Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.547
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(13): 3236-3248.e21, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772369

RESUMEN

Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.


Asunto(s)
Redes Reguladoras de Genes , Análisis de la Célula Individual , Animales , Femenino , Humanos , Ratones , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Vectores Genéticos/metabolismo , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/citología , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Línea Celular , Transcripción Genética
2.
Cell ; 187(17): 4733-4750.e26, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38971152

RESUMEN

We identify a population of Protogenin-positive (PRTG+ve) MYChigh NESTINlow stem cells in the four-week-old human embryonic hindbrain that subsequently localizes to the ventricular zone of the rhombic lip (RLVZ). Oncogenic transformation of early Prtg+ve rhombic lip stem cells initiates group 3 medulloblastoma (Gr3-MB)-like tumors. PRTG+ve stem cells grow adjacent to a human-specific interposed vascular plexus in the RLVZ, a phenotype that is recapitulated in Gr3-MB but not in other types of medulloblastoma. Co-culture of Gr3-MB with endothelial cells promotes tumor stem cell growth, with the endothelial cells adopting an immature phenotype. Targeting the PRTGhigh compartment of Gr3-MB in vivo using either the diphtheria toxin system or chimeric antigen receptor T cells constitutes effective therapy. Human Gr3-MBs likely arise from early embryonic RLVZ PRTG+ve stem cells inhabiting a specific perivascular niche. Targeting the PRTGhigh compartment and/or the perivascular niche represents an approach to treat children with Gr3-MB.


Asunto(s)
Meduloblastoma , Células Madre Neoplásicas , Humanos , Meduloblastoma/patología , Meduloblastoma/metabolismo , Animales , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Ratones , Rombencéfalo/metabolismo , Rombencéfalo/embriología , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Células Endoteliales/metabolismo , Nicho de Células Madre , Células Madre/metabolismo , Técnicas de Cocultivo , Estructuras Embrionarias , Metencéfalo/embriología
3.
Cell ; 187(3): 712-732.e38, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194967

RESUMEN

Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.


Asunto(s)
Encéfalo , Organoides , Humanos , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Matriz Extracelular/metabolismo , Células Madre Pluripotentes/metabolismo , Prosencéfalo/citología , Técnicas de Cultivo de Tejidos , Células Madre/metabolismo , Morfogénesis
4.
Cell ; 186(26): 5892-5909.e22, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38091994

RESUMEN

Different functional regions of brain are fundamental for basic neurophysiological activities. However, the regional specification remains largely unexplored during human brain development. Here, by combining spatial transcriptomics (scStereo-seq) and scRNA-seq, we built a spatiotemporal developmental atlas of multiple human brain regions from 6-23 gestational weeks (GWs). We discovered that, around GW8, radial glia (RG) cells have displayed regional heterogeneity and specific spatial distribution. Interestingly, we found that the regional heterogeneity of RG subtypes contributed to the subsequent neuronal specification. Specifically, two diencephalon-specific subtypes gave rise to glutamatergic and GABAergic neurons, whereas subtypes in ventral midbrain were associated with the dopaminergic neurons. Similar GABAergic neuronal subtypes were shared between neocortex and diencephalon. Additionally, we revealed that cell-cell interactions between oligodendrocyte precursor cells and GABAergic neurons influenced and promoted neuronal development coupled with regional specification. Altogether, this study provides comprehensive insights into the regional specification in the developing human brain.


Asunto(s)
Encéfalo , Transcriptoma , Humanos , Neuronas Dopaminérgicas , Neuronas GABAérgicas , Mesencéfalo , Neocórtex , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo
5.
Cell ; 185(17): 3124-3137.e15, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35944541

RESUMEN

During development, melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) become light sensitive much earlier than rods and cones. IpRGCs project to many subcortical areas, whereas physiological functions of these projections are yet to be fully elucidated. Here, we found that ipRGC-mediated light sensation promotes synaptogenesis of pyramidal neurons in various cortices and the hippocampus. This phenomenon depends on activation of ipRGCs and is mediated by the release of oxytocin from the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) into cerebral-spinal fluid. We further characterized a direct connection between ipRGCs and oxytocin neurons in the SON and mutual projections between oxytocin neurons in the SON and PVN. Moreover, we showed that the lack of ipRGC-mediated, light-promoted early cortical synaptogenesis compromised learning ability in adult mice. Our results highlight the importance of light sensation early in life on the development of learning ability and therefore call attention to suitable light environment for infant care.


Asunto(s)
Oxitocina , Células Ganglionares de la Retina , Animales , Encéfalo/metabolismo , Humanos , Ratones , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/metabolismo
6.
Cell ; 185(20): 3753-3769.e18, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179668

RESUMEN

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Encéfalo , Colágeno , Humanos , Laminina , Midkina , Neovascularización Patológica/patología , Neovascularización Fisiológica/fisiología , Pericitos
7.
Cell ; 178(4): 867-886.e24, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398341

RESUMEN

Somatosensory over-reactivity is common among patients with autism spectrum disorders (ASDs) and is hypothesized to contribute to core ASD behaviors. However, effective treatments for sensory over-reactivity and ASDs are lacking. We found distinct somatosensory neuron pathophysiological mechanisms underlie tactile abnormalities in different ASD mouse models and contribute to some ASD-related behaviors. Developmental loss of ASD-associated genes Shank3 or Mecp2 in peripheral mechanosensory neurons leads to region-specific brain abnormalities, revealing links between developmental somatosensory over-reactivity and the genesis of aberrant behaviors. Moreover, acute treatment with a peripherally restricted GABAA receptor agonist that acts directly on mechanosensory neurons reduced tactile over-reactivity in six distinct ASD models. Chronic treatment of Mecp2 and Shank3 mutant mice improved body condition, some brain abnormalities, anxiety-like behaviors, and some social impairments but not memory impairments, motor deficits, or overgrooming. Our findings reveal a potential therapeutic strategy targeting peripheral mechanosensory neurons to treat tactile over-reactivity and select ASD-related behaviors.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Agonistas del GABA/farmacología , Ácidos Isonicotínicos/farmacología , Fenotipo , Células Receptoras Sensoriales/efectos de los fármacos , Tacto/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Ansiedad/tratamiento farmacológico , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Agonistas del GABA/uso terapéutico , Ácidos Isonicotínicos/uso terapéutico , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/genética , Inhibición Prepulso/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo
8.
Cell ; 177(3): 654-668.e15, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30929900

RESUMEN

New neurons arise from quiescent adult neural progenitors throughout life in specific regions of the mammalian brain. Little is known about the embryonic origin and establishment of adult neural progenitors. Here, we show that Hopx+ precursors in the mouse dentate neuroepithelium at embryonic day 11.5 give rise to proliferative Hopx+ neural progenitors in the primitive dentate region, and they, in turn, generate granule neurons, but not other neurons, throughout development and then transition into Hopx+ quiescent radial glial-like neural progenitors during an early postnatal period. RNA-seq and ATAC-seq analyses of Hopx+ embryonic, early postnatal, and adult dentate neural progenitors further reveal common molecular and epigenetic signatures and developmental dynamics. Together, our findings support a "continuous" model wherein a common neural progenitor population exclusively contributes to dentate neurogenesis throughout development and adulthood. Adult dentate neurogenesis may therefore represent a lifelong extension of development that maintains heightened plasticity in the mammalian hippocampus.


Asunto(s)
Células Madre Embrionarias/metabolismo , Neurogénesis , Animales , Diferenciación Celular , Giro Dentado/metabolismo , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Hipocampo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo
9.
Cell ; 173(6): 1370-1384.e16, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29856955

RESUMEN

The cerebral cortex underwent rapid expansion and increased complexity during recent hominid evolution. Gene duplications constitute a major evolutionary force, but their impact on human brain development remains unclear. Using tailored RNA sequencing (RNA-seq), we profiled the spatial and temporal expression of hominid-specific duplicated (HS) genes in the human fetal cortex and identified a repertoire of 35 HS genes displaying robust and dynamic patterns during cortical neurogenesis. Among them NOTCH2NL, human-specific paralogs of the NOTCH2 receptor, stood out for their ability to promote cortical progenitor maintenance. NOTCH2NL promote the clonal expansion of human cortical progenitors, ultimately leading to higher neuronal output. At the molecular level, NOTCH2NL function by activating the Notch pathway through inhibition of cis Delta/Notch interactions. Our study uncovers a large repertoire of recently evolved genes active during human corticogenesis and reveals how human-specific NOTCH paralogs may have contributed to the expansion of the human cortex.


Asunto(s)
Corteza Cerebral/metabolismo , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Neurogénesis , Neuronas/metabolismo , Receptor Notch2/genética , Secuencia de Aminoácidos , Proteínas de Unión al Calcio , Diferenciación Celular/genética , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Células-Madre Neurales/metabolismo , Transducción de Señal
10.
Cell ; 172(3): 491-499.e15, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29358049

RESUMEN

Non-coding "ultraconserved" regions containing hundreds of consecutive bases of perfect sequence conservation across mammalian genomes can function as distant-acting enhancers. However, initial deletion studies in mice revealed that loss of such extraordinarily constrained sequences had no immediate impact on viability. Here, we show that ultraconserved enhancers are required for normal development. Focusing on some of the longest ultraconserved sites genome wide, located near the essential neuronal transcription factor Arx, we used genome editing to create an expanded series of knockout mice lacking individual or combinations of ultraconserved enhancers. Mice with single or pairwise deletions of ultraconserved enhancers were viable and fertile but in nearly all cases showed neurological or growth abnormalities, including substantial alterations of neuron populations and structural brain defects. Our results demonstrate the functional importance of ultraconserved enhancers and indicate that remarkably strong sequence conservation likely results from fitness deficits that appear subtle in a laboratory setting.


Asunto(s)
Secuencia Conservada , Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos , Animales , Encéfalo/anomalías , Encéfalo/embriología , Encéfalo/metabolismo , Femenino , Eliminación de Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Mol Cell ; 81(22): 4663-4676.e8, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34637754

RESUMEN

The heterogeneous family of complexes comprising Polycomb repressive complex 1 (PRC1) is instrumental for establishing facultative heterochromatin that is repressive to transcription. However, two PRC1 species, ncPRC1.3 and ncPRC1.5, are known to comprise novel components, AUTS2, P300, and CK2, that convert this repressive function to that of transcription activation. Here, we report that individuals harboring mutations in the HX repeat domain of AUTS2 exhibit defects in AUTS2 and P300 interaction as well as a developmental disorder reflective of Rubinstein-Taybi syndrome, which is mainly associated with a heterozygous pathogenic variant in CREBBP/EP300. Moreover, the absence of AUTS2 or mutation in its HX repeat domain gives rise to misregulation of a subset of developmental genes and curtails motor neuron differentiation of mouse embryonic stem cells. The transcription factor nuclear respiratory factor 1 (NRF1) has a novel and integral role in this neurodevelopmental process, being required for ncPRC1.3 recruitment to chromatin.


Asunto(s)
Encéfalo/metabolismo , Proteína de Unión a CREB/genética , Proteínas del Citoesqueleto/metabolismo , Proteína p300 Asociada a E1A/genética , Células Madre Embrionarias/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Cromatina/química , Femenino , Genómica , Células HEK293 , Heterocigoto , Humanos , Masculino , Ratones , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Proteómica , Activación Transcripcional
12.
Genes Dev ; 35(23-24): 1551-1578, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34862179

RESUMEN

Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.


Asunto(s)
Microcefalia , Ciclo Celular , Centrosoma/metabolismo , Humanos , Microcefalia/genética , Mitosis/genética , Neurogénesis , Huso Acromático/genética
13.
Development ; 151(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39348458

RESUMEN

The thalamus is organized into nuclei that have distinct input and output connectivities with the cortex. Whereas first-order (FO) nuclei - also called core nuclei - relay input from sensory organs on the body surface and project to primary cortical sensory areas, higher-order (HO) nuclei - matrix nuclei - instead receive their driver input from the cortex and project to secondary and associative areas within cortico-thalamo-cortical loops. Input-dependent processes have been shown to play a crucial role in the emergence of FO thalamic neuron identity from a ground-state HO neuron identity, yet how this identity emerges during development remains unknown. Here, using single-cell RNA sequencing of the developing mouse embryonic thalamus, we show that, although they are born together, HO neurons start differentiating earlier than FO neurons. Within the FO visual thalamus, postnatal peripheral input is crucial for the maturation of excitatory, but not inhibitory, neurons. Our findings reveal different differentiation tempos and input sensitivities of HO and FO neurons, and highlight neuron type-specific molecular differentiation programs in the developing thalamus.


Asunto(s)
Diferenciación Celular , Neuronas , Tálamo , Animales , Ratones , Neuronas/metabolismo , Neuronas/citología , Tálamo/embriología , Tálamo/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Análisis de la Célula Individual , Regulación del Desarrollo de la Expresión Génica , Femenino
14.
Annu Rev Neurosci ; 41: 163-183, 2018 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-29618284

RESUMEN

The thalamus has long been suspected to have an important role in cognition, yet recent theories have favored a more corticocentric view. According to this view, the thalamus is an excitatory feedforward relay to or between cortical regions, and cognitively relevant computations are exclusively cortical. Here, we review anatomical, physiological, and behavioral studies along evolutionary and theoretical dimensions, arguing for essential and unique thalamic computations in cognition. Considering their architectural features as well as their ability to initiate, sustain, and switch cortical activity, thalamic circuits appear uniquely suited for computing contextual signals that rapidly reconfigure task-relevant cortical representations. We introduce a framework that formalizes this notion, show its consistency with several findings, and discuss its prediction of thalamic roles in perceptual inference and behavioral flexibility. Overall, our framework emphasizes an expanded view of the thalamus in cognitive computations and provides a roadmap to test several of its theoretical and experimental predictions.


Asunto(s)
Corteza Cerebral/fisiología , Cognición/fisiología , Modelos Neurológicos , Vías Nerviosas/fisiología , Tálamo/fisiología , Animales , Corteza Cerebral/anatomía & histología , Simulación por Computador , Humanos , Vías Nerviosas/anatomía & histología , Tálamo/anatomía & histología
15.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184296

RESUMEN

Neurodegenerative diseases are characterized by the progressive loss of structure or function of neurons. In this Spotlight, we explore the idea that genetic forms of neurodegenerative disorders might be rooted in neural development. Focusing on Alzheimer's, Parkinson's and Huntington's disease, we first provide a brief overview of the pathology for these diseases. Although neurodegenerative diseases are generally thought of as late-onset diseases, we discuss recent evidence promoting the notion that they might be considered neurodevelopmental disorders. With this view in mind, we consider the suitability of animal models for studying these diseases, highlighting human-specific features of human brain development. We conclude by proposing that one such feature, human-specific regulation of neurogenic time, might be key to understanding the etiology and pathophysiology of human neurodegenerative disease.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Trastornos del Neurodesarrollo , Animales , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Enfermedad de Huntington/genética , Modelos Animales , Encéfalo/patología
16.
Development ; 150(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37070770

RESUMEN

Communication between the nervous and immune system is crucial for development, homeostasis and response to injury. Before the onset of neurogenesis, microglia populate the central nervous system, serving as resident immune cells over the course of life. Here, we describe new roles of an uncharacterized transcript upregulated by neurogenic progenitors during mouse corticogenesis: 4931414P19Rik (hereafter named P19). Overexpression of P19 cell-extrinsically inhibited neuronal migration and acted as chemoattractant of microglial cells. Interestingly, effects on neuronal migration were found to result directly from P19 secretion by neural progenitors triggering microglia accumulation within the P19 targeted area. Our findings highlight the crucial role of microglia during brain development and identify P19 as a previously unreported player in the neuro-immune crosstalk.


Asunto(s)
Microglía , Neurogénesis , Animales , Ratones , Neurogénesis/fisiología , Sistema Nervioso Central , Sistema Inmunológico , Movimiento Celular , Encéfalo/fisiología
17.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385881

RESUMEN

Gene expression during brain development or abnormal development is a biological process that is highly dynamic in spatio and temporal. Previous studies have mainly focused on individual brain regions or a certain developmental stage. Our motivation is to address this gap by incorporating spatio-temporal information to gain a more complete understanding of brain development or abnormal brain development, such as Alzheimer's disease (AD), and to identify potential determinants of response. In this study, we propose a novel two-step framework based on spatial-temporal information weighting and multi-step decision trees. This framework can effectively exploit the spatial similarity and temporal dependence between different stages and different brain regions, and facilitate differential gene analysis in brain regions with high heterogeneity. We focus on two datasets: the AD dataset, which includes gene expression data from early, middle and late stages, and the brain development dataset, spanning fetal development to adulthood. Our findings highlight the advantages of the proposed framework in discovering gene classes and elucidating their impact on brain development and AD progression across diverse brain regions and stages. These findings align with existing studies and provide insights into the processes of normal and abnormal brain development.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Humanos , Enfermedad de Alzheimer/genética , Expresión Génica , Árboles de Decisión
18.
EMBO Rep ; 25(5): 2348-2374, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589666

RESUMEN

Microglia sculpt developing neural circuits by eliminating excess synapses in a process called synaptic pruning, by removing apoptotic neurons, and by promoting neuronal survival. To elucidate the role of microglia during embryonic and postnatal brain development, we used a mouse model deficient in microglia throughout life by deletion of the fms-intronic regulatory element (FIRE) in the Csf1r locus. Surprisingly, young adult Csf1rΔFIRE/ΔFIRE mice display no changes in excitatory and inhibitory synapse number and spine density of CA1 hippocampal neurons compared with Csf1r+/+ littermates. However, CA1 neurons are less excitable, receive less CA3 excitatory input and show altered synaptic properties, but this does not affect novel object recognition. Cytokine profiling indicates an anti-inflammatory state along with increases in ApoE levels and reactive astrocytes containing synaptic markers in Csf1rΔFIRE/ΔFIRE mice. Notably, these changes in Csf1rΔFIRE/ΔFIRE mice closely resemble the effects of acute microglial depletion in adult mice after normal development. Our findings suggest that microglia are not mandatory for synaptic pruning, and that in their absence pruning can be achieved by other mechanisms.


Asunto(s)
Hipocampo , Microglía , Sinapsis , Animales , Microglía/metabolismo , Sinapsis/metabolismo , Ratones , Hipocampo/metabolismo , Hipocampo/citología , Espinas Dendríticas/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Plasticidad Neuronal , Neuronas/metabolismo , Ácido Glutámico/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(30): e2221413120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37433002

RESUMEN

Effects of micronutrients on brain connectivity are incompletely understood. Analyzing human milk samples across global populations, we identified the carbocyclic sugar myo-inositol as a component that promotes brain development. We determined that it is most abundant in human milk during early lactation when neuronal connections rapidly form in the infant brain. Myo-inositol promoted synapse abundance in human excitatory neurons as well as cultured rat neurons and acted in a dose-dependent manner. Mechanistically, myo-inositol enhanced the ability of neurons to respond to transsynaptic interactions that induce synapses. Effects of myo-inositol in the developing brain were tested in mice, and its dietary supplementation enlarged excitatory postsynaptic sites in the maturing cortex. Utilizing an organotypic slice culture system, we additionally determined that myo-inositol is bioactive in mature brain tissue, and treatment of organotypic slices with this carbocyclic sugar increased the number and size of postsynaptic specializations and excitatory synapse density. This study advances our understanding of the impact of human milk on the infant brain and identifies myo-inositol as a breast milk component that promotes the formation of neuronal connections.


Asunto(s)
Lactancia Materna , Leche Humana , Femenino , Lactante , Humanos , Animales , Ratones , Ratas , Neuronas , Inositol/farmacología , Azúcares
20.
Proc Natl Acad Sci U S A ; 120(42): e2307508120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37816058

RESUMEN

Neural phenotypes are the result of probabilistic developmental processes. This means that stochasticity is an intrinsic aspect of the brain as it self-organizes over a protracted period. In other words, while both genomic and environmental factors shape the developing nervous system, another significant-though often neglected-contributor is the randomness introduced by probability distributions. Using generative modeling of brain networks, we provide a framework for probing the contribution of stochasticity to neurodevelopmental diversity. To mimic the prenatal scaffold of brain structure set by activity-independent mechanisms, we start our simulations from the medio-posterior neonatal rich club (Developing Human Connectome Project, n = 630). From this initial starting point, models implementing Hebbian-like wiring processes generate variable yet consistently plausible brain network topologies. By analyzing repeated runs of the generative process (>107 simulations), we identify critical determinants and effects of stochasticity. Namely, we find that stochastic variation has a greater impact on brain organization when networks develop under weaker constraints. This heightened stochasticity makes brain networks more robust to random and targeted attacks, but more often results in non-normative phenotypic outcomes. To test our framework empirically, we evaluated whether stochasticity varies according to the experience of early-life deprivation using a cohort of neurodiverse children (Centre for Attention, Learning and Memory; n = 357). We show that low-socioeconomic status predicts more stochastic brain wiring. We conclude that stochasticity may be an unappreciated contributor to relevant developmental outcomes and make specific predictions for future research.


Asunto(s)
Encéfalo , Aprendizaje , Niño , Recién Nacido , Humanos , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA