superior humoral and cell-mediated immune responses in mice after a single immunization. These potent immune responses resulted in protection against bacterial infection. Our study demonstrates that highly efficient mRNA vaccines can be developed against bacterial targets.


Asunto(s)
COVID-19 , Enfermedad de Lyme , Humanos , Animales , Ratones , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Enfermedad de Lyme/prevención & control , Antígenos de Superficie/genética , Proteínas de la Membrana Bacteriana Externa/genética
18.
Rheumatol Int ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795123

RESUMEN

The incidence or prevalence of Lyme arthritis (LA) in Denmark is unknown and assumed very low. No published cases of polymerase chain reaction (PCR)-confirmed LA from Denmark exist. Clinically, LA does not differ from other rheumatic oligoarthritic disorders posing a differential diagnostic challenge. To review the incidence and prevalence of LA to our knowledge and to present a case series of PCR-confirmed LA cases from Denmark. We conducted a systematic literature review via MEDLINE and EMBASE to explore incidence and prevalence rates of LA. Additionally, we present six cases of patients diagnosed with LA in Denmark. Our literature review identified 23 studies reporting prevalence or incidence, yet only ten studies provided estimates ranging from 1.1 to 280/100.000 in the general population. Our case series identified six patients with LA from a localized region in Southern Denmark; all confirmed by Borrelia-specific real-time PCR from synovial fluid. The diagnostic delay was up to 38 months. All patients except one had a history of previous tick bites; none had erythema migrans lesions. All presented with recurrent arthritis in the knee joint, and two had arthritis in the wrist. The literature review showed an incidence of LA ranging from 1.1 to 15.8 per 100.000 in Europe. Our case series suggests a potentially higher prevalence of LA in Denmark than previously believed. Lack of tick exposure history, antibody assessments and test of Borrelia burgdorferi sensu lato DNA in synovial fluid might lead to misdiagnosed cases potentially explaining the assumed low incidence of LA in Denmark.

19.
Exp Appl Acarol ; 93(1): 49-69, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38869724

RESUMEN

Ixodes ricinus is a vector of several pathogens of public health interest. While forests are the primary habitat for I. ricinus, its abundance and infection prevalence are expected to vary within forest stands. This study assesses the spatio-temporal variations in tick abundance and infection prevalence with three pathogens in and around a peri-urban forest where human exposure is high. Ticks were sampled multiple times in 2016 and 2018 in multiple locations with a diversity of undergrowth, using the consecutive drags method. Three zoonotic pathogens were screened for, Borrelia burgdorferi s.l., Coxiella burnetii, and Francisella tularensis. The influence of season, type of site and micro-environmental factors on tick abundance were assessed with negative binomial generalized linear mixed-effects models. We collected 1642 nymphs and 181 adult ticks. Ticks were most abundant in the spring, in warmer temperatures, and where undergrowth was higher. Sites with vegetation unaffected by human presence had higher abundance of ticks. Forest undergrowth type and height were significant predictors of the level of tick abundance in a forest. The consecutive drags method is expected to provide more precise estimates of tick abundance, presumably through more varied contacts with foliage. Borrelia burgdorferi s.l. prevalence was estimated from pooled ticks at 5.33%, C. burnetii was detected in six pools and F. tularensis was not detected. Borrelia afzelii was the dominant B. burgdorferi genospecies. Tick abundance and B. burgdorferi s.l. infection prevalence were lower than other estimates in Belgian forests.


Asunto(s)
Coxiella burnetii , Bosques , Francisella tularensis , Ixodes , Animales , Bélgica/epidemiología , Ixodes/microbiología , Ixodes/crecimiento & desarrollo , Francisella tularensis/aislamiento & purificación , Coxiella burnetii/aislamiento & purificación , Coxiella burnetii/fisiología , Ninfa/microbiología , Ninfa/crecimiento & desarrollo , Borrelia burgdorferi/aislamiento & purificación , Borrelia burgdorferi/fisiología , Estaciones del Año , Densidad de Población , Femenino
20.
Exp Appl Acarol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940943

RESUMEN

Due to the extensive use of green urban areas as recreation places, city residents are exposed to tick-borne pathogens. The objectives of our study were (i) to determine the occurrence of ticks in urban green areas, focussing on areas used by humans such as parks, schools and kindergartens, and urban forests, and (ii) to assess the prevalence of Borrelia infections in ticks in Zielona Góra, a medium-sized city in western Poland. A total of 161 ticks representing the two species Ixodes ricinus (34 males, 51 females, 30 nymphs) and Dermacentor reticulatus (20 males, 26 females) were collected from 29 of 72 (40.3%) study sites. In total, 26.1% of the ticks (85.7% of I. ricinus and 14.3% of D. reticulatus) yielded DNA of Borrelia. The difference in the infection rate between I. ricinus and D. reticulatus was significant. Among infected ticks, the most frequent spirochete species were B. lusitaniae (50.0%) and B. afzelii (26.2%), followed by B. spielmanii (9.5%), B. valaisiana (7.1%), B. burgdorferi sensu stricto, (4.8%) and B. miyamotoi (2.4%). No co-infections were found. We did not observe a correlation in the occurrence of Borrelia spirochetes in ticks found in individual study sites that differed in terms of habitat type and height of vegetation. Our findings demonstrate that the Borrelia transmission cycles are active within urban habitats, pointing the need for monitoring of tick-borne pathogens in public green areas. They could serve as guidelines for authorities for the proper management of urban green spaces in a way that may limit tick populations and the potential health risks posed by tick-borne pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA