Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 580
Filtrar
1.
J Bacteriol ; 206(5): e0007124, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38629875

RESUMEN

Bovine mastitis is a frequent infection in lactating cattle, causing great economic losses. Staphylococcus aureus represents the main etiological agent, which causes recurrent and persistent intramammary infections because conventional antibiotics are ineffective against it. Mastoparan-like peptides are multifunctional molecules with broad antimicrobial potential, constituting an attractive alternative. Nevertheless, their toxicity to host cells has hindered their therapeutic application. Previously, our group engineered three mastoparan-L analogs, namely mastoparan-MO, mastoparan-R1, and [I5, R8] MP, to improve cell selectivity and potential. Here, we were interested in comparing the antibacterial efficacy of mastoparan-L and its analogs against bovine mastitis isolates of S. aureus strains, making a correlation with the physicochemical properties and structural arrangement changes promoted by the sequence modifications. As a result, the analog's hemolytic and/or antimicrobial activity was balanced. All the peptides displayed α-helical folding in hydrophobic and membrane-mimetic environments, as determined by circular dichroism. The peptide [I5, R8] MP stood out for its enhanced selectivity and antibacterial features related to mastoparan-L and the other derivatives. Biophysical approaches revealed that [I5, R8] MP rapidly depolarizes the bacterial membrane of S. aureus, causing cell death by subsequent membrane disruption. Our results demonstrated that the [I5, R8] MP peptide could be a starting point for the development of peptide-based drugs for the treatment of bovine mastitis, with the advantage of no residue in milk, which would help reduce the use of classical antibiotics.IMPORTANCEStaphylococcus aureus is a leading cause of mastitis, the world's most important dairy cattle disease. The multidrug resistance and zoonotic potential of S. aureus, besides the likelihood of antibiotic residues in milk, are of critical concern to public and animal health. Antimicrobial peptides offer a novel antimicrobial strategy. Here, we demonstrate that [I5, R8] MP is a potent and selective peptide, which acts on S. aureus by targeting the bacterial membrane. Therefore, understanding the physicochemical determinants and the modes of action of this class of antimicrobials opens novel prospects for peptide development with enhanced activities in the bovine mastitis context.


Asunto(s)
Antibacterianos , Péptidos y Proteínas de Señalización Intercelular , Mastitis Bovina , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Bovinos , Mastitis Bovina/microbiología , Mastitis Bovina/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Femenino , Antibacterianos/farmacología , Antibacterianos/química , Péptidos y Proteínas de Señalización Intercelular/farmacología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/tratamiento farmacológico , Péptidos/farmacología , Péptidos/química , Venenos de Avispas/farmacología , Venenos de Avispas/química
2.
Crit Rev Microbiol ; : 1-14, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916977

RESUMEN

Bovine mastitis is a mammary gland inflammation that can occur due to infectious pathogens, Staphylococcus aureus and Escherichia coli, which are, respectively, the most prevalent Gram-positive and Gram-negative bacteria associated with this disease. Currently, antibiotic treatment has become more complicated due to the presence of resistant pathogens. This review, therefore, aims to identify the most common resistance genes reported for these strains in the last four years. During the review, it was noted that blaZ, blaSHV, blaTEM, and blaampC are the most reported genes for S. aureus and E. coli, associated with drug inactivation, mainly ß-lactamases. They are characterized by generating bacterial resistance to ß-lactam antibiotics, the most common treatment in animal and human bacterial treatments (penicillins and cephalosporins, among others). Genes associated with efflux systems were also present in the two strains and included norA, tetA, tetC, and tetK, which generate resistance to macrolide and tetracycline antibiotics. Additionally, the effects of spreading resistance between animals and humans through direct contact (such as consumption of contaminated milk) or indirect contact (through environmental contamination) has been deeply discussed, emphasizing the importance of having adequate sanitation and antibiotic control and administration protocols.

3.
Int Microbiol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568425

RESUMEN

Antimicrobial resistance (AMR) poses a serious threat to human, animal, and plant health on a global scale. Search and elimination techniques should be used to effectively counter the spread of methicillin-resistant Staphylococcus aureus (MRSA) infections. With only a few novel drugs in clinical development, the quest for plant-based alternatives to prevent the spread of antibiotic resistance among bacteria has accelerated. Treatment of MRSA infections is challenging owing to rapidly emerging resistance mechanisms coupled with their protective biofilms. In the present research, we examined the antibacterial properties of ten plant-derived ethanolic leaf extracts. The most effective ethanolic leaf extract against MRSA in decreasing order of zone of inhibition, Cannabis sativa L. > Syzygium cumini > Murraya koenigii > Eucalyptus sp. > while Aloe barbadensis, Azadirachta indica, had very little impact. Mangifera indica, Curcuma longa, Tinospora cordifolia, and Carica papaya did not exhibit inhibitory effects against MRSA; hence, Cannabis was selected for further experimental study. The minimal inhibitory concentration (MIC) of Cannabis sativa L. extract was 0.25 mg ml-1 with 86% mortality. At a sub-MIC dosage of 0.125 mg ml-1, the biofilm formation was reduced by 71%. The two major cannabinoids detected were cannabidiol and delta-9-tetrahydrocannabinol (Δ9-THC), which were majorly attributed to substantial inhibitory action against MRSA. The time-kill kinetics demonstrated a bactericidal action at 4 MIC over an 8-20-h time window with a 90% reduction in growth rate. The results from SEM, and light microscopy Giemsa staining revealed a reduction in cells in the treated group with increased AKP activity, indicating bacterial cell membrane breakdown. These findings suggested cannabinoids may be a promising alternative to antibiotic therapy for bovine biofilm-associated MRSA.

4.
Appl Microbiol Biotechnol ; 108(1): 118, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38204128

RESUMEN

Streptococcus uberis frequently causes bovine mastitis, an infectious udder disease with significant economic implications for dairy cows. Conventional antibiotics, such as cloxacillin, sometimes have limited success in eliminating S. uberis as a stand-alone therapy. To address this challenge, the study objective was to investigate the VersaTile engineered endolysin NC5 as a supplemental therapy to cloxacillin in a mouse model of bovine S. uberis mastitis. NC5 was previously selected based on its intracellular killing and biofilm eradicating activity. To deliver preclinical proof-of-concept of this supplemental strategy, lactating mice were intramammarily infected with a bovine S. uberis field isolate and subsequently treated with cloxacillin (30.0 µg) combined with either a low (23.5 µg) or high (235.0 µg) dose of NC5. An antibiotic monotherapy group, as well as placebo treatment, was included as controls. Two types of responders were identified: fast (n = 17), showing response after 4-h treatment, and slow (n = 10), exhibiting no clear response at 4 h post-treatment across all groups. The high-dose combination therapy in comparison with placebo treatment impacted the hallmarks of mastitis in the fast responders by reducing (i) the bacterial load 13,000-fold (4.11 ± 0.78 Δlog10; p < 0.001), (ii) neutrophil infiltration 5.7-fold (p > 0.05), and (iii) the key pro-inflammatory chemokine IL-8 13-fold (p < 0.01). These mastitis hallmarks typically followed a dose response dependent on the amount of endolysin added. The current in vivo study complements our in vitro data and provides preclinical proof-of-concept of NC5 as an adjunct to intramammary cloxacillin treatment. KEY POINTS: • Engineered endolysin NC5 was preclinically evaluated as add-on to cloxacillin treatment. • Two types of mice (slow and fast responding) were observed. • The add-on treatment decreased bacterial load, neutrophil influx, and pro-inflammatory mediators.


Asunto(s)
Endopeptidasas , Mastitis Bovina , Infecciones Estreptocócicas , Streptococcus , Femenino , Animales , Bovinos , Ratones , Cloxacilina/uso terapéutico , Lactancia , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/veterinaria , Modelos Animales de Enfermedad , Mastitis Bovina/tratamiento farmacológico
5.
BMC Vet Res ; 20(1): 169, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698383

RESUMEN

BACKGROUND: Bovine mastitis is one of the most widespread diseases affecting cattle, leading to significant losses for the dairy industry. Currently, the so-called gold standard in mastitis diagnosis involves determining the somatic cell count (SCC). Apart from a number of advantages, this method has one serious flaw: It does not identify the etiological factor causing a particular infection, making it impossible to introduce targeted antimicrobial therapy. This can contribute to multidrug-resistance in bacterial species. The diagnostic market lacks a test that has the advantages of SCC and also recognizes the species of pathogen causing the inflammation. Therefore, the aim of our study was to develop a lateral flow immunoassay (LFIA) based on elongation factor Tu for identifying most prevalent Gram-positive cocci responsible for causing mastitis including Streptococcus uberis, Streptococcus agalactiae and Staphylococcus aureus. RESULTS: As a result, we showed that the assay for S. uberis detection demonstrated a specificity of 89.02%, a sensitivity of 43.59%, and an accuracy of 80.3%. In turn, the second variant - assay for Gram-positive cocci reached a specificity of 95.59%, a sensitivity of 43.28%, and an accuracy of 78.33%. CONCLUSIONS: Our study shows that EF-Tu is a promising target for LFIA and we have delivered evidence that further evaluation could improve test parameters and fill the gap in the mastitis diagnostics market.


Asunto(s)
Mastitis Bovina , Streptococcus agalactiae , Streptococcus , Mastitis Bovina/diagnóstico , Mastitis Bovina/microbiología , Animales , Bovinos , Femenino , Streptococcus agalactiae/aislamiento & purificación , Streptococcus/aislamiento & purificación , Staphylococcus aureus/aislamiento & purificación , Sensibilidad y Especificidad , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/microbiología , Cocos Grampositivos/aislamiento & purificación , Inmunoensayo/veterinaria , Inmunoensayo/métodos , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología , Leche/microbiología , Leche/citología
6.
J Dairy Sci ; 107(1): 476-488, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37709015

RESUMEN

As clinical mastitis (CM) treatments are responsible for a large portion of antimicrobial use on dairy farms, many selective CM treatment protocols have been developed and evaluated against a blanket treatment approach of CM cases. Selective treatment protocols use outcomes of diagnostic tests to exclude CM cases from antimicrobial treatment when they are unlikely to benefit. To tailor interventions to increase uptake of selective treatment strategies, a comprehension of current on-farm treatment practices and factors affecting treatment decisions is vital. Two questionnaires were conducted among 142 farms across 5 provinces participating in the Canadian Dairy Network for Antimicrobial Stewardship and Resistance in this cross-sectional study. Self-reported adoption of selective CM treatments by dairy farmers was 64%, with median of 82% of cows treated in those herds using selective treatment. Using logistic regression models, the odds to implement a selective CM treatment protocol increased with a decreasing average cow somatic cell count. No other associations were identified between use of a selective CM treatment protocol and farm characteristics (herd size, CM incidence, province, milking system, and housing system). Three subsets of farmers making cow-level CM treatment decisions were identified using a cluster analysis approach: those who based decisions almost exclusively on severity of clinical signs, those who used various udder health indicators, and farmers who also incorporated more general cow information such as production, age, and genetics. When somatic cell count was considered, the median threshold used for treating was >300,000 cells/mL at the last Dairy Herd Improvement test. Various thresholds were present among those considering CM case history. Veterinary laboratories were most frequently used for bacteriological testing. Test results were used to start, change, and stop treatments. Regardless of protocol, reasons for antimicrobial treatment withheld included cow being on a cull list, having a chronic intramammary infection, or being at end of lactation (i.e., close to dry off). If clinical signs persisted after treatment, farmers indicated that they would ask veterinarians for advice, stop treatment, or continue with the same or different antibiotics. Results of this study can be used to design interventions targeting judicious mastitis-related antimicrobial use, and aid discussions between veterinarians and dairy producers regarding CM-related antimicrobial use.


Asunto(s)
Antiinfecciosos , Enfermedades de los Bovinos , Mastitis Bovina , Animales , Bovinos , Femenino , Humanos , Antibacterianos/uso terapéutico , Antiinfecciosos/uso terapéutico , Canadá , Enfermedades de los Bovinos/tratamiento farmacológico , Recuento de Células/veterinaria , Estudios Transversales , Industria Lechera/métodos , Granjas , Glándulas Mamarias Animales , Mastitis Bovina/tratamiento farmacológico , Mastitis Bovina/epidemiología , Leche
7.
J Dairy Sci ; 107(4): 2390-2405, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37923203

RESUMEN

A study was conducted at 3 commercial dairies in California to compare outcomes of treating nonsevere (mild and moderate) gram-negative (GN) clinical mastitis (CM) with intramammary (IMM) ceftiofur HCl (125 mg of ceftiofur HCl per tube) in either 2-d (SP2) or 5-d (SP5) treatment programs compared with nontreatment (CON). In addition, we contrasted results from cases classified as mild and moderate. Four hundred fifteen cases were included in the final dataset, including 135 CON, 133 SP2, and 147 SP5. Milk from quarters with CM was sampled for on-farm culture (OFC) to differentiate gram-positive (GP) and GN bacteria, with results known within 24 h. Those with GN infections were randomly assigned to experimental groups, while those with GP, mixed infections, and contaminated samples did not continue in the study and received standard farm therapy. For cows with GN infections, a sample was submitted for MALDI-TOF assay. Only nonsevere cases were enrolled, and all quarters yielded monocultures of GN species. Clinical scores were obtained 0, 1, 2, 3, 4, 5, 14, 21, and 28 ± 3 d relative to enrollment. Milk samples were collected from quarters 14, 21, and 28 ± 3 d after enrollment, and submitted for routine culture and, when appropriate, submitted to MALDI-TOF evaluation. For many response criteria, there were significant interactions between treatments and CM severity scores at the time of enrollment, with effectiveness of ceftiofur HCl treatment being more beneficial compared with CON as mastitis clinical severity increased. While most treatment responses were significant for animals with mild or moderate GN mastitis, the largest responses were noted among cows with moderate CM cases.


Asunto(s)
Enfermedades de los Bovinos , Mastitis Bovina , Femenino , Animales , Bovinos , Antibacterianos/uso terapéutico , Mastitis Bovina/tratamiento farmacológico , Mastitis Bovina/microbiología , Cefalosporinas/uso terapéutico , Leche , Enfermedades de los Bovinos/tratamiento farmacológico
8.
J Dairy Sci ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38522833

RESUMEN

Bovine mastitis (BM) is a prevalent infectious disease in dairy herds worldwide, resulting in substantial economic losses. Staphylococcus aureus is a major cause of mastitis in animals, and its antibiotic resistance poses challenges for treatment. Recently, there has been a renewed interest in the development of alternative methods to antibiotic therapy, including bacteriophages (phages), for controlling bacterial infections. In this study, 2 lytic phages (designated as JDYN for vB_SauM_JDYN and JDF86 for vB_SauM_JDF86) were isolated from the cattle sewage effluent samples collected from dairy farms in Shanghai. The 2 phages have a broad bactericidal spectrum against Staphylococcus of various origins. Genomic and morphological analyses revealed that the 2 phages belonged to the Myoviridae family. Moreover, JDYN and JDF86 remained stable under a wide range of temperatures or pH and were almost unaffected in chloroform. In this study, we prepared a phage cocktail designated "PHC-1" which consisted of a 1:1:1 ratio of JDYN, JDF86 and SLPW (a previously characterized phage). PHC-1 showed the strongest bacteriolytic effect and the lowest frequency of emergence of bacteriophage insensitive mutants compared with monophages. The bovine mammary epithelial cells (MAC-T cells) and lactating mice mastitis model were used to evaluate the effectiveness of PHC-1 in vitro and in vivo, respectively. The results demonstrated that PHC-1 treatment significantly reduced bacterial load, alleviated inflammatory response, and improved mastitis pathology. Altogether, these results suggest that PHC-1 has the potential to treat S. aureus-induced bovine mastitis and that phage cocktails can combat antibiotic-resistant S. aureus infections.

9.
J Dairy Sci ; 107(5): 3114-3126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37944808

RESUMEN

Klebsiella pneumoniae can cause severe clinical mastitis in dairy cows, with K. pneumoniae type K57 (K57-KP) being the most common capsular serotype. To identify virulence factors and antimicrobial-resistance (AMR) genes of K57-KP with varying virulence, Galleria mellonella (greater wax moth) larvae were infected as a screening model to characterize virulence of 90 K57-KP strains, with 10 and 11 strains defined as virulent or attenuated, respectively, based on larval survival rates. Next, virulence of these 21 isolates was subsequently confirmed in adhesion and lactate dehydrogenase release assays, using bovine mammary epithelial cells cultured in vitro. Finally, genes associated with virulence and AMR were characterize with whole-genome sequencing. These 21 K57-KP strains were designated into 16 sequence types based on multi-locus sequence typing and allocated in phylogenetic analysis based on single nucleotide polymorphisms. We found great genetic diversity among isolates. In addition, adhesion-associated genes (e.g., fimA, sfaA, and focA) aminoglycoside-resistance genes (aph(6)-Id, strAB) were associated with virulence. This study provided new knowledge regarding virulence of K57-KP associated with bovine mastitis, which may inform development of novel diagnostic tools and prevention strategies for bovine mastitis.

10.
J Dairy Res ; 91(1): 67-69, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38494757

RESUMEN

Rapid diagnostic tests that differentiate between Gram positive, Gram negative and the absence of aerobic bacteria in milk samples from dairy cows with clinical mastitis can support antimicrobial treatment decisions and contribute to a more prudent use of antimicrobials in the dairy industry. The objective of this study was to evaluate the test characteristics of the novel rapid BACT mastitis test in discriminating causes of clinical mastitis under laboratory conditions. Test outcomes of 155 milk samples from clinical mastitis cases were incubated for 14-16 h in the BACT test and compared to results of bacteriological culture. The accuracy for detection of bacterial growth and Gram positive growth was 91 and 89%, respectively. The BACT test could provide an accurate and relatively fast decision tool for farmers to aid in antimicrobial treatment decisions in cases of clinical mastitis.


Asunto(s)
Mastitis Bovina , Leche , Animales , Femenino , Bovinos , Mastitis Bovina/diagnóstico , Mastitis Bovina/microbiología , Leche/microbiología , Leche/química , Sensibilidad y Especificidad , Técnicas Bacteriológicas/veterinaria , Bacterias Grampositivas/aislamiento & purificación , Industria Lechera/métodos , Bacterias Gramnegativas/aislamiento & purificación , Pruebas Diagnósticas de Rutina/veterinaria , Prueba de Diagnóstico Rápido
11.
World J Microbiol Biotechnol ; 40(4): 132, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470533

RESUMEN

Lactococcus garvieae (L. garvieae) is a pathogenic bacterium that is Gram-positive and catalase-negative (GPCN), and it is capable of growing in a wide range of environmental conditions. This bacterium is associated with significant mortality and losses in fisheries, and there are concerns regarding its potential as a zoonotic pathogen, given its presence in cattle and dairy products. While we have identified and characterized virulent strains of L. garvieae through phenotyping and molecular typing studies, their impact on mammary tissue remains unknown. This study aims to investigate the pathogenicity of strong and weak virulent strains of L. garvieae using in vivo mouse models. We aim to establish MAC-T cell model to examine potential injury caused by the strong virulent strain LG41 through the TLR2/NLRP3/NF-kB pathway. Furthermore, we assess the involvement of NLRP3 inflammasome-mediated pyroptosis in dairy mastitis by silencing NLRP3. The outcomes of this study will yield crucial theoretical insights into the potential mechanisms involved in mastitis in cows caused by the L. garvieae-induced inflammatory response in MAC-T cells.


Asunto(s)
Inflamasomas , Mastitis , Humanos , Femenino , Animales , Bovinos , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Linfocitos T/metabolismo , Lactococcus/metabolismo , Mastitis/microbiología , Mastitis/veterinaria , Inflamación
12.
BMC Genomics ; 24(1): 44, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36698060

RESUMEN

BACKGROUND: Bovine mastitis accounts for significant economic losses to the dairy industry worldwide. Staphylococcus aureus is the most common causative agent of bovine mastitis. Investigating the prevalence of virulence factors and antimicrobial resistance would provide insight into the molecular epidemiology of mastitis-associated S. aureus strains. The present study is focused on the whole genome sequencing and comparative genomic analysis of 41 mastitis-associated S. aureus strains isolated from India. RESULTS: The results elucidate explicit knowledge of 15 diverse sequence types (STs) and five clonal complexes (CCs). The clonal complexes CC8 and CC97 were found to be the predominant genotypes comprising 21 and 10 isolates, respectively. The mean genome size was 2.7 Mbp with a 32.7% average GC content. The pan-genome of the Indian strains of mastitis-associated S. aureus is almost closed. The genome-wide SNP-based phylogenetic analysis differentiated 41 strains into six major clades. Sixteen different spa types were identified, and eight isolates were untypeable. The cgMLST analysis of all S. aureus genome sequences reported from India revealed that S. aureus strain MUF256, isolated from wound fluids of a diabetic patient, was the common ancestor. Further, we observed that all the Indian mastitis-associated S. aureus isolates belonging to the CC97 are mastitis-associated. We identified 17 different antimicrobial resistance (AMR) genes among these isolates, and all the isolates used in this study were susceptible to methicillin. We also identified 108 virulence-associated genes and discuss their associations with different genotypes. CONCLUSION: This is the first study presenting a comprehensive whole genome analysis of bovine mastitis-associated S. aureus isolates from India. Comparative genomic analysis revealed the genome diversity, major genotypes, antimicrobial resistome, and virulome of clinical and subclinical mastitis-associated S. aureus strains.


Asunto(s)
Genoma Bacteriano , Mastitis Bovina , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Bovinos , Femenino , Humanos , Antibacterianos , Genómica , Mastitis Bovina/epidemiología , Mastitis Bovina/microbiología , Tipificación de Secuencias Multilocus , Filogenia , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/genética , India
13.
Appl Environ Microbiol ; 89(4): e0174322, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36939340

RESUMEN

Mastitis is a common and widespread infectious disease in dairy farms around the world, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis in dairy cows. S. aureus can activate inflammatory signaling pathways in bovine mammary epithelial cells. Exosomes produced by cells can directly transfer pathogen-related molecules from cell to cell, thus affecting the process of infection. Protein is the material basis of the immune defense function in the body; therefore, a comprehensive comparison of proteins in exosomes derived from S. aureus-infected (SA group) and normal (control group [C group]) bovine mammary epithelial MAC-T cells was performed using shotgun proteomics by a DIA approach. A total of 7,070 proteins were identified and quantified. Compared with the C group, there were 802 differentially expressed proteins (DEPs) identified in the SA group (absolute log2 fold change [|log2FC|] of ≥0.58; false discovery rate [FDR] of <0.05), among which 325 proteins were upregulated and 477 were downregulated. The upregulated proteins, including complement 3 (C3), integrin alpha-6 (ITGA6), apolipoprotein A1 (APOA1), annexin A2 (ANXA2), tripeptidyl peptidase II (TPP2), keratin 8 (KRT8), and recombinant desmoyokin (AHNAK), are involved mostly in host defense against pathogens, inflammation, and cell structure maintenance. KEGG enrichment analysis indicated that DEPs in S. aureus infection were involved in the complement and coagulation cascade, phagosome, extracellular matrix (ECM)-receptor interaction, and focal adhesion pathways. The results of this study provide novel information about proteins in the exosomes of MAC-T cells infected with S. aureus and could contribute to an understanding of the infectious mechanism of bovine mastitis. IMPORTANCE Mastitis is a widespread infectious disease in dairy farms, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis. Exosomes contain proteins, lipids, and nucleic acids, which are involved in many physiological and pathological functions. The expression of proteins in exosomes derived from bovine mammary epithelial cells infected by S. aureus is still barely understood. These results provide novel information about MAC-T-derived exosomal proteins, reveal insights into their functions, and lay a foundation for further studying the biological function of exosomes during the inflammatory response.


Asunto(s)
Enfermedades Transmisibles , Exosomas , Mastitis Bovina , Infecciones Estafilocócicas , Bovinos , Animales , Femenino , Humanos , Staphylococcus aureus/fisiología , Exosomas/metabolismo , Mastitis Bovina/microbiología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/microbiología , Células Epiteliales/fisiología , Enfermedades Transmisibles/metabolismo , Enfermedades Transmisibles/veterinaria , Glándulas Mamarias Animales/microbiología
14.
BMC Microbiol ; 23(1): 43, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36803552

RESUMEN

BACKGROUND: Staphylococcus aureus is one of the prevalent etiological agents of contagious bovine mastitis, causing a significant economic burden on the global dairy industry. Given the emergence of antibiotic resistance (ABR) and possible zoonotic spillovers, S aureus from mastitic cattle pose threat to both veterinary and public health. Therefore, assessment of their ABR status and pathogenic translation in human infection models is crucial. RESULTS: In this study, 43 S. aureus isolates associated with bovine mastitis obtained from four different Canadian provinces (Alberta, Ontario, Quebec, and Atlantic provinces) were tested for ABR and virulence through phenotypic and genotypic profiling. All 43 isolates exhibited crucial virulence characteristics such as hemolysis, and biofilm formation, and six isolates from ST151, ST352, and ST8 categories showed ABR. Genes associated with ABR (tetK, tetM, aac6', norA, norB, lmrS, blaR, blaZ, etc.), toxin production (hla, hlab, lukD, etc.), adherence (fmbA, fnbB, clfA, clfB, icaABCD, etc.), and host immune invasion (spa, sbi, cap, adsA, etc.) were identified by analyzing whole-genome sequences. Although none of the isolates possessed human adaptation genes, both groups of ABR and antibiotic-susceptible isolates demonstrated intracellular invasion, colonization, infection, and death of human intestinal epithelial cells (Caco-2), and Caenorhabditis elegans. Notably, the susceptibilities of S. aureus towards antibiotics such as streptomycin, kanamycin, and ampicillin were altered when the bacteria were internalized in Caco-2 cells and C. elegans. Meanwhile, tetracycline, chloramphenicol, and ceftiofur were comparatively more effective with ≤ 2.5 log10 reductions of intracellular S. aureus. CONCLUSIONS: This study demonstrated the potential of S. aureus isolated from mastitis cows to possess virulence characteristics enabling invasion of intestinal cells thus calling for developing therapeutics capable of targeting drug-resistant intracellular pathogens for effective disease management.


Asunto(s)
Mastitis Bovina , Infecciones Estafilocócicas , Animales , Bovinos , Femenino , Antibacterianos/farmacología , Células CACO-2 , Caenorhabditis elegans , Canadá , Farmacorresistencia Microbiana , Genómica , Mastitis Bovina/microbiología , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus
15.
Microb Pathog ; 183: 106270, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37499842

RESUMEN

Autophagy is a highly conserved cellular defensive mechanism that can eliminate bacterial pathogens such as Streptococcus uberis, that causes mastitis in cows. However, S. uberis induced autophagy is still unclear. In this study, we tested if certain inflammatory cytokines such as IL-6, TNF-α, and IFN-γ, critical in mastitis due to S. uberis infection, regulate autophagy activation in bovine mammary epithelial cells (bMECs). Using Western blot and laser scanning confocal microscope in bMECs challenged by S. uberis, showed that the expression of IL-6, TNF-α, IFN-γ oscillated with the expressions of autophagic Atg5, ULK1, PTEN, P62, and LC3ӀӀ/LC3Ӏ. S. uberis infection induced autophagosomes and LC3 puncta in bMECs with upregulation of Atg5, ULK1, PTEN, LC3ӀӀ/LC3Ӏ, and downregulation of P62. The levels of IL-6, TNF-α, and IFN-γ increased during autophagy flux formation to decrease during autophagy induction. Autophagy inhibition increased the expression of IL-6, TNF-α, and IFN-γ and increased S. uberis burden. This study indicates autophagy is induced during S. uberis infection and IL-6, TNF-α, and IFN-γ contribute to autophagy and autophagy flux formation.


Asunto(s)
Mastitis Bovina , Infecciones Estreptocócicas , Femenino , Bovinos , Animales , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Infecciones Estreptocócicas/microbiología , Interleucina-6/metabolismo , Glándulas Mamarias Animales/microbiología , Interferón gamma/metabolismo , Células Epiteliales/microbiología , Autofagia , Mastitis Bovina/microbiología
16.
Microb Pathog ; 184: 106338, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683833

RESUMEN

Escherichia coli (E. coli) is a major environmental pathogen that causes mammary tissue damage and cell death, which results in substantial economic losses. Pyroptosis, a novel form of programmed cell death characterized by DNA fragmentation, chromatin condensation, cell swelling and leakage of cell contents, often occurs after inflammatory apoptotic pathways activation. Our objective was to investigate the intraction between E. coli infection and bovine mammary epithelial cells (bMECs) with pyroptosis and to explore the underlying regulatory mechanism. bMECs were infected with E. coli for 6 h. Lactic dehydrogenase activities, interleukin (IL)-10, IL-1ß, IL-18 and tumor necrosis factor-α concentrations, total apoptosis indexes, and protein expressions of P-cdc25c, P-CDK1, cleaved caspase 9, cleaved caspase 3, cleaved PARP, P-NF-κB, NLRP3, ASC, caspase 1, gasdermin D N-terminal, IL-1ß and IL-18 were significantly increased in E. coli infected bMECs. Whereas, cell membrane potential, protein levels of cdc25c, CDK1, cyclin B1, and Bcl-2/Bax level were markedly reduced. Furthermore, Ac-DEVD-CHO (specific inhibitor of apoptosis) dramatically suppressed pyroptosis in bMECs. Moreover, expressions of p53 and p21 promptly improved after E. coli infection, however, Pifithrin-α (specific inhibitor of p53) inhibited p53-p21 pathway, apoptosis, cell cycle arrest and pyroptosis. These results elaborated that E. coli infection of bMECs induced pyroptosis through activating the p53-p21 pathway-mediated apoptosis and cell cycle arrest. Taken together, inhibition of pyroptosis via suppressing of p53-p21 pathway may be an effective therapeutic approach for treating E. coli-induced mastitis, offering efficient theoretical support for the protection and treatment of bovine mastitis.


Asunto(s)
Infecciones por Escherichia coli , Piroptosis , Femenino , Bovinos , Animales , Interleucina-18/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Escherichia coli/metabolismo , Apoptosis , Células Epiteliales , Infecciones por Escherichia coli/patología , Puntos de Control del Ciclo Celular
17.
Vet Res ; 54(1): 28, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973819

RESUMEN

Streptococcus uberis is a major causative agent of bovine mastitis, an inflammation of the mammary gland with substantial economic consequences. To reduce antibiotic use in animal agriculture, alternative strategies to treat or prevent mastitis are being investigated. Bovine-associated non-aureus staphylococci are proposed in that respect due to their capacity to inhibit the in vitro growth of S. uberis. We demonstrate that priming the murine mammary gland with Staphylococcus chromogenes IM reduces S. uberis growth in comparison with non-primed glands. The innate immune system is activated by increasing IL-8 and LCN2, which may explain this decreased growth.


Asunto(s)
Enfermedades de los Bovinos , Mastitis Bovina , Infecciones Estreptocócicas , Femenino , Animales , Bovinos , Ratones , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/veterinaria , Glándulas Mamarias Animales/microbiología , Streptococcus , Mastitis Bovina/prevención & control , Mastitis Bovina/microbiología
18.
Vet Res ; 54(1): 79, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723537

RESUMEN

CC97 and CC151 are two of the most common Staphylococcus aureus lineages associated with bovine intramammary infection. The genotype of the infecting S. aureus strain influences virulence and the progression of intramammary disease. Strains from CC97 and CC151 encode a distinct array of virulence factors. Identification of proteins elaborated in vivo will provide insights into the molecular mechanism of pathogenesis of these lineages, as well as facilitating the development of tailored treatments and pan-lineage vaccines and diagnostics. The repertoire of genes encoding cell wall-anchored (CWA) proteins was identified for S. aureus strains MOK023 (CC97) and MOK124 (CC151); MOK023 encoded more CWA proteins than MOK124. Serum collected during an in vivo challenge trial was used to investigate whether the humoral response to cell wall proteins was strain-specific. Immunoproteomic analysis demonstrated that the humoral response in MOK023-infected cows predominantly targeted high molecular weight proteins while the response in MOK124-infected cows targeted medium or low molecular weight proteins. Antigenic proteins were identified by two-dimensional serum blotting followed by mass spectometry-based identification of immunoreactive spots, with putative antigens subsequently validated. The CWA proteins ClfB, SdrE/Bbp and IsdA were identified as immunogenic regardless of the infecting strain. In addition, a number of putative strain-specific imunogens were identified. The variation in antigens produced by different strains may indicate that these strains have different strategies for exploiting the intramammary niche. Such variation should be considered when developing novel control strategies including vaccines, therapeutics and diagnostics.


Asunto(s)
Enfermedades de los Bovinos , Infecciones Estafilocócicas , Femenino , Animales , Bovinos , Staphylococcus aureus/genética , Proteínas de la Membrana , Pared Celular , Genotipo , Infecciones Estafilocócicas/veterinaria , Inmunoglobulina G
19.
Vet Res ; 54(1): 78, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710276

RESUMEN

Bovine mastitis, the most prevalent and costly disease in dairy cows worldwide, decreases milk quality and quantity, and increases cow culling. However, involvement of microRNAs (miRNAs) in mastitis is not well characterized. The objective was to determine the role of microRNA-223 (miR-223) in regulation of the nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome and kelch like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) oxidative stress pathway in mastitis models induced by lipopolysaccharide (LPS) treatment of immortalized bovine mammary epithelial cells (bMECs) and murine mammary glands. In bMECs cultured in vitro, LPS-induced inflammation downregulated bta-miR-223; the latter interacted directly with the 3' untranslated region (3' UTR) of NLRP3 and Keap1. Overexpression of bta-miR-223 in bMECs decreased LPS and Adenosine 5'-triphosphate (ATP)-induced NLRP3 and its mediation of caspase 1 and IL-1ß, and inhibited LPS-induced Keap1 and Nrf2 mediated oxidative stress, whereas inhibition of bta-miR-223 had opposite effects. In an in vivo murine model of LPS-induced mastitis, increased miR-223 mitigated pathology in the murine mammary gland, whereas decreased miR-223 increased inflammatory changes and oxidative stress. In conclusion, bta-miR-223 mitigated inflammation and oxidative injury by downregulating the NLRP3 inflammasome and Keap1/Nrf2 signaling pathway. This study implicated bta-miR-223 in regulation of inflammatory responses, with potential as a novel target for treating bovine mastitis and other diseases.


Asunto(s)
Enfermedades de los Bovinos , Mastitis Bovina , MicroARNs , Animales , Bovinos , Femenino , Ratones , Adenosina Trifosfato , Células Epiteliales , Inflamasomas , Inflamación/veterinaria , Proteína 1 Asociada A ECH Tipo Kelch/genética , Lipopolisacáridos/farmacología , MicroARNs/genética , Factor 2 Relacionado con NF-E2/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Estrés Oxidativo
20.
Anal Bioanal Chem ; 415(22): 5499-5509, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37382653

RESUMEN

We present a highly integrated point-of-care testing (POCT) device capable of immediately and accurately screening bovine mastitis infection based on somatic cell counting (SCC). The system primarily consists of a homemade cell-counting chamber and a miniature fluorescent microscope. The cell-counting chamber is pre-embedded with acridine orange (AO) in advance, which is simple and practical. And then SCC is directly identified by microscopic imaging analysis to evaluate the bovine mastitis infection. Only 4 µL of raw bovine milk is required for a simple sample testing and accurate SCC. The entire assay process from sampling to result in presentation is completed quickly within 6 min, enabling instant "sample-in and answer-out." Under laboratory conditions, we mixed bovine leukocyte suspension with whole milk and achieved a detection limit as low as 2.12 × 104 cells/mL on the system, which is capable of screening various types of clinical standards of bovine milk. The fitting degrees of the proposed POCT system with manual fluorescence microscopy were generally consistent (R2 > 0.99). As a proof of concept, four fresh milk samples were used in the test. The average accuracy of somatic cell counts was 98.0%, which was able to successfully differentiate diseased cows from healthy ones. The POCT system is user-friendly and low-cost, making it a potential tool for on-site diagnosis of bovine mastitis in resource-limited areas.


Asunto(s)
Mastitis Bovina , Animales , Femenino , Bovinos , Mastitis Bovina/diagnóstico , Leche/metabolismo , Pruebas en el Punto de Atención , Microscopía Fluorescente , Recuento de Células/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA