Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.180
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Rev ; 100(4): 1753-1777, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32326823

RESUMEN

Gene expression is needed for the maintenance of heart function under normal conditions and in response to stress. Each cell type of the heart has a specific program controlling transcription. Different types of stress induce modifications of these programs and, if prolonged, can lead to altered cardiac phenotype and, eventually, to heart failure. The transcriptional status of a gene is regulated by the epigenome, a complex network of DNA and histone modifications. Until a few years ago, our understanding of the role of the epigenome in heart disease was limited to that played by histone deacetylation. But over the last decade, the consequences for the maintenance of homeostasis in the heart and for the development of cardiac hypertrophy of a number of other modifications, including DNA methylation and hydroxymethylation, histone methylation and acetylation, and changes in chromatin architecture, have become better understood. Indeed, it is now clear that many levels of regulation contribute to defining the epigenetic landscape required for correct cardiomyocyte function, and that their perturbation is responsible for cardiac hypertrophy and fibrosis. Here, we review these aspects and draw a picture of what epigenetic modification may imply at the therapeutic level for heart failure.


Asunto(s)
Epigenoma/fisiología , Insuficiencia Cardíaca/metabolismo , Animales , Epigénesis Genética , Humanos
2.
Proc Natl Acad Sci U S A ; 121(41): e2408719121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39352930

RESUMEN

As ambush-hunting predators that consume large prey after long intervals of fasting, Burmese pythons evolved with unique adaptations for modulating organ structure and function. Among these is cardiac hypertrophy that develops within three days following a meal (Andersen et al., 2005, Secor, 2008), which we previously showed was initiated by circulating growth factors (Riquelme et al., 2011). Postprandial cardiac hypertrophy in pythons also rapidly regresses with subsequent fasting (Secor, 2008); however, the molecular mechanisms that regulate the dynamic cardiac remodeling in pythons during digestion are largely unknown. In this study, we employed a multiomics approach coupled with targeted molecular analyses to examine remodeling of the python ventricular transcriptome and proteome throughout digestion. We found that forkhead box protein O1 (FoxO1) signaling was suppressed prior to hypertrophy development and then activated during regression, which coincided with decreased and then increased expression, respectively, of FoxO1 transcriptional targets involved in proteolysis. To define the molecular mechanistic role of FoxO1 in hypertrophy regression, we used cultured mammalian cardiomyocytes treated with postfed python plasma. Hypertrophy regression both in pythons and in vitro coincided with activation of FoxO1-dependent autophagy; however, the introduction of a FoxO1-specific inhibitor prevented both regression of cell size and autophagy activation. Finally, to determine whether FoxO1 activation could induce regression, we generated an adenovirus expressing a constitutively active FoxO1. FoxO1 activation was sufficient to prevent and reverse postfed plasma-induced hypertrophy, which was partially prevented by autophagy inhibition. Our results indicate that modulation of FoxO1 activity contributes to the dynamic ventricular remodeling in postprandial Burmese pythons.


Asunto(s)
Boidae , Proteína Forkhead Box O1 , Corazón , Animales , Autofagia , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Miocitos Cardíacos/metabolismo , Periodo Posprandial , Transducción de Señal , Transcriptoma , Corazón/fisiología
3.
J Biol Chem ; 300(5): 107255, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579991

RESUMEN

Myocardial failure is associated with adverse remodeling, including loss of cardiomyocytes, hypertrophy, and alterations in cell-cell contacts. Striatin-interacting phosphatase and kinase (STRIPAK) complexes and their mammalian STE20-like kinase 4 (Mst4) have been linked to development of different diseases. The role and targets of Mst4 in cardiomyocytes have not been investigated yet. Multitissue immunoblot experiments show highly enriched Mst4 expression in rodent hearts. Analyses of human biopsy samples from patients suffering from dilated cardiomyopathy revealed that Mst4 is upregulated (5- to 8-fold p < 0.001) compared with nonfailing controls. Increased abundance of Mst4 could also be detected in mouse models of cardiomyopathy. We confirmed that Mst4 interacts with STRIPAK components in neonatal rat ventricular cardiomyocytes, indicating that STRIPAK is present in the heart. Immunofluorescence stainings and molecular interaction studies revealed that Mst4 is localized to the intercalated disc and interacts with several intercalated disc proteins. Overexpression of Mst4 in cardiomyocytes results in hypertrophy compared with controls. In adult rat cardiomyocytes, Mst4 overexpression increases cellular and sarcomeric fractional shortening (p < 0.05), indicating enhanced contractility. Overexpression of Mst4 also inhibits apoptosis shown by reduction of cleaved caspase3 (-69%, p < 0.0001), caspase7 (-80%, p < 0.0001), and cleaved Parp1 (-27%, p < 0.001). To elucidate potential Mst4 targets, we performed phosphoproteomics analyses in neonatal rat cardiomyocytes after Mst4 overexpression and inhibition. The results revealed target candidates of Mst4 at the intercalated disc. We identified Mst4 as a novel cardiac kinase that is upregulated in cardiomyopathy-regulating cardiomyocyte growth and survival.


Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Proteínas Serina-Treonina Quinasas , Regulación hacia Arriba , Animales , Humanos , Masculino , Ratones , Ratas , Apoptosis , Cardiomiopatías/enzimología , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética
4.
Circ Res ; 132(4): 465-480, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36722348

RESUMEN

BACKGROUND: Pathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of pathological cardiac hypertrophy will contribute to the treatment of heart failure. DUBs (deubiquitinating enzymes) are essential to cardiac pathophysiology by precisely controlling protein function, localization, and degradation. This study set out to investigate the role and molecular mechanism of a DUB, USP25 (ubiquitin-specific peptidase 25), in pathological cardiac hypertrophy. METHODS: The role of USP25 in myocardial hypertrophy was evaluated in murine cardiomyocytes in response to Ang II (angiotensin II) and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of heart failure patients. Liquid chromotography with mass spectrometry/mass spectrometry analysis combined with Co-IP was used to identify SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2A), an antihypertrophy protein, as an interacting protein of USP25. To clarify the molecular mechanism of USP25 in the regulation of SERCA2a, we constructed a series of mutant plasmids of USP25. In addition, we overexpressed USP25 and SERCA2a in the heart with adenoassociated virus serotype 9 vectors to validate the biological function of USP25 and SERCA2a interaction. RESULTS: We revealed increased protein level of USP25 in murine cardiomyocytes subject to Ang II and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of patients with heart failure. USP25 deficiency aggravated cardiac hypertrophy and cardiac dysfunction under Ang II and transverse aortic constriction treatment. Mechanistically, USP25 bound to SERCA2a directly via its USP (ubiquitin-specific protease) domain and cysteine at position 178 of USP25 exerts deubiquitination to maintain the stability of the SERCA2a protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby maintaining calcium handling in cardiomyocytes. Moreover, restoration of USP25 expression via adenoassociated virus serotype 9 vectors in USP25-/- mice attenuated Ang II-induced cardiac hypertrophy and cardiac dysfunction, whereas myocardial overexpression of SERCA2a could mimic the effect of USP25. CONCLUSIONS: We confirmed that USP25 inhibited cardiac hypertrophy by deubiquitinating and stabilizing SERCA2a.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Animales , Ratones , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Ubiquitina Tiolesterasa/genética
5.
Exp Cell Res ; 439(1): 114072, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719175

RESUMEN

HHATL, previously implicated in cardiac hypertrophy in the zebrafish model, has emerged as a prioritized HCM risk gene. We identified six rare mutations in HHATL, present in 6.94 % of nonsarcomeric HCM patients (5/72). Moreover, a decrease of HHATL in the heart tissue from HCM patients and cardiac hypertrophy mouse model using transverse aortic constriction was observed. Despite this, the precise pathogenic mechanisms underlying HHATL-associated cardiac hypertrophy remain elusive. In this study, we observed that HHATL downregulation in H9C2 cells resulted in elevated expression of hypertrophic markers and reactive oxygen species (ROS), culminating in cardiac hypertrophy and mitochondrial dysfunction. Notably, the bioactive form of SHH, SHHN, exhibited a significant increase, while the mitochondrial fission protein dynamin-like GTPase (DRP1) decreased upon HHATL depletion. Intervention with the SHH inhibitor RU-SKI 43 or DRP1 overexpression effectively prevented Hhatl-depletion-induced cardiac hypertrophy, mitigating disruptions in mitochondrial morphology and membrane potential through the SHH/DRP1 axis. In summary, our findings suggest that HHATL depletion activates SHH signaling, reducing DRP1 levels and thereby promoting the expression of hypertrophic markers, ROS generation, and mitochondrial dysfunction, ultimately leading to cardiac hypertrophy. This study provides additional compelling evidence supporting the association of HHATL with cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Regulación hacia Abajo , Dinaminas , Proteínas Hedgehog , Especies Reactivas de Oxígeno , Dinaminas/metabolismo , Dinaminas/genética , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patología , Especies Reactivas de Oxígeno/metabolismo , Humanos , Regulación hacia Abajo/genética , Transducción de Señal , Ratones , Ratas , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética
6.
Cell Mol Life Sci ; 81(1): 432, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39395058

RESUMEN

DNA damage induced by oxidative stress during cardiac hypertrophy activates the ataxia telangiectasia mutated (ATM)-mediated DNA damage response (DDR) signaling, in turn aggravating the pathological cardiomyocyte growth. This study aims to identify the functional associations of long noncoding RNA (lncRNAs) with cardiac hypertrophy and DDR. The altered ventricular lncRNAs in the mice between sham and transverse aortic constriction (TAC) group were identified by microarray analysis, and a novel lncRNA AK144717 was found to gradually upregulate during the development of pathological cardiac hypertrophy induced by TAC surgery or angiotensin II (Ang II) stimulation. Silencing AK144717 had a similar anti-hypertrophic effect to that of ATM inhibitor KU55933 and also suppressed the activated ATM-DDR signaling induced by hypertrophic stimuli. The involvement of AK144717 in DDR and cardiac hypertrophy was closely related to its interaction with HMGB1, as silencing HMGB1 abolished the effects of AK144717 knockdown. The binding of AK144717 to HMGB1 prevented the interaction between HMGB1 and SIRT1, contributing to the increased acetylation and then cytosolic translocation of HMGB1. Overall, our study highlights the role of AK144717 in the hypertrophic response by interacting with HMGB1 and regulating DDR, hinting that AK144717 is a promising therapeutic target for pathological cardiac growth.


Asunto(s)
Cardiomegalia , Daño del ADN , Proteína HMGB1 , Ratones Endogámicos C57BL , Miocitos Cardíacos , ARN Largo no Codificante , Sirtuina 1 , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Ratones , Masculino , Sirtuina 1/metabolismo , Sirtuina 1/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Angiotensina II/metabolismo , Transducción de Señal , Acetilación , Estrés Oxidativo/genética
7.
Cell Mol Life Sci ; 81(1): 359, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158709

RESUMEN

Infiltration of monocyte-derived macrophages plays a crucial role in cardiac remodeling and dysfunction. The serum and glucocorticoid-inducible protein kinase 3 (SGK3) is a downstream factor of PI3K signaling, regulating various biological processes via an AKT-independent signaling pathway. SGK3 has been implicated in cardiac remodeling. However, the contribution of macrophagic SGK3 to hypertensive cardiac remodeling remains unclear. A cardiac remodeling model was established by angiotensin II (Ang II) infusion in SGK3-Lyz2-CRE (f/f, +) and wild-type mice to assess the function of macrophagic SGK3. Additionally, a co-culture system of SGK3-deficient or wild-type macrophages and neonatal rat cardiomyocytes (CMs) or neonatal rat fibroblasts (CFs) was established to evaluate the effects of SGK3 and the underlying mechanisms. SGK3 levels were significantly elevated in both peripheral blood mononuclear cells and serum from patients with heart failure. Macrophage SGK3 deficiency attenuated Ang II-induced macrophage infiltration, myocardial hypertrophy, myocardial fibrosis, and mitochondrial oxidative stress. RNA sequencing suggested Ndufa13 as the candidate gene in the effect of SGK3 on Ang II-induced cardiac remolding. Downregulation of Ndufa13 in CMs and CFs prevented the suppression of cardiac remodeling caused by SGK3 deficiency in macrophages. Mechanistically, the absence of SGK3 led to a reduction in IL-1ß secretion by inhibiting the NLRP3/Caspase-1/IL-1ß pathway in macrophages, consequently suppressing upregulated Ndufa13 expression and mitochondrial oxidative stress in CMs and CFs. This study provides new evidence that SGK3 is a potent contributor to the pathogenesis of hypertensive cardiac remodeling, and targeting SGK3 in macrophages may serve as a potential therapy for cardiac remodeling.


Asunto(s)
Angiotensina II , Macrófagos , Miocitos Cardíacos , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas , Remodelación Ventricular , Animales , Angiotensina II/farmacología , Macrófagos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Humanos , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Transducción de Señal , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Ratones Noqueados , Células Cultivadas
8.
J Mol Cell Cardiol ; 194: 46-58, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38950816

RESUMEN

BACKGROUNDS: Pathological cardiac hypertrophy is considered one of the independent risk factors for heart failure, with a rather complex pathogenic machinery. Sorting nexins (SNXs), denoting a diverse family of cytoplasmic- and membrane-associated phosphoinositide-binding proteins, act as a pharmacological target against specific cardiovascular diseases including heart failure. Family member SNX5 was reported to play a pivotal role in a variety of biological processes. However, contribution of SNX5 to the development of cardiac hypertrophy, remains unclear. METHODS: Mice underwent transverse aortic constriction (TAC) to induce cardiac hypertrophy and simulate pathological conditions. TAC model was validated using echocardiography and histological staining. Expression of SNX5 was assessed by western blotting. Then, SNX5 was delivered through intravenous administration of an adeno-associated virus serotype 9 carrying cTnT promoter (AAV9-cTnT-SNX5) to achieve SNX5 cardiac-specific overexpression. To assess the impact of SNX5, morphological analysis, echocardiography, histological staining, hypertrophic biomarkers, and cardiomyocyte contraction were evaluated. To unravel potential molecular events associated with SNX5, interactome analysis, fluorescence co-localization, and membrane protein profile were evaluated. RESULTS: Our results revealed significant downregulated protein level of SNX5 in TAC-induced hypertrophic hearts in mice. Interestingly, cardiac-specific overexpression of SNX5 improved cardiac function, with enhanced left ventricular ejection fraction, fraction shortening, as well as reduced cardiac fibrosis. Mechanistically, SNX5 directly bound to Rab11a, increasing membrane accumulation of Rab11a (a Rab GTPase). Afterwards, this intricate molecular interaction upregulated the membrane content of low-density lipoprotein receptor-related protein 6 (LRP6), a key regulator against cardiac hypertrophy. Our comprehensive assessment of siRab11a expression in HL-1 cells revealed its role in antagonism of LRP6 membrane accumulation under SNX5 overexpression. CONCLUSIONS: This study revealed that binding of SNX5 with LRP6 triggers their membrane translocation through Rab11a assisting, defending against cardiac remodeling and cardiac dysfunction under pressure overload. These findings provide new insights into the previously unrecognized role of SNX5 in the progression of cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Miocitos Cardíacos , Transporte de Proteínas , Nexinas de Clasificación , Proteínas de Unión al GTP rab , Animales , Masculino , Ratones , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Nexinas de Clasificación/metabolismo , Nexinas de Clasificación/genética
9.
J Mol Cell Cardiol ; 189: 12-24, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401179

RESUMEN

Cardiomyocytes activate the unfolded protein response (UPR) transcription factor ATF6 during pressure overload-induced hypertrophic growth. The UPR is thought to increase ER protein folding capacity and maintain proteostasis. ATF6 deficiency during pressure overload leads to heart failure, suggesting that ATF6 protects against myocardial dysfunction by preventing protein misfolding. However, conclusive evidence that ATF6 prevents toxic protein misfolding during cardiac hypertrophy is still pending. Here, we found that activation of the UPR, including ATF6, is a common response to pathological cardiac hypertrophy in mice. ATF6 KO mice failed to induce sufficient levels of UPR target genes in response to chronic isoproterenol infusion or transverse aortic constriction (TAC), resulting in impaired cardiac growth. To investigate the effects of ATF6 on protein folding, the accumulation of poly-ubiquitinated proteins as well as soluble amyloid oligomers were directly quantified in hypertrophied hearts of WT and ATF6 KO mice. Whereas only low levels of protein misfolding was observed in WT hearts after TAC, ATF6 KO mice accumulated increased quantities of misfolded protein, which was associated with impaired myocardial function. Collectively, the data suggest that ATF6 plays a critical adaptive role during cardiac hypertrophy by protecting against protein misfolding.


Asunto(s)
Estenosis de la Válvula Aórtica , Cardiomegalia , Animales , Ratones , Cardiomegalia/patología , Miocitos Cardíacos/metabolismo , Miocardio/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Estenosis de la Válvula Aórtica/metabolismo , Ratones Noqueados
10.
Am J Physiol Cell Physiol ; 327(3): C728-C736, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39069824

RESUMEN

Chronic hypoxia (CH) is commonly associated with various cardiovascular diseases, with cardiac hypertrophy being the most frequently observed alteration. Metabolic remodeling is another consequence seen in the hypoxic heart. However, the mechanistic linkage between metabolic remodeling and cardiac hypertrophy in the hypoxic heart remains unclear. In this study, wild-type C57BL/6J mice were subjected to CH for 4 wk. Echocardiography and morphological analysis were used to assess the cardiac effects. We found that 4 wk of CH led to significant cardiac hypertrophy in the mice, whereas cardiac function remained unchanged compared with normoxic mice. In addition, CH induced an elevation in cardiac alpha-ketoglutarate (α-KG) content. Promoting α-KG degradation in the CH hearts prevented CH-induced cardiac hypertrophy but led to noticeable cardiac dysfunction. Mechanistically, α-KG promoted the transcription of hypertrophy-related genes by regulating histone methylation. Silencing lysine-specific demethylase 5 (KDM5), a histone demethylation enzyme, blunted α-KG-induced transcription of hypertrophy-related genes. These data suggest that α-KG is required for CH-induced cardiac remodeling, thus establishing a connection between metabolic changes and cardiac remodeling in hypoxic hearts.NEW & NOTEWORTHY We reported that alpha-ketoglutarate (α-KG) is indispensable for chronic hypoxia (CH)-induced cardiac remodeling, which builds the bridge between metabolic intermediates and cardiac remodeling.


Asunto(s)
Cardiomegalia , Hipoxia , Ácidos Cetoglutáricos , Ratones Endogámicos C57BL , Remodelación Ventricular , Animales , Ácidos Cetoglutáricos/metabolismo , Hipoxia/metabolismo , Remodelación Ventricular/efectos de los fármacos , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Cardiomegalia/genética , Ratones , Masculino , Enfermedad Crónica , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología
11.
J Proteome Res ; 23(10): 4229-4241, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39178178

RESUMEN

Cardiac hypertrophy is a classical forerunner of heart failure and myocardial structural and metabolic remodeling are closely associated with cardiac hypertrophy. We aim to investigate the characteristics of myocardial structure and central carbon metabolism of cardiac hypertrophy at different stages. Using echocardiography and pathological staining, early and compensatory cardiac hypertrophy were respectively defined as within 7 days and from 7 to 14 days after transverse aortic constriction (TAC) in mice. Among mass-spectrometry-based metabolomics, we identified 45 central carbon metabolites. Differential metabolite analysis showed that six metabolites, including citrate, cis-aconitate and so on, decreased significantly on day 1 after TAC. Ten metabolites, including l-lactate, (S)-2-hydroxyglutarate and so on, were obviously changed on days 10 and 14. Pathway analysis showed that these metabolites were involved in seven metabolic pathways, including carbohydrates, amino acids and so on. Western blot showed the expression of ATP-citrate lyase, malate dehydrogenase 1 and lactate dehydrogenase A in myocardium changed markedly on day 3, while the phosphorylation level of AMP-activated protein kinase did not show significantly difference. We hope our research will promote deeper understanding and early diagnosis of cardiac hypertrophy in clinical practice. All raw data were deposited in MetaboLights (MTBLS10555).


Asunto(s)
Carbono , Cardiomegalia , Miocardio , Animales , Cardiomegalia/metabolismo , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/patología , Miocardio/metabolismo , Miocardio/patología , Carbono/metabolismo , Ratones , Masculino , L-Lactato Deshidrogenasa/metabolismo , Ecocardiografía , Malato Deshidrogenasa/metabolismo , Metabolómica/métodos , ATP Citrato (pro-S)-Liasa/metabolismo , ATP Citrato (pro-S)-Liasa/genética , Isoenzimas/metabolismo , Redes y Vías Metabólicas , Ratones Endogámicos C57BL
12.
J Cell Mol Med ; 28(1): e18028, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37985436

RESUMEN

Pathological cardiac hypertrophy is a key contributor to heart failure, and the molecular mechanisms underlying honokiol (HNK)-mediated cardioprotection against this condition remain worth further exploring. This study aims to investigate the effect of HNK on angiotensin II (Ang II)-induced myocardial hypertrophy and elucidate the underlying mechanisms. Sprague-Dawley rats were exposed to Ang II infusion, followed by HNK or vehicle treatment for 4 weeks. Our results showed that HNK treatment protected against Ang II-induced myocardial hypertrophy, fibrosis and dysfunction in vivo and inhibited Ang II-induced hypertrophy in neonatal rat ventricular myocytes in vitro. Mechanistically, HNK suppressed the Ang II-induced Nur77 expression at the transcriptional level and promoted ubiquitination-mediated degradation of Nur77, leading to dissociation of the Nur77-LKB1 complex. This facilitated the translocation of LKB1 into the cytoplasm and activated the LKB1-AMPK pathway. Our findings suggest that HNK attenuates pathological remodelling and cardiac dysfunction induced by Ang II by promoting dissociation of the Nur77-LKB1 complex and subsequent activation of AMPK signalling. This study uncovers a novel role of HNK on the LKB1-AMPK pathway to protect against cardiac hypertrophy.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Compuestos Alílicos , Angiotensina II , Compuestos de Bifenilo , Fenoles , Ratas , Animales , Angiotensina II/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas Sprague-Dawley , Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo
13.
J Cell Mol Med ; 28(19): e70124, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39351650

RESUMEN

Pathological cardiac hypertrophy, a common feature in various cardiovascular diseases, can be more effectively managed through combination therapies using natural compounds. Harmine, a ß-carboline alkaloid found in plants, possesses numerous pharmacological functions, including alleviating cardiac hypertrophy. Similarly, Selenomethionine (SE), a primary organic selenium source, has been shown to mitigate cardiac autophagy and alleviate injury. To explores the therapeutic potential of combining Harmine with SE to treat cardiac hypertrophy. The synergistic effects of SE and harmine against cardiac hypertrophy were assessed in vitro with angiotensin II (AngII)-induced hypertrophy and in vivo using a Myh6R404Q mouse model. Co-administration of SE and harmine significantly reduced hypertrophy-related markers, outperforming monotherapies. Transcriptomic and metabolic profiling revealed substantial alterations in key metabolic and signalling pathways, particularly those involved in energy metabolism. Notably, the combination therapy led to a marked reduction in the activity of key glycolytic enzymes. Importantly, the addition of the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) did not further potentiate these effects, suggesting that the antihypertrophic action is predominantly mediated through glycolytic inhibition. These findings highlight the potential of SE and harmine as a promising combination therapy for the treatment of cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Glucólisis , Harmina , Selenometionina , Animales , Harmina/farmacología , Cardiomegalia/metabolismo , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Cardiomegalia/inducido químicamente , Glucólisis/efectos de los fármacos , Ratones , Selenometionina/farmacología , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Angiotensina II , Sinergismo Farmacológico , Transducción de Señal/efectos de los fármacos
14.
J Cell Mol Med ; 28(7): e18243, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38509740

RESUMEN

Humans lacking heme oxygenase 1 (HMOX1) display growth retardation, haemolytic anaemia, and vulnerability to stress; however, cardiac function remains unclear. We aimed to explore the cardiac function of zebrafish lacking hmox1a at baseline and in response to stress. We generated zebrafish hmox1a mutants using CRISPR/Cas9 genome editing technology. Deletion of hmox1a increases cardiac output and further induces hypertrophy in adults. Adults lacking hmox1a develop myocardial interstitial fibrosis, restrain cardiomyocyte proliferation and downregulate renal haemoglobin and cardiac antioxidative genes. Larvae lacking hmox1a fail to respond to hypoxia, whereas adults are insensitive to isoproterenol stimulation in the heart, suggesting that hmox1a is necessary for cardiac response to stress. Haplodeficiency of hmox1a stimulates non-mitochondrial respiration and cardiac cell proliferation, increases cardiac output in larvae in response to hypoxia, and deteriorates cardiac function and structure in adults upon isoproterenol treatment. Intriguingly, haplodeficiency of hmox1a upregulates cardiac hmox1a and hmox1b in response to isoproterenol. Collectively, deletion of hmox1a results in cardiac remodelling and abrogates cardiac response to hypoxia and isoproterenol. Haplodeficiency of hmox1a aggravates cardiac response to the stress, which could be associated with the upregulation of hmox1a and hmox1b. Our data suggests that HMOX1 homeostasis is essential for maintaining cardiac function and promoting cardioprotective effects.


Asunto(s)
Cardiomiopatías , Hemo Oxigenasa (Desciclizante) , Animales , Humanos , Pez Cebra/genética , Isoproterenol/farmacología , Hemo-Oxigenasa 1/genética , Miocardio , Hipoxia , Miocitos Cardíacos
15.
J Cell Mol Med ; 28(16): e70022, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39205384

RESUMEN

Under the long-term pressure overload stimulation, the heart experiences embryonic gene activation, leading to myocardial hypertrophy and ventricular remodelling, which can ultimately result in the development of heart failure. Identifying effective therapeutic targets is crucial for the prevention and treatment of myocardial hypertrophy. Histone lysine lactylation (HKla) is a novel post-translational modification that connects cellular metabolism with epigenetic regulation. However, the specific role of HKla in pathological cardiac hypertrophy remains unclear. Our study aims to investigate whether HKla modification plays a pathogenic role in the development of cardiac hypertrophy. The results demonstrate significant expression of HKla in cardiomyocytes derived from an animal model of cardiac hypertrophy induced by transverse aortic constriction surgery, and in neonatal mouse cardiomyocytes stimulated by Ang II. Furthermore, research indicates that HKla is influenced by glucose metabolism and lactate generation, exhibiting significant phenotypic variability in response to various environmental stimuli. In vitro experiments reveal that exogenous lactate and glucose can upregulate the expression of HKla and promote cardiac hypertrophy. Conversely, inhibition of lactate production using glycolysis inhibitor (2-DG), LDH inhibitor (oxamate) and LDHA inhibitor (GNE-140) reduces HKla levels and inhibits the development of cardiac hypertrophy. Collectively, these findings establish a pivotal role for H3K18la in pathological cardiac hypertrophy, offering a novel target for the treatment of this condition.


Asunto(s)
Cardiomegalia , Histonas , Ácido Láctico , Miocitos Cardíacos , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Histonas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Ratones , Ácido Láctico/metabolismo , Procesamiento Proteico-Postraduccional , Modelos Animales de Enfermedad , Glucosa/metabolismo , Masculino , Lisina/metabolismo , Ratones Endogámicos C57BL , Glucólisis
16.
J Cell Mol Med ; 28(14): e18546, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39046458

RESUMEN

Heart failure (HF) prognosis depends on various regulatory factors; microRNA-128 (miR-128) is identified as a regulator of cardiac fibrosis, contributing to HF. MyoD family inhibitor (MDFI), which is reported to be related with Wnt/ß-catenin pathway, is supposed to be regulated by miR-128. This study investigates the interaction between miR-128 and MDFI in cardiomyocyte development and elucidates its role in heart injury. Gene expression profiling assessed miR-128's effect on MDFI expression in HF using qPCR and Western blot analysis. Luciferase assays studied the direct interaction between miR-128 and MDFI. MTT, transwell, and immunohistochemistry evaluated the effects of miR-128 and MDFI on myocardial cells in mice HF. Genescan and luciferase assays validated the interaction between miR-128 and MDFI sequences. miR-128 mimics significantly reduced MDFI expression at mRNA and protein levels with decrease rate of 55%. Overexpression of miR-128 promoted apoptosis with the increase rate 65% and attenuated cardiomyocyte proliferation, while MDFI upregulation significantly enhanced proliferation. Elevated miR-128 levels upregulated Wnt1 and ß-catenin expression, whereas increased MDFI levels inhibited these expressions. Histological analysis with haematoxylin and eosin staining revealed that miR-128 absorption reduced MDFI expression, hindering cell proliferation and cardiac repair, with echocardiography showing corresponding improvements in cardiac function. Our findings suggest miR-128 interacts with MDFI, playing a crucial role in HF management by modulating the Wnt1/ß-catenin pathway. Suppression of miR-128 could promote cardiomyocyte proliferation, highlighting the potential value of the miR-128/MDFI interplay in HF treatment.


Asunto(s)
Apoptosis , Cardiomegalia , Proliferación Celular , Insuficiencia Cardíaca , MicroARNs , Miocitos Cardíacos , MicroARNs/genética , MicroARNs/metabolismo , Animales , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Apoptosis/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proliferación Celular/genética , Ratones , Masculino , Humanos , Vía de Señalización Wnt/genética , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , beta Catenina/metabolismo , beta Catenina/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética
17.
Physiol Genomics ; 56(4): 360-366, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38314697

RESUMEN

Adverse cardiac remodeling contributes to heart failure development and progression, partly due to inappropriate sympathetic nervous system activation. Although ß-adrenergic receptor (ß-AR) blockade is a common heart failure therapy, not all patients respond, prompting exploration of alternative treatments. Minocycline, an FDA-approved antibiotic, has pleiotropic properties beyond antimicrobial action. Recent evidence suggests it may alter gene expression via changes in miRNA expression. Thus, we hypothesized that minocycline could prevent adverse cardiac remodeling induced by the ß-AR agonist isoproterenol, involving miRNA-mRNA transcriptome alterations. Male C57BL/6J mice received isoproterenol (30 mg/kg/day sc) or vehicle via osmotic minipump for 21 days, along with daily minocycline (50 mg/kg ip) or sterile saline. Isoproterenol induced cardiac hypertrophy without altering cardiac function, which minocycline prevented. Total mRNA sequencing revealed isoproterenol altering gene networks associated with inflammation and metabolism, with fibrosis activation predicted by integrated miRNA-mRNA sequencing, involving miR-21, miR-30a, miR-34a, miR-92a, and miR-150, among others. Conversely, the cardiac miRNA-mRNA transcriptome predicted fibrosis inhibition in minocycline-treated mice, involving antifibrotic shifts in Atf3 and Itgb6 gene expression associated with miR-194 upregulation. Picrosirius red staining confirmed isoproterenol-induced cardiac fibrosis, prevented by minocycline. These results demonstrate minocycline's therapeutic potential in attenuating adverse cardiac remodeling through miRNA-mRNA-dependent mechanisms, especially in reducing cardiac fibrosis. NEW & NOTEWORTHY We demonstrate that minocycline treatment prevents cardiac hypertrophy and fibrotic remodeling induced by chronic ß-adrenergic stimulation by inducing antifibrotic shifts in the cardiac miRNA-mRNA transcriptome.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , MicroARNs , Humanos , Masculino , Ratones , Animales , Isoproterenol/farmacología , Isoproterenol/metabolismo , Minociclina/farmacología , Miocitos Cardíacos/metabolismo , Adrenérgicos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Remodelación Ventricular/genética , Ratones Endogámicos C57BL , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Fibrosis
18.
J Biol Chem ; 299(3): 102964, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736425

RESUMEN

Cardiac hypertrophy is a crucial risk factor for hypertensive disorders during pregnancy, but its progression during pregnancy remains unclear. We previously showed cardiac hypertrophy in a pregnancy-associated hypertensive (PAH) mouse model, in which an increase in angiotensin II (Ang II) levels was induced by human renin and human angiotensinogen, depending on pregnancy conditions. Here, to elucidate the factors involved in the progression of cardiac hypertrophy, we performed a comprehensive analysis of changes in gene expression in the hearts of PAH mice and compared them with those in control mice. We found that alpha-1A adrenergic receptor (Adra1a) mRNA levels in the heart were significantly reduced under PAH conditions, whereas the renin-angiotensin system was upregulated. Furthermore, we found that Adra1a-deficient PAH mice exhibited more severe cardiac hypertrophy than PAH mice. Our study suggests that Adra1a levels are regulated by renin-angiotensin system and that changes in Adra1a expression are involved in progressive cardiac hypertrophy in PAH mice.


Asunto(s)
Angiotensina II , Hipertensión Inducida en el Embarazo , Receptores Adrenérgicos alfa 1 , Animales , Femenino , Humanos , Ratones , Embarazo , Angiotensina II/metabolismo , Cardiomegalia/metabolismo , Miocardio/metabolismo , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Sistema Renina-Angiotensina , Hipertensión Inducida en el Embarazo/genética , Hipertensión Inducida en el Embarazo/metabolismo
19.
J Biol Chem ; 299(6): 104788, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37150323

RESUMEN

Cardiac triacylglycerol accumulation is a common characteristic of obesity and type 2 diabetes and strongly correlates with heart morbidity and mortality. We have previously shown that cardiomyocyte-specific perilipin 5 overexpression (Plin5-Tg) provokes significant cardiac steatosis via lowering cardiac lipolysis and fatty acid (FA) oxidation. In strong contrast to cardiac steatosis and lethal heart dysfunction in adipose triglyceride lipase deficiency, Plin5-Tg mice do not develop heart dysfunction and show a normal life span on chow diet. This finding prompted us to study heart function and energy metabolism in Plin5-Tg mice fed high-fat diet (HFD). Plin5-Tg mice showed adverse cardiac remodeling on HFD with heart function only being compromised in one-year-old mice, likely due to reduced cardiac FA uptake, thereby delaying deleterious cardiac lipotoxicity. Notably, Plin5-Tg mice were less obese and protected from glucose intolerance on HFD. Changes in cardiac energy catabolism in Plin5-Tg mice increased ß-adrenergic signaling, lipolytic, and thermogenic protein expression in adipose tissue ultimately counteracting HFD-induced obesity. Acute cold exposure further augmented ß-adrenergic signaling in Plin5-Tg mice, whereas housing at thermoneutrality did not protect Plin5-Tg mice from HFD-induced obesity albeit blood glucose and insulin levels remained low in transgenic mice. Overall, our data suggest that the limited capacity for myocardial FA oxidation on HFD increases cardiac stress in Plin5-Tg mice, thereby stimulating adipose tissue ß-adrenergic signaling, triacylglycerol catabolism, and thermogenesis. However, long-term HFD-mediated metabolic stress causes contractile dysfunction in Plin5-Tg mice, which emphasizes the importance of a carefully controlled dietary regime in patients with cardiac steatosis and hypertrophy.


Asunto(s)
Tejido Adiposo , Cardiopatías , Lipólisis , Obesidad , Receptores Adrenérgicos , Remodelación Ventricular , Animales , Ratones , Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Triglicéridos/metabolismo , Perilipina-5/metabolismo , Ácidos Grasos/metabolismo , Cardiopatías/etiología , Cardiopatías/metabolismo , Receptores Adrenérgicos/metabolismo
20.
J Biol Chem ; 299(12): 105426, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926281

RESUMEN

S-palmitoylation is a reversible lipid modification catalyzed by 23 S-acyltransferases with a conserved zinc finger aspartate-histidine-histidine-cysteine (zDHHC) domain that facilitates targeting of proteins to specific intracellular membranes. Here we performed a gain-of-function screen in the mouse and identified the Golgi-localized enzymes zDHHC3 and zDHHC7 as regulators of cardiac hypertrophy. Cardiomyocyte-specific transgenic mice overexpressing zDHHC3 show cardiac disease, and S-acyl proteomics identified the small GTPase Rac1 as a novel substrate of zDHHC3. Notably, cardiomyopathy and congestive heart failure in zDHHC3 transgenic mice is preceded by enhanced Rac1 S-palmitoylation, membrane localization, activity, downstream hypertrophic signaling, and concomitant induction of all Rho family small GTPases whereas mice overexpressing an enzymatically dead zDHHC3 mutant show no discernible effect. However, loss of Rac1 or other identified zDHHC3 targets Gαq/11 or galectin-1 does not diminish zDHHC3-induced cardiomyopathy, suggesting multiple effectors and pathways promoting decompensation with sustained zDHHC3 activity. Genetic deletion of Zdhhc3 in combination with Zdhhc7 reduces cardiac hypertrophy during the early response to pressure overload stimulation but not over longer time periods. Indeed, cardiac hypertrophy in response to 2 weeks of angiotensin-II infusion is not diminished by Zdhhc3/7 deletion, again suggesting other S-acyltransferases or signaling mechanisms compensate to promote hypertrophic signaling. Taken together, these data indicate that the activity of zDHHC3 and zDHHC7 at the cardiomyocyte Golgi promote Rac1 signaling and maladaptive cardiac remodeling, but redundant signaling effectors compensate to maintain cardiac hypertrophy with sustained pathological stimulation in the absence of zDHHC3/7.


Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Animales , Ratones , Aciltransferasas/genética , Aciltransferasas/metabolismo , Cardiomegalia/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Histidina/metabolismo , Lipoilación , Ratones Transgénicos , Miocitos Cardíacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA