Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Cell ; 171(4): 836-848.e13, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28988768

RESUMEN

Adrenergic stimulation promotes lipid mobilization and oxidation in brown and beige adipocytes, where the harnessed energy is dissipated as heat in a process known as adaptive thermogenesis. The signaling cascades and energy-dissipating pathways that facilitate thermogenesis have been extensively described, yet little is known about the counterbalancing negative regulatory mechanisms. Here, we identify a two-pore-domain potassium channel, KCNK3, as a built-in rheostat negatively regulating thermogenesis. Kcnk3 is transcriptionally wired into the thermogenic program by PRDM16, a master regulator of thermogenesis. KCNK3 antagonizes norepinephrine-induced membrane depolarization by promoting potassium efflux in brown adipocytes. This limits calcium influx through voltage-dependent calcium channels and dampens adrenergic signaling, thereby attenuating lipolysis and thermogenic respiration. Adipose-specific Kcnk3 knockout mice display increased energy expenditure and are resistant to hypothermia and obesity. These findings uncover a critical K+-Ca2+-adrenergic signaling axis that acts to dampen thermogenesis, maintain tissue homeostasis, and reveal an electrophysiological regulatory mechanism of adipocyte function.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Obesidad/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Receptores Adrenérgicos/metabolismo , Transducción de Señal , Termogénesis , Adipocitos Marrones/metabolismo , Tejido Adiposo/patología , Animales , Separación Celular , Células Cultivadas , Fenómenos Electrofisiológicos , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Obesidad/patología , Canales de Potasio de Dominio Poro en Tándem/genética
2.
EMBO J ; 42(3): e111348, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36524441

RESUMEN

Moderate coolness is sensed by TRPM8 ion channels in peripheral sensory nerves, but the mechanism by which noxious cold is detected remains elusive. Here, we show that somatosensory and sympathetic neurons express two distinct mechanisms to detect noxious cold. In the first, inhibition by cold of a background outward current causes membrane depolarization that activates an inward current through voltage-dependent calcium (CaV ) channels. A second cold-activated mechanism is independent of membrane voltage, is inhibited by blockers of ORAI ion channels and by downregulation of STIM1, and is recapitulated in HEK293 cells by co-expression of ORAI1 and STIM1. Using total internal reflection fluorescence microscopy we found that cold causes STIM1 to aggregate with and activate ORAI1 ion channels, in a mechanism similar to that underlying store-operated calcium entry (SOCE), but directly activated by cold and not by emptying of calcium stores. This novel mechanism may explain the phenomenon of cold-induced vasodilation (CIVD), in which extreme cold increases blood flow in order to preserve the integrity of peripheral tissues.


Asunto(s)
Canales de Calcio , Calcio , Humanos , Canales de Calcio/genética , Canales de Calcio/metabolismo , Calcio/metabolismo , Células HEK293 , Señalización del Calcio/fisiología , Neuronas/metabolismo , Proteína ORAI1/genética , Molécula de Interacción Estromal 1/genética , Proteínas de Neoplasias/genética
3.
Plant Cell ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875155

RESUMEN

Plants respond to cold stress at multiple levels, including increasing cytosolic calcium (Ca2+) influx and triggering the expression of cold-responsive genes. Here we show that the Ca2+-permeable channel CYCLIC NUCLEOTIDE GATED CHANNEL20 (CNGC20) positively regulates freezing tolerance in Arabidopsis (Arabidopsis thaliana) by mediating cold-induced Ca2+ influx. Moreover, we demonstrate that the leucine-rich repeat receptor-like kinase PLANT PEPTIDE CONTAINING SULFATED TYROSINE1 RECEPTOR (PSY1R) is activated by cold, phosphorylating and enhancing the activity of CNGC20. The psy1r mutant exhibited decreased cold-evoked Ca2+ influx and freezing tolerance. Conversely, COLD-RESPONSIVE PROTEIN KINASE1 (CRPK1), a protein kinase that negatively regulates cold signaling, phosphorylates and facilitates the degradation of CNGC20 under prolonged periods of cold treatment, thereby attenuating freezing tolerance. This study thus identifies PSY1R and CRPK1 kinases that regulate CNGC20 activity and stability, respectively, thereby antagonistically modulating freezing tolerance in plants.

4.
Med Res Rev ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715347

RESUMEN

Transient receptor potential canonical 3 (TRPC3) protein belongs to the TRP family of nonselective cation channels. Its activation occurs by signaling through a G protein-coupled receptor (GPCR) and a phospholipase C-dependent (PLC) pathway. Perturbations in the expression of TRPC3 are associated with a plethora of pathophysiological conditions responsible for disorders of the cardiovascular, immune, and central nervous systems. The recently solved cryo-EM structure of TRPC3 provides detailed inputs about the underlying mechanistic aspects of the channel, which in turn enables more efficient ways of designing small-molecule modulators. Pharmacologically targeting TRPC3 in animal models has demonstrated great efficacy in treating diseases including cancers, neurological disorders, and cardiovascular diseases. Despite extensive scientific evidence supporting some strong correlations between the expression and activity of TRPC3 and various pathophysiological conditions, therapeutic strategies based on its pharmacological modulations have not led to clinical trials. The development of small-molecule TRPC3 modulators with high safety, sufficient brain penetration, and acceptable drug-like profiles remains in progress. Determining the pathological mechanisms for TRPC3 involvement in human diseases and understanding the requirements for a drug-like TRPC3 modulator will be valuable in advancing small-molecule therapeutics to future clinical trials. In this review, we provide an overview of the origin and activation mechanism of TRPC3 channels, diseases associated with irregularities in their expression, and new development in small-molecule modulators as potential therapeutic interventions for treating TRPC3 channelopathies.

5.
J Exp Bot ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824407

RESUMEN

The cuticle constitutes the outermost defensive barrier of most land plants. It comprises a polymeric matrix - cutin, surrounded by soluble waxes. Moreover, the cuticle constitutes the first line of defense against pathogen invasion, while also protecting the plant from many abiotic stresses. Aliphatic monomers in cutin have been suggested to act as immune elicitors in plants. This study analyses the potential of cutin oligomers to activate rapid signaling outputs reminiscent of pattern-triggered immunity (PTI) in the model plant Arabidopsis. Cutin oligomeric mixtures led to Ca2+ influx and MAPK activation. Comparable responses were measured for cutin, which was also able to induce a reactive oxygen species (ROS) burst. Furthermore, cutin oligomer treatment resulted in a unique transcriptional reprogramming profile, having many archetypal features of PTI. Targeted spectroscopic and spectrometric analyses of the cutin oligomers suggest that the elicitors compounds consist mostly of two up to three 10,16-dihydroxyhexadecanoic acid monomers linked together through ester bonds. This study demonstrates that cutin breakdown products can act as inducers of early plant immune responses, which underlying mechanisms of perception and potential use in agriculture warrant further investigation.

6.
Cell Commun Signal ; 22(1): 308, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831451

RESUMEN

Gasdermin D (GSDMD) is emerging as an important player in autoimmune diseases, but its exact role in lupus nephritis (LN) remains controversial. Here, we identified markedly elevated GSDMD in human and mouse LN kidneys, predominantly in CD11b+ myeloid cells. Global or myeloid-conditional deletion of GSDMD was shown to exacerbate systemic autoimmunity and renal injury in lupus mice with both chronic graft-versus-host (cGVH) disease and nephrotoxic serum (NTS) nephritis. Interestingly, RNA sequencing and flow cytometry revealed that myeloid GSDMD deficiency enhanced granulopoiesis at the hematopoietic sites in LN mice, exhibiting remarkable enrichment of neutrophil-related genes, significant increases in total and immature neutrophils as well as granulocyte/macrophage progenitors (GMPs). GSDMD-deficient GMPs and all-trans-retinoic acid (ATRA)-stimulated human promyelocytes NB4 were further demonstrated to possess enhanced clonogenic and differentiation abilities compared with controls. Mechanistically, GSDMD knockdown promoted self-renewal and granulocyte differentiation by restricting calcium influx, contributing to granulopoiesis. Functionally, GSDMD deficiency led to increased pathogenic neutrophil extracellular traps (NETs) in lupus peripheral blood and bone marrow-derived neutrophils. Taken together, our data establish that GSDMD deletion accelerates LN development by promoting granulopoiesis in a calcium influx-regulated manner, unraveling its unrecognized critical role in LN pathogenesis.


Asunto(s)
Calcio , Nefritis Lúpica , Proteínas de Unión a Fosfato , Nefritis Lúpica/patología , Nefritis Lúpica/metabolismo , Nefritis Lúpica/genética , Animales , Humanos , Ratones , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/deficiencia , Calcio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Neutrófilos/metabolismo , Granulocitos/metabolismo , Células Mieloides/metabolismo , Ratones Endogámicos C57BL , Femenino , Trampas Extracelulares/metabolismo , Diferenciación Celular , Gasderminas
7.
J Theor Biol ; 581: 111740, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38253220

RESUMEN

The role of Ca2+ release-activated Ca2+ (CRAC) channels mediated by ORAI isoforms in calcium signalling has been extensively investigated. It has been shown that the presence or absence of different isoforms has a significant effect on store-operated calcium entry (SOCE). Yoast et al. (2020) showed that, in addition to the reported narrow-spike oscillations (whereby cytosolic calcium decreases quickly after a sharp increase), ORAI1 knockout HEK293 cells were able to oscillate with broad-spike oscillations (whereby cytosolic calcium decreases in a prolonged manner after a sharp increase) when stimulated with a muscarinic agonist. This suggests that Ca2+ influx through ORAI-mediated CRAC channels negatively regulates the duration of Ca2+ oscillations. We hypothesise that, through the activation of protein kinase C (PKC), ORAI1 negatively regulates phospholipase C (PLC) activity to decrease inositol 1,4,5-trisphosphate (IP3) production and limit the duration of agonist-evoked Ca2+ oscillations. Based on this hypothesis, we construct a new mathematical model, which shows that the formation of broad-spike oscillations is highly dependent on the absence of ORAI1. Predictions of this model are consistent with the experimental results.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio , Humanos , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Canales de Calcio/metabolismo , Proteína Quinasa C , Calcio/metabolismo , Retroalimentación , Células HEK293 , Señalización del Calcio/fisiología , Isoformas de Proteínas/metabolismo
8.
Bioorg Chem ; 147: 107396, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705108

RESUMEN

RN-9893, a TRPV4 antagonist identified by Renovis Inc., showcased notable inhibition of TRPV4 channels. This research involved synthesizing and evaluating three series of RN-9893 analogues for their TRPV4 inhibitory efficacy. Notably, compounds 1b and 1f displayed a 2.9 to 4.5-fold increase in inhibitory potency against TRPV4 (IC50 = 0.71 ± 0.21 µM and 0.46 ± 0.08 µM, respectively) in vitro, in comparison to RN-9893 (IC50 = 2.07 ± 0.90 µM). Both compounds also significantly outperformed RN-9893 in TRPV4 current inhibition rates (87.6 % and 83.2 % at 10 µM, against RN-9893's 49.4 %). For the first time, these RN-9893 analogues were profiled in an in vivo mouse model, where intraperitoneal injections of 1b or 1f at 10 mg/kg notably mitigated symptoms of acute lung injury induced by lipopolysaccharide (LPS). These outcomes indicate that compounds 1b and 1f are promising candidates for acute lung injury treatment.


Asunto(s)
Lesión Pulmonar Aguda , Bencenosulfonamidas , Sulfonamidas , Canales Catiónicos TRPV , Relación Estructura-Actividad , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Animales , Ratones , Humanos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Masculino , Ratones Endogámicos C57BL
9.
Am J Physiol Cell Physiol ; 325(1): C69-C78, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37212547

RESUMEN

Cardiac calcification is a crucial but underrecognized pathological process, greatly increasing the risk of cardiovascular diseases. Little is known about how cardiac fibroblasts, as a central mediator, facilitate abnormal mineralization. Erythropoietin-producing hepatoma interactor B2 (EphrinB2), previously identified as an angiogenic regulator, is involved in fibroblast activation, while its role in the osteogenic differentiation of cardiac fibroblasts is unknown. Bioinformatics analysis was conducted to characterize the expression of the Ephrin family in human calcified aortic valves and calcific mouse hearts. The effects of EphrinB2 on cardiac fibroblasts to adopt osteogenic fate was determined by gain- and loss-of-function. EphrinB2 mRNA level was downregulated in calcified aortic valves and mouse hearts. Knockdown of EphrinB2 attenuated mineral deposits in adult cardiac fibroblasts, whereas overexpression of EphrinB2 promoted their osteogenic differentiation. RNA sequencing data implied that Ca2+-related S100/receptor for advanced glycation end products (RAGE) signaling may mediate EphrinB2-induced mineralization in cardiac fibroblasts. Moreover, L-type calcium channel blockers inhibited osteogenic differentiation of cardiac fibroblasts, implying a critical role in Ca2+ influx. In conclusion, our data illustrated an unrecognized role of EphrinB2, which functions as a novel osteogenic regulator in the heart through Ca2+ signaling and could be a potential therapeutic target in cardiovascular calcification.NEW & NOTEWORTHY In this study, we observed that adult cardiac fibroblasts but not neonatal cardiac fibroblasts exhibit the ability of osteogenic differentiation. EphrinB2 promoted osteogenic differentiation of cardiac fibroblasts through activating Ca2+-related S100/RAGE signaling. Inhibition of Ca2+ influx using L-type calcium channel blockers inhibited EphrinB2-mediated calcification of cardiac fibroblasts. Our data implied an unrecognized role of EphrinB2 in regulating cardiac calcification though Ca2+-related signaling, suggesting a potential therapeutic target of cardiovascular calcification.


Asunto(s)
Carcinoma Hepatocelular , Eritropoyetina , Neoplasias Hepáticas , Adulto , Animales , Humanos , Ratones , Calcio , Bloqueadores de los Canales de Calcio/farmacología , Diferenciación Celular , Eritropoyetina/farmacología , Fibroblastos , Osteogénesis/fisiología , Receptor para Productos Finales de Glicación Avanzada
10.
J Physiol ; 601(5): 905-921, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35946572

RESUMEN

In adapting to disease and loss of tissue, the heart shows great phenotypic plasticity that involves changes to its structure, composition and electrophysiology. Together with parallel whole body cardiovascular adaptations, the initial decline in cardiac function resulting from the insult is compensated. However, in the long term, the heart muscle begins to fail and patients with this condition have a very poor prognosis, with many dying from disturbances of rhythm. The surviving myocytes of these hearts gain Na+ , which is positively inotropic because of alterations to Ca2+ fluxes mediated by the Na+ /Ca2+ exchange, but compromises Ca2+ -dependent energy metabolism in mitochondria. Uptake of Ca2+ into the sarcoplasmic reticulum (SR) is reduced because of diminished function of SR Ca2+ ATPases. The result of increased Ca2+ influx and reduced SR Ca2+ uptake is an increase in the diastolic cytosolic Ca2+ concentration, which promotes spontaneous SR Ca2+ release and induces delayed afterdepolarisations. Action potential duration prolongs because of increased late Na+ current and changes in expression and function of other ion channels and transporters increasing the probability of the formation of early afterdepolarisations. There is a reduction in T-tubule density and so the normal spatial arrangements required for efficient excitation-contraction coupling are compromised and lead to temporal delays in Ca2+ release from the SR. Therefore, the structural and electrophysiological responses that occur to provide compensation do so at the expense of (1) increasing the likelihood of arrhythmogenesis; (2) activating hypertrophic, apoptotic and Ca2+ signalling pathways; and (3) decreasing the efficiency of SR Ca2+ release.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Miocardio/metabolismo , Corazón , Diástole , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Calcio/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Intercambiador de Sodio-Calcio/metabolismo
11.
Br J Haematol ; 202(3): 657-668, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37011913

RESUMEN

Haemoglobin S polymerization in the red blood cells (RBCs) of individuals with sickle cell anaemia (SCA) can cause RBC sickling and cellular alterations. Piezo1 is a mechanosensitive protein that modulates intracellular calcium (Ca2+ ) influx, and its activation has been associated with increased RBC surface membrane phosphatidylserine (PS) exposure. Hypothesizing that Piezo1 activation, and ensuing Gárdos channel activity, alter sickle RBC properties, RBCs from patients with SCA were incubated with the Piezo1 agonist, Yoda1 (0.1-10 µM). Oxygen-gradient ektacytometry and membrane potential measurement showed that Piezo1 activation significantly decreased sickle RBC deformability, augmented sickling propensity, and triggered pronounced membrane hyperpolarization, in association with Gárdos channel activation and Ca2+ influx. Yoda1 induced Ca2+ -dependent adhesion of sickle RBCs to laminin, in microfluidic assays, mediated by increased BCAM binding affinity. Furthermore, RBCs from SCA patients that were homo-/heterozygous for the rs59446030 gain-of-function Piezo1 variant demonstrated enhanced sickling under deoxygenation and increased PS exposure. Thus, Piezo1 stimulation decreases sickle RBC deformability, and increases the propensities of these cells to sickle upon deoxygenation and adhere to laminin. Results support a role of Piezo1 in some of the RBC properties that contribute to SCA vaso-occlusion, indicating that Piezo1 may represent a potential therapeutic target molecule for this disease.


Asunto(s)
Anemia de Células Falciformes , Calcio , Humanos , Calcio/metabolismo , Laminina/metabolismo , Eritrocitos/metabolismo , Eritrocitos Anormales/metabolismo
12.
Cell Immunol ; 383: 104651, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493524

RESUMEN

Lipopolysaccharides (LPS) is one of the most potent pathogen-associated signals for the immune system of vertebrates. In addition to the canonical pathway of LPS detection mediated by toll-like receptor 4 (TLR4) signaling pathway, TRP channel-mediated pathways endow sensory neurons and epithelial cells with the ability to detect and react to bacterial endotoxins. Previous work revealed that LPS triggers TRPV4-dependent calcium influx in urothelial cells (UCs) and mouse tracheobronchial epithelial cells (mTEC). In marked contrast, here we show that most subtypes of LPS could not directly activate TRPV4 channel. Although LPS from Salmonella enterica serotype Minnesota evoked a [Ca2+]i response in freshly isolated human bronchial epithelial cells (ECs), freshly isolated mouse ear skin single-cell suspensions, or HEK293T cells transiently transfected with mTRPV4, this activation occurred in a TRPV4-independent manner. Additionally, LPS from either E. coli strains or Salmonella enterica serotype Minnesota did not evoke significant difference in inflammation and pain hyperalgesia between wild type and TRPV4 deficient mice. In summary, our results demonstrate that in vitro and in vivo effects induced by LPS are independent of TRPV4, thus providing a clarity to the questioned role of LPS in TRPV4 activation.


Asunto(s)
Señalización del Calcio , Lipopolisacáridos , Canales Catiónicos TRPV , Animales , Humanos , Ratones , Calcio/metabolismo , Señalización del Calcio/fisiología , Escherichia coli/patogenicidad , Células HEK293 , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/farmacología , Salmonella enterica/patogenicidad
13.
Clin Sci (Lond) ; 137(24): 1789-1804, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38051199

RESUMEN

Angiotensin receptor blockers (ARBs) are the first-line treatment for hypertension; they act by inhibiting signaling through the angiotensin 1 receptor (AT1R). Recently, a novel biased AT1R agonist, TRV120027 (TRV), which selectively activates the ß-arrestin cascade and blocks the G-protein-coupled receptor pathway has been proposed as a potential blood pressure medication. Here, we explored the effects of TRV and associated ß-arrestin signaling in podocytes, essential cells of the kidney filter. We used human podocyte cell lines to determine ß-arrestin's involvement in calcium signaling and cytoskeletal reorganization and Dahl SS rats to investigate the chronic effects of TRV administration on glomerular health. Our experiments indicate that the TRV-activated ß-arrestin pathway promotes the rapid elevation of intracellular Ca2+ in a dose-dependent manner. Interestingly, the amplitude of ß-arrestin-mediated Ca2+ influx was significantly higher than the response to similar Ang II concentrations. Single-channel analyses show rapid activation of transient receptor potential canonical (TRPC) channels following acute TRV application. Furthermore, the pharmacological blockade of TRPC6 significantly attenuated the ß-arrestin-mediated Ca2+ influx. Additionally, prolonged activation of the ß-arrestin pathway in podocytes resulted in pathological actin cytoskeleton rearrangements, higher apoptotic cell markers, and augmented glomerular damage. TRV-activated ß-arrestin signaling in podocytes may promote TRPC6 channel-mediated Ca2+ influx, foot process effacement, and apoptosis, possibly leading to severe defects in glomerular filtration barrier integrity and kidney health. Under these circumstances, the potential therapeutic application of TRV for hypertension treatment requires further investigation to assess the balance of the benefits versus possible deleterious effects and off-target damage.


Asunto(s)
Hipertensión , Enfermedades Renales , Podocitos , Ratas , Animales , Humanos , Podocitos/metabolismo , Canal Catiónico TRPC6/metabolismo , Calcio/metabolismo , beta-Arrestinas/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Ratas Endogámicas Dahl , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Enfermedades Renales/metabolismo , Hipertensión/metabolismo , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPC/farmacología
14.
J Microsc ; 290(2): 125-133, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36864642

RESUMEN

A secondary ion mass spectrometry (SIMS)-based isotopic imaging technique of ion microscopy was used for observing calcium influx in single renal epithelial LLC-PK1 cells. The CAMECA IMS-3f SIMS instrument, used in the study, is capable of producing isotopic images of single cells at 500 nm spatial resolution. Due to the high-vacuum requirements of the instrument the cells were prepared cryogenically with a freeze-fracture method and frozen freeze-dried cells were used for SIMS analysis. The influx of calcium was imaged directly by exposure of cells to 44 Ca stable isotope in the extracellular buffer for 10 min. The 44 Ca influx was measured at mass 44 and the distribution of endogenous calcium at mass 40 (40 Ca) in the same cell. A direct comparison of interphase cells to cells undergoing division revealed that calcium influx is restricted in metaphase and post-metaphase stages of cell division. This restriction is lifted in late cytokinesis. The net influx of 44 Ca in 10 min was approximately half under calcium influx restriction in comparison to interphase cells. Under calcium influx restriction the 44 Ca concentration was the same between the mitotic chromosome and the cytoplasm. These observations indicate that the endoplasmic reticulum (ER) calcium uptake is compromised under calcium influx restriction in cells undergoing division.


Asunto(s)
Calcio , Espectrometría de Masa de Ion Secundario , Metafase , Calcio/análisis , Espectrometría de Masa de Ion Secundario/métodos , División Celular , Citoplasma/química
15.
Proc Natl Acad Sci U S A ; 117(4): 1895-1901, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932451

RESUMEN

Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSCs). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSCs are interconnected via intracellular Ca2+ Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects.


Asunto(s)
Tejido Adiposo/citología , Calcio/metabolismo , Osteogénesis , Polímeros/química , Células Madre/citología , Estrés Mecánico , Temperatura , Tejido Adiposo/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Humanos , Mecanotransducción Celular , Células Madre/metabolismo , Ingeniería de Tejidos
16.
Zygote ; 31(4): 393-401, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37212062

RESUMEN

Although ethanol treatment is widely used to activate oocytes, the underlying mechanisms are largely unclear. Roles of intracellular calcium stores and extracellular calcium in ethanol-induced activation (EIA) of oocytes remain to be verified, and whether calcium-sensing receptor (CaSR) is involved in EIA is unknown. This study showed that calcium-free ageing (CFA) in vitro significantly decreased intracellular stored calcium (sCa) and CaSR expression, and impaired EIA, spindle/chromosome morphology and developmental potential of mouse oocytes. Although EIA in oocytes with full sCa after ageing with calcium does not require calcium influx, calcium influx is essential for EIA of oocytes with reduced sCa after CFA. Furthermore, the extremely low EIA rate in oocytes with CFA-downregulated CaSR expression and the fact that inhibiting CaSR significantly decreased the EIA of oocytes with a full complement of CaSR suggest that CaSR played a significant role in the EIA of ageing oocytes. In conclusion, CFA impaired EIA and the developmental potential of mouse oocytes by decreasing sCa and downregulating CaSR expression. Because mouse oocytes routinely treated for activation (18 h post hCG) are equipped with a full sCa complement and CaSR, the present results suggest that, while calcium influx is not essential, CaSR is required for the EIA of oocytes.


Asunto(s)
Calcio , Etanol , Ratones , Animales , Calcio/metabolismo , Etanol/farmacología , Oocitos/fisiología , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Envejecimiento
17.
BMC Biol ; 20(1): 95, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501783

RESUMEN

BACKGROUND: Beiging of white fat plays an important role in energy metabolism. Beige adipocytes contribute to the regulation of body weight and body temperature through expenditure of chemical energy to produce heat, and they have therefore recently attracted considerable attention as potential targets for therapeutic approaches in metabolic disorders, including obesity. All adipocytes, including beige adipocytes, differentiate from mesenchymal stem cells (MSCs), which may provide an important path for clinical intervention; however, the mechanism of beiging of human adipose cell-derived MSCs is not fully understood. Here, we provide insights on the role of IRISIN, which is known to be secreted by skeletal muscle and promote beiging of white fat. RESULTS: We established an IRISIN-induced mesenchymal stem cell beiging model and found that IRISIN protein interacts with the MSC membrane protein TRPC3. This interaction results in calcium influx and consequential activation of Erk and Akt signaling pathways, which causes phosphorylation of PPARγ. The phosphorylated PPARγ enters the nucleus and binds the UCP1 promoter region. Furthermore, the role of TRPC3 in the beiging of MSCs was largely abolished in Trpc3-/- mice. We additionally demonstrate that the calcium concentration in the brain of mice increases upon IRISIN stimulation, followed by an increase in the content of excitatory amino acids and norepinephrine, while Trpc3-/- mice exhibit the reverse effect. CONCLUSIONS: We found that TRPC3 is a key factor in irisin-induced beiging of MSCs, which may provide a new target pathway in addressing metabolic disorders. Our results additionally suggest that the interaction of irisin with TRPC3 may affect multiple tissues, including the brain.


Asunto(s)
Células Madre Mesenquimatosas , PPAR gamma , Tejido Adiposo Blanco/metabolismo , Animales , Calcio/metabolismo , Metabolismo Energético , Fibronectinas , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Canales Catiónicos TRPC
18.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958813

RESUMEN

Far-infrared (FIR), characterized by its specific electromagnetic wavelengths, has emerged as an adjunctive therapeutic strategy for various diseases, particularly in ameliorating manifestations associated with renal disorders. Although FIR was confirmed to possess antioxidative and anti-inflammatory attributes, the intricate cellular mechanisms through which FIR mitigates lead (Pb)-induced nephrotoxicity remain enigmatic. In this study, we investigated the effects of FIR on Pb-induced renal damage using in vitro and in vivo approaches. NRK52E rat renal cells exposed to Pb were subsequently treated with ceramic-generated FIR within the 9~14 µm range. Inductively coupled plasma mass spectrometry (ICP-MS) enabled quantitative Pb concentration assessment, while proteomic profiling unraveled intricate cellular responses. In vivo investigations used Wistar rats chronically exposed to lead acetate (PbAc) at 6 g/L in their drinking water for 15 weeks, with or without a concurrent FIR intervention. Our findings showed that FIR upregulated the voltage-gated calcium channel, voltage-dependent L type, alpha 1D subunit (CaV1.3), and myristoylated alanine-rich C kinase substrate (MARCKS) (p < 0.05), resulting in increased calcium influx (p < 0.01), the promotion of mitochondrial activity, and heightened ATP production. Furthermore, the FIR intervention effectively suppressed ROS production, concurrently mitigating Pb-induced cellular death. Notably, rats subjected to FIR exhibited significantly reduced blood Pb levels (30 vs. 71 µg/mL; p < 0.01), attenuated Pb-induced glomerulosclerosis, and enhanced Pb excretion compared to the controls. Our findings suggest that FIR has the capacity to counteract Pb-induced nephrotoxicity by modulating calcium influx and optimizing mitochondrial function. Overall, our data support FIR as a novel therapeutic avenue for Pb toxicity in the kidneys.


Asunto(s)
Calcio , Plomo , Ratas , Animales , Ratas Wistar , Calcio/metabolismo , Plomo/toxicidad , Proteómica , Canales de Calcio Tipo L
19.
Molecules ; 28(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37959738

RESUMEN

Leontopodium alpinum is a source of raw material for food additives and skin health. The purpose of this study was to investigate the application of Leontopodium alpinum callus culture extract (LACCE) to prevent blue light damage to the skin. We screened and identified the blue light-damage-protecting activities and mechanisms of ten components of LACCE, including chlorogenic acid (A), isoquercitrin (B), isochlorogenic acid A (C), cynaroside (D), syringin (E), isochlorogenic acid (F), cynarin (G), rutin (H), leontopodic acid A (I), and leontopodic acid B (J), using a novel blue light-induced human foreskin fibroblast (HFF-1) cell injury model. The study examined the cytotoxicity of ten ingredients using the cell counting kit-8 (CCK-8) assay, and selecting concentrations of 5, 10, and 20 µM for experiments with a cell viability above 65%. We explored the effects and mechanisms of action of these LACCE components in response to blue light injury using Western blotting and an enzyme-linked immunosorbent assay. We also measured ROS secretion and Ca2+ influx. Our study revealed that leontopodic acid A effectively boosted COI-1 expression, hindered MMP-1 expression, curbed ROS and Ca2+ endocytosis, and reduced OPN3 expression. These results provide theoretical support for the development of new raw materials for the pharmaceutical and skincare industries.


Asunto(s)
Prepucio , Luz , Humanos , Masculino , Especies Reactivas de Oxígeno , Extractos Vegetales/farmacología , Fibroblastos , Opsinas de Bastones
20.
Molecules ; 28(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36903418

RESUMEN

Leontopodium alpinum is an important source of raw material for food, medicine, and modern cosmetics. The purpose of this study was to develop a new application for protection against blue light damage. To investigate the effects and mechanism of action of Leontopodium alpinum callus culture extract (LACCE) on blue light damage, a blue-light-induced human foreskin fibroblast damage model was established. The contents of collagen (COL-I), matrix metalloproteinase 1 (MMP-1), and opsin 3 (OPN3) were detected using enzyme-linked immunosorbent assays and Western blotting. The calcium influx and reactive oxygen species (ROS) levels were measured via flow cytometry and the results showed that the LACCE (10-15 mg/mL) promoted the production of COL-I, inhibited the secretion of MMP-1, OPN3, ROS and calcium influx, and may play a role in inhibiting the activation of blue light on the OPN3-calcium pathway. Thereafter, high-performance liquid chromatography and ultra-performance liquid chromatography-tandem mass spectrometry were used to quantitatively analyze the contents of nine active ingredients in the LACCE. The results indicated that LACCE has an anti-blue-light-damage effect and provides theoretical support for the development of new raw materials in the natural food, medicine, and skin care industries.


Asunto(s)
Prepucio , Metaloproteinasa 1 de la Matriz , Humanos , Masculino , Especies Reactivas de Oxígeno/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Prepucio/metabolismo , Calcio/farmacología , Extractos Vegetales/química , Fibroblastos , Opsinas de Bastones/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA