Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Biol Cell ; 113(8): 344-373, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33788963

RESUMEN

Deformability of the plasma membrane, the outermost surface of metazoan cells, allows cells to be dynamic, mobile and flexible. Factors that affect this deformability, such as tension on the membrane, can regulate a myriad of cellular functions, including membrane resealing, cell motility, polarisation, shape maintenance, membrane area control and endocytic vesicle trafficking. This review focuses on mechanoregulation of clathrin-mediated endocytosis (CME). We first delineate the origins of cell membrane tension and the factors that yield to its spatial and temporal fluctuations within cells. We then review the recent literature demonstrating that tension on the membrane is a fast-acting and reversible regulator of CME. Finally, we discuss tension-based regulation of endocytic clathrin coat formation during physiological processes.


Asunto(s)
Membrana Celular , Clatrina/metabolismo , Endocitosis , Células Eucariotas , Animales , Membrana Celular/química , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Vesículas Cubiertas por Clatrina/fisiología , Endocitosis/fisiología , Células Eucariotas/fisiología , Células Eucariotas/ultraestructura , Exocitosis/fisiología , Humanos , Transporte de Proteínas , Vesículas Transportadoras
2.
Biol Cell ; 112(4): 103-112, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31916263

RESUMEN

The effects of cell size, shape and deformability on cellular function have long been a topic of interest. Recently, mechanical phenotyping technologies capable of analysing large numbers of cells in real time have become available. This has important implications for biology and medicine, especially haemato-oncology and immunology, as immune cell mechanical phenotyping, immunologic function, and malignant cell transformation are closely linked and potentially exploitable to develop new diagnostics and therapeutics. In this review, we introduce the technologies used to analyse cellular mechanical properties and review emerging findings following the advent of high throughput deformability cytometry. We largely focus on cells from the myeloid lineage, which are derived from the bone marrow and include macrophages, granulocytes and erythrocytes. We highlight advances in mechanical phenotyping of cells in suspension that are revealing novel signatures of human blood diseases and providing new insights into pathogenesis of these diseases. The contributions of mechanical phenotyping of cells in suspension to our understanding of drug mechanisms, identification of novel therapeutics and monitoring of treatment efficacy particularly in instances of haematologic diseases are reviewed, and we suggest emerging topics of study to explore as high throughput deformability cytometers become prevalent in laboratories across the globe.


Asunto(s)
Células Mieloides/inmunología , Fenotipo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fenómenos Biomecánicos , Elasticidad , Citometría de Flujo , Glucocorticoides/farmacología , Humanos , Microscopía de Fuerza Atómica , Células Mieloides/efectos de los fármacos , Neoplasias/tratamiento farmacológico
3.
Molecules ; 23(5)2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29883398

RESUMEN

Three new transition metal complexes, Cu(II) 1, Co(II) 2, and Zn(II) 3 with ligand "bimnap" derived from 1-methyl-2-aminobenzimidazole and 2-hydroxynapthaldehyde were synthesized and characterized. The structure of the ligand was determined by single X-ray crystallography. All the three complexes, 1⁻3, were examined for the mode of interaction with biomolecule viz., calf thymus-DNA (CT-DNA) using various spectroscopic methods. The nuclease activity was performed against pBR322 DNA that exhibited concentration-dependent degradation of the nucleic acid. The mechanism of DNA cleavage was studied by the electrophoretic pattern in the presence of the radical scavengers. Also, the complexes 1⁻3 were analyzed for groove binding affinity. Moreover, in vitro cytotoxicities of the complexes 1⁻3 were tested against the five human cancer cell lines, i.e., HeLa, SK-MEL-1, HepG2, HT108, and MDA-MB 231. Also, the cell adhesion and migration properties upon treatment of cell lines with complexes 1⁻3, and consequently, their cell death pathway via apoptosis and necrosis were analyzed. Further, complexes 1⁻3 were studied in vivo for their toxicities and tolerabilities in mice. In sum, the complexes 1⁻3 showed merits of an effective anticancer agent in cell lines⁻based study while minor side effects were observed in vivo.A green solvent extraction technology involving a microwave processing method was used to increase the content of minor ginsenosides from Panax notoginseng. This article aims to investigate the optimization of preparation of the minor ginsenosides by this microwave processing method using single-factor experiments and response surface methodology (RSM), and discuss the blood-enriching activity and hemostatic activity of the extract of microwave processed P. notoginseng (EMPN) The RSM for production of the minor ginsenosides was based on a three-factor and three-level Box-Behnken design. When the optimum conditions of microwave power, temperature and time were 495.03 W, 150.68 °C and 20.32 min, respectively, results predicted that the yield of total minor ginsenosides (Y9) would be 93.13%. The actual value of Y9 was very similar to the predicted value. In addition, the pharmacological results of EMPN in vivo showed that EMPN had the effect of enriching blood in N-acetylphenylhydrazine (APH) and cyclophosphamide (CTX)-induced blood deficient mice because of the increasing content of white blood cells (WBCs) and hemoglobin (HGB) in blood. Hemostatic activity in vitro of EMPN showed that it had significantly shortened the clotting time in PT testing (p < 0.05). The hemostatic effect of EMPN was mainly caused by its components of Rh4, 20(S)-Rg3 and 20(R)-Rg3. This microwave processing method is simple and suitable to mass-produce the minor ginsenosides from P. notoginseng.


Asunto(s)
Antineoplásicos/síntesis química , Bencimidazoles/síntesis química , Complejos de Coordinación/síntesis química , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Bencimidazoles/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cobalto/química , Complejos de Coordinación/farmacología , Cobre/química , Cristalografía por Rayos X , ADN/química , División del ADN , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Depuradores de Radicales Libres/química , Humanos , Ligandos , Masculino , Ratones , Estructura Molecular , Relación Estructura-Actividad , Zinc/química
4.
JCI Insight ; 9(17)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253970

RESUMEN

HIV-associated neurocognitive impairment (HIV-NCI) affects 15%-50% of people with HIV (PWH), despite viral suppression with antiretroviral therapy (ART). HIV neuropathogenesis is mediated, in part, by transmigration of infected CD14+CD16+ monocytes across the blood-brain barrier (BBB) into the central nervous system (CNS). In the CNS, CD14+CD16+ monocytes contribute to infection and activation of parenchymal cells, resulting in production of neurotoxic viral and host factors that cause neuronal damage. Mechanisms by which CD14+CD16+ monocytes contribute to HIV-NCI have not been characterized in a study population of PWH on ART without contribution from confounders that affect cognition (e.g., substance use, hepatitis C virus coinfection). We assessed cognitive function, PBMC transmigration across the BBB, and neuronal health markers in a well-defined cohort of 56 PWH on ART using stringent criteria to eliminate confounding factors. We demonstrated that PWH on ART with HIV-NCI have significantly increased transmigration of their CD14+CD16+ monocytes across the BBB compared with those with normal cognition. We showed that hypertension and diabetes may be effect modifiers on the association between CD14+CD16+ monocyte transmigration and cognition. This study underscored the persistent role of CD14+CD16+ monocytes in HIV-NCI, even in PWH with viral suppression, suggesting them as potential targets for therapeutic interventions.


Asunto(s)
Barrera Hematoencefálica , Infecciones por VIH , Receptores de Lipopolisacáridos , Monocitos , Receptores de IgG , Humanos , Barrera Hematoencefálica/metabolismo , Receptores de IgG/metabolismo , Monocitos/metabolismo , Monocitos/inmunología , Receptores de Lipopolisacáridos/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Adulto , Proteínas Ligadas a GPI/metabolismo , Complejo SIDA Demencia/inmunología , Complejo SIDA Demencia/metabolismo
5.
JCI Insight ; 9(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38386413

RESUMEN

In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS.


Asunto(s)
Enfermedades Autoinmunes , Esclerosis Múltiple , Humanos , Ratones , Animales , Sirolimus/farmacología , Barrera Hematoencefálica/metabolismo , Linfocitos T Reguladores , Células Endoteliales/metabolismo , Citocinas/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
6.
J Clin Invest ; 134(4)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194271

RESUMEN

Effective immunity requires a large, diverse naive T cell repertoire circulating among lymphoid organs in search of antigen. Sphingosine 1-phosphate (S1P) and its receptor S1PR1 contribute by both directing T cell migration and supporting T cell survival. Here, we addressed how S1P enables T cell survival and the implications for patients treated with S1PR1 antagonists. We found that S1PR1 limited apoptosis by maintaining the appropriate balance of BCL2 family members via restraint of JNK activity. Interestingly, the same residues of S1PR1 that enable receptor internalization were required to prevent this proapoptotic cascade. Findings in mice were recapitulated in ulcerative colitis patients treated with the S1PR1 antagonist ozanimod, and the loss of naive T cells limited B cell responses. Our findings highlighted an effect of S1PR1 antagonists on the ability to mount immune responses within lymph nodes, beyond their effect on lymph node egress, and suggested both limitations and additional uses of this important class of drugs.


Asunto(s)
Ganglios Linfáticos , Linfocitos T , Animales , Humanos , Ratones , Linfocitos B , Ganglios Linfáticos/patología , Lisofosfolípidos , Receptores de Lisoesfingolípidos/genética , Transducción de Señal , Esfingosina , Receptores de Esfingosina-1-Fosfato
7.
J Clin Invest ; 134(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145446

RESUMEN

Tissue fibrosis remains unamenable to meaningful therapeutic interventions and is the primary cause of chronic graft failure after organ transplantation. Eukaryotic translation initiation factor (eIF4E), a key translational regulator, serves as convergent target of multiple upstream profibrotic signaling pathways that contribute to mesenchymal cell (MC) activation. Here, we investigate the role of MAP kinase-interacting serine/threonine kinase-induced (MNK-induced) direct phosphorylation of eIF4E at serine 209 (Ser209) in maintaining fibrotic transformation of MCs and determine the contribution of the MNK/eIF4E pathway to the pathogenesis of chronic lung allograft dysfunction (CLAD). MCs from patients with CLAD demonstrated constitutively higher eIF4E phosphorylation at Ser209, and eIF4E phospho-Ser209 was found to be critical in regulating key fibrogenic protein autotaxin, leading to sustained ß-catenin activation and profibrotic functions of CLAD MCs. MNK1 signaling was upregulated in CLAD MCs, and genetic or pharmacologic targeting of MNK1 activity inhibited eIF4E phospho-Ser209 and profibrotic functions of CLAD MCs in vitro. Treatment with an MNK1/2 inhibitor (eFT-508) abrogated allograft fibrosis in an orthotopic murine lung-transplant model. Together these studies identify what we believe is a previously unrecognized MNK/eIF4E/ATX/ß-catenin signaling pathway of fibrotic transformation of MCs and present the first evidence, to our knowledge, for the utility of MNK inhibitors in fibrosis.


Asunto(s)
Aloinjertos , Factor 4E Eucariótico de Iniciación , Trasplante de Pulmón , Proteínas Serina-Treonina Quinasas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Ratones , Fosforilación , Humanos , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Masculino , Fibrosis , Femenino , Transducción de Señal
8.
JCI Insight ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325541

RESUMEN

Grover disease is an acquired epidermal blistering disorder in which keratinocytes lose intercellular connections. While its pathologic features are well-defined, its etiology remains unclear and it lacks any FDA-approved therapy. Interestingly, Grover disease was a common adverse event in clinical trials for cancer using B-RAF inhibitors, but it remained unknown how B-RAF blockade compromised skin integrity. Here we identified ERK hyperactivation as a key driver of Grover disease pathology. We leveraged a fluorescent biosensor to confirm that B-RAF inhibitors, dabrafenib and vemurafenib, paradoxically activated ERK in human keratinocytes and organotypic epidermis, disrupting cell-cell junctions and weakening epithelial integrity. Consistent with clinical data showing that concomitant MEK blockade prevents Grover disease in patients receiving B-RAF inhibitors, we found that MEK inhibition suppressed ERK and rescued cohesion of B-RAF-inhibited keratinocytes. Validating these results, we demonstrated ERK hyperactivation in patient biopsies from vemurafenib-induced Grover disease, but also from spontaneous Grover disease, revealing a common etiology for both. Finally, in line with our recent identification of ERK hyperactivation in Darier disease, a genetic disorder with identical pathology to Grover disease, our studies uncovered that the pathogenic mechanisms of these two diseases converge on ERK signaling and support MEK inhibition as a therapeutic strategy. .

9.
J Clin Invest ; 134(17)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39225097

RESUMEN

The ubiquitously expressed small GTPase Ras-related protein 1B (RAP1B) acts as a molecular switch that regulates cell signaling, cytoskeletal remodeling, and cell trafficking and activates integrins in platelets and lymphocytes. The residue G12 in the P-loop is required for the RAP1B-GTPase conformational switch. Heterozygous germline RAP1B variants have been described in patients with syndromic thrombocytopenia. However, the causality and pathophysiological impact remained unexplored. We report a boy with neonatal thrombocytopenia, combined immunodeficiency, neutropenia, and monocytopenia caused by a heterozygous de novo single nucleotide substitution, c.35G>A (p.G12E) in RAP1B. We demonstrate that G12E and the previously described G12V and G60R were gain-of-function variants that increased RAP1B activation, talin recruitment, and integrin activation, thereby modifying late responses such as platelet activation, T cell proliferation, and migration. We show that in our patient, G12E was a somatic variant whose allele frequency decreased over time in the peripheral immune compartment, but remained stable in bone marrow cells, suggesting a differential effect in distinct cell populations. Allogeneic hematopoietic stem cell transplantation fully restored the patient's hemato-immunological phenotype. Our findings define monoallelic RAP1B gain-of-function variants as a cause for constitutive immunodeficiency and thrombocytopenia. The phenotypic spectrum ranged from isolated hematological manifestations in our patient with somatic mosaicism to complex syndromic features in patients with reported germline RAP1B variants.


Asunto(s)
Mutación con Ganancia de Función , Trombocitopenia , Proteínas de Unión al GTP rap , Humanos , Masculino , Sustitución de Aminoácidos , Trasplante de Células Madre Hematopoyéticas , Síndromes de Inmunodeficiencia/genética , Mutación Missense , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo , Trombocitopenia/genética , Trombocitopenia/patología , Recién Nacido , Lactante , Preescolar , Niño
10.
J Clin Invest ; 134(16)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980724

RESUMEN

Reelin (RELN) is a secreted glycoprotein essential for cerebral cortex development. In humans, recessive RELN variants cause cortical and cerebellar malformations, while heterozygous variants were associated with epilepsy, autism, and mild cortical abnormalities. However, the functional effects of RELN variants remain unknown. We identified inherited and de novo RELN missense variants in heterozygous patients with neuronal migration disorders (NMDs) as diverse as pachygyria and polymicrogyria. We investigated in culture and in the developing mouse cerebral cortex how different variants impacted RELN function. Polymicrogyria-associated variants behaved as gain-of-function, showing an enhanced ability to induce neuronal aggregation, while those linked to pachygyria behaved as loss-of-function, leading to defective neuronal aggregation/migration. The pachygyria-associated de novo heterozygous RELN variants acted as dominant-negative by preventing WT RELN secretion in culture, animal models, and patients, thereby causing dominant NMDs. We demonstrated how mutant RELN proteins in vitro and in vivo predict cortical malformation phenotypes, providing valuable insights into the pathogenesis of such disorders.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Movimiento Celular , Proteínas de la Matriz Extracelular , Mutación Missense , Proteínas del Tejido Nervioso , Proteína Reelina , Serina Endopeptidasas , Humanos , Animales , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ratones , Femenino , Masculino , Movimiento Celular/genética , Neuronas/metabolismo , Neuronas/patología , Polimicrogiria/genética , Polimicrogiria/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Heterocigoto , Lisencefalia/genética , Lisencefalia/patología , Alelos
11.
JCI Insight ; 9(17)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078701

RESUMEN

Thrombospondin-1 (TSP1) is a matricellular protein associated with the regulation of cell migration through direct binding interactions with integrin proteins and by associating with other receptors known to regulate integrin function, including CD47 and CD36. We previously demonstrated that deletion of an epithelial TSP1 receptor, CD47, attenuates epithelial wound repair following intestinal mucosal injury. However, the mechanisms by which TSP1 contributes to intestinal mucosal repair remain poorly understood. Our results show upregulated TSP1 expression in colonic mucosal wounds and impaired intestinal mucosal wound healing in vivo upon intestinal epithelium-specific loss of TSP1 (VillinCre/+ Thbs1fl/fl or Thbs1ΔIEC mice). We report that exposure to exogenous TSP1 enhanced migration of intestinal epithelial cells in a CD47- and TGF-ß1-dependent manner and that deficiency of TSP1 in primary murine colonic epithelial cells resulted in impaired wound healing. Mechanistically, TSP1 modulated epithelial actin cytoskeletal dynamics through suppression of RhoA activity, activation of Rho family small GTPase (Rac1), and changes in filamentous-actin bundling. Overall, TSP1 was found to regulate intestinal mucosal wound healing via CD47 and TGF-ß1, coordinate integrin-containing cell-matrix adhesion dynamics, and remodel the actin cytoskeleton in migrating epithelial cells to enhance cell motility and promote wound repair.


Asunto(s)
Antígeno CD47 , Movimiento Celular , Mucosa Intestinal , Trombospondina 1 , Factor de Crecimiento Transformador beta1 , Cicatrización de Heridas , Animales , Trombospondina 1/metabolismo , Trombospondina 1/genética , Cicatrización de Heridas/fisiología , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Antígeno CD47/metabolismo , Antígeno CD47/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Ratones Noqueados , Proteína de Unión al GTP rac1/metabolismo , Células Epiteliales/metabolismo , Humanos , Colon/metabolismo , Colon/patología , Masculino , Neuropéptidos
12.
JCI Insight ; 9(5)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38271085

RESUMEN

High-grade serous carcinoma (HGSC) is the most lethal gynecological malignancy in the United States. Late diagnosis and the emergence of chemoresistance have prompted studies into how the tumor microenvironment, and more recently tumor innervation, may be leveraged for HGSC prevention and interception. In addition to stess-induced sources, concentrations of the sympathetic neurotransmitter norepinephrine (NE) in the ovary increase during ovulation and after menopause. Importantly, NE exacerbates advanced HGSC progression. However, little is known about the role of NE in early disease pathogenesis. Here, we investigated the role of NE in instigating anchorage independence and micrometastasis of preneoplastic lesions from the fallopian tube epithelium (FTE) to the ovary, an essential step in HGSC onset. We found that in the presence of NE, FTE cell lines were able to survive in ultra-low-attachment (ULA) culture in a ß-adrenergic receptor-dependent (ß-AR-dependent) manner. Importantly, spheroid formation and cell viability conferred by treatment with physiological sources of NE were abrogated using the ß-AR blocker propranolol. We have also identified that NE-mediated anoikis resistance may be attributable to downregulation of colony-stimulating factor 2. These findings provide mechanistic insight and identify targets that may be regulated by ovary-derived NE in early HGSC.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patología , Trompas Uterinas/metabolismo , Trompas Uterinas/patología , Anoicis , Norepinefrina/farmacología , Norepinefrina/metabolismo , Microambiente Tumoral
13.
JCI Insight ; 8(11)2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37104033

RESUMEN

The development and progression of endometriotic lesions are poorly understood, but immune cell dysfunction and inflammation are closely associated with the pathophysiology of endometriosis. There is a need for 3D in vitro models to permit the study of interactions between cell types and the microenvironment. To address this, we developed endometriotic spheroids (ES) to explore the role of epithelial-stromal interactions and model peritoneal invasion associated with lesion development. Using a nonadherent microwell culture system, spheroids were generated with immortalized endometriotic epithelial cells (12Z) combined with endometriotic stromal (iEc-ESC) or uterine stromal (iHUF) cell lines. Transcriptomic analysis found 4,522 differentially expressed genes in ES compared with spheroids containing uterine stromal cells. The top increased gene sets were inflammation-related pathways, and an overlap with baboon endometriotic lesions was highly significant. Finally, to mimic invasion of endometrial tissue into the peritoneum, a model was developed with human peritoneal mesothelial cells in an extracellular matrix. Invasion was increased in the presence of estradiol or pro-inflammatory macrophages and suppressed by a progestin. Taken together, our results strongly support the concept that ES are an appropriate model for dissecting mechanisms that contribute to endometriotic lesion development.


Asunto(s)
Endometriosis , Femenino , Humanos , Endometriosis/genética , Línea Celular , Células Epiteliales/metabolismo , Epitelio/metabolismo , Perfilación de la Expresión Génica
14.
JCI Insight ; 8(13)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37427590

RESUMEN

Antiviral immunity often requires CD8+ cytotoxic T lymphocytes (CTLs) that actively migrate and search for virus-infected targets. Regulatory T cells (Tregs) have been shown to suppress CTL responses, but it is not known whether this is also mediated by effects on CTL motility. Here, we used intravital 2-photon microscopy in the Friend retrovirus (FV) mouse model to define the impact of Tregs on CTL motility throughout the course of acute infection. Virus-specific CTLs were very motile and had frequent short contacts with target cells at their peak cytotoxic activity. However, when Tregs were activated and expanded in late-acute FV infection, CTLs became significantly less motile and contacts with target cells were prolonged. This phenotype was associated with development of functional CTL exhaustion. Tregs had direct contacts with CTLs in vivo and, importantly, their experimental depletion restored CTL motility. Our findings identify an effect of Tregs on CTL motility as part of their mechanism of functional impairment in chronic viral infections. Future studies must address the underlying molecular mechanisms.


Asunto(s)
Infecciones por Retroviridae , Linfocitos T Citotóxicos , Ratones , Animales , Linfocitos T Reguladores , Retroviridae , Linfocitos T CD8-positivos
15.
JCI Insight ; 8(18)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37561594

RESUMEN

Mutation of the ATP2A2 gene encoding sarco-endoplasmic reticulum calcium ATPase 2 (SERCA2) was linked to Darier disease more than 2 decades ago; however, there remain no targeted therapies for this disorder causing recurrent skin blistering and infections. Since Atp2a2-knockout mice do not phenocopy its pathology, we established a human tissue model of Darier disease to elucidate its pathogenesis and identify potential therapies. Leveraging CRISPR/Cas9, we generated human keratinocytes lacking SERCA2, which replicated features of Darier disease, including weakened intercellular adhesion and defective differentiation in organotypic epidermis. To identify pathogenic drivers downstream of SERCA2 depletion, we performed RNA sequencing and proteomics analysis. SERCA2-deficient keratinocytes lacked desmosomal and cytoskeletal proteins required for epidermal integrity and exhibited excess MAPK signaling, which modulates keratinocyte adhesion and differentiation. Immunostaining patient biopsies substantiated these findings, with lesions showing keratin deficiency, cadherin mislocalization, and ERK hyperphosphorylation. Dampening ERK activity with MEK inhibitors rescued adhesive protein expression and restored keratinocyte sheet integrity despite SERCA2 depletion or chemical inhibition. In sum, coupling multiomic analysis with human organotypic epidermis as a preclinical model, we found that SERCA2 haploinsufficiency disrupts critical adhesive components in keratinocytes via ERK signaling and identified MEK inhibition as a treatment strategy for Darier disease.


Asunto(s)
Enfermedad de Darier , Ratones , Animales , Humanos , Enfermedad de Darier/tratamiento farmacológico , Enfermedad de Darier/genética , Enfermedad de Darier/metabolismo , Epidermis/metabolismo , Queratinocitos/metabolismo , Retículo Endoplásmico/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
16.
Cells ; 12(14)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37508563

RESUMEN

Tissue inhibitor of metalloproteinases-1 (TIMP-1), an important regulator of matrix metalloproteinases (MMPs), has recently been shown to interact with CD74, a receptor for macrophage migration inhibitory factor (MIF). However, the biological effects mediated by TIMP-1 through CD74 remain largely unexplored. Using sequence alignment and in silico protein-protein docking analysis, we demonstrated that TIMP-1 shares residues with both MIF and MIF-2, crucial for CD74 binding, but not for CXCR4. Subcellular colocalization, immunoprecipitation, and internalization experiments supported these findings, demonstrating that TIMP-1 interacts with surface-expressed CD74, resulting in its internalization in a dose-dependent manner, as well as with a soluble CD74 ectodomain fragment (sCD74). This prompted us to study the effects of the TIMP-1-CD74 axis on monocytes and vascular smooth muscle cells (VSCMs) to assess its impact on vascular inflammation. A phospho-kinase array revealed the activation of serine/threonine kinases by TIMP-1 in THP-1 pre-monocytes, in particular AKT. Similarly, TIMP-1 dose-dependently triggered the phosphorylation of AKT and ERK1/2 in primary human monocytes. Importantly, Transwell migration, 3D-based Chemotaxis, and flow adhesion assays demonstrated that TIMP-1 engagement of CD74 strongly promotes the recruitment response of primary human monocytes, while live cell imaging studies revealed a profound activating effect on VSMC proliferation. Finally, re-analysis of scRNA-seq data highlighted the expression patterns of TIMP-1 and CD74 in human atherosclerotic lesions, thus, together with our experimental data, indicating a role for the TIMP-1-CD74 axis in vascular inflammation and atherosclerosis.


Asunto(s)
Aterosclerosis , Monocitos , Humanos , Proteínas Proto-Oncogénicas c-akt , Inhibidor Tisular de Metaloproteinasa-1 , Músculo Liso Vascular , Inflamación , Proliferación Celular
17.
J Clin Invest ; 133(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261911

RESUMEN

Neutrophil (PMN) mobilization to sites of insult is critical for host defense and requires transendothelial migration (TEM). TEM involves several well-studied sequential adhesive interactions with vascular endothelial cells (ECs); however, what initiates or terminates this process is not well-understood. Here, we describe what we believe to be a new mechanism where vessel-associated macrophages through localized interactions primed EC responses to form ICAM-1 "hot spots" to support PMN TEM. Using real-time intravital microscopy of LPS-inflamed intestines in CX3CR1-EGFP macrophage-reporter mice, complemented by whole-mount tissue imaging and flow cytometry, we found that macrophage vessel association is critical for the initiation of PMN-EC adhesive interactions, PMN TEM, and subsequent accumulation in the intestinal mucosa. Anti-colony stimulating factor 1 receptor Ab-mediated macrophage depletion in the lamina propria and at the vessel wall resulted in elimination of ICAM-1 hot spots impeding PMN-EC interactions and TEM. Mechanistically, the use of human clinical specimens, TNF-α-KO macrophage chimeras, TNF-α/TNF receptor (TNF-α/TNFR) neutralization, and multicellular macrophage-EC-PMN cocultures revealed that macrophage-derived TNF-α and EC TNFR2 axis mediated this regulatory mechanism and was required for PMN TEM. As such, our findings identified clinically relevant mechanisms by which macrophages regulate PMN trafficking in inflamed mucosa.


Asunto(s)
Células Endoteliales , Molécula 1 de Adhesión Intercelular , Humanos , Ratones , Animales , Células Endoteliales/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Adhesión Celular/fisiología , Infiltración Neutrófila , Células Cultivadas , Mucosa Intestinal/metabolismo , Neutrófilos/metabolismo , Macrófagos/metabolismo , Endotelio Vascular/metabolismo
18.
JCI Insight ; 8(6)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36795511

RESUMEN

Arrhythmogenic cardiomyopathy (AC) is a familial heart disease partly caused by impaired desmosome turnover. Thus, stabilization of desmosome integrity may provide new treatment options. Desmosomes, apart from cellular cohesion, provide the structural framework of a signaling hub. Here, we investigated the role of the epidermal growth factor receptor (EGFR) in cardiomyocyte cohesion. We inhibited EGFR under physiological and pathophysiological conditions using the murine plakoglobin-KO AC model, in which EGFR was upregulated. EGFR inhibition enhanced cardiomyocyte cohesion. Immunoprecipitation showed an interaction of EGFR and desmoglein 2 (DSG2). Immunostaining and atomic force microscopy (AFM) revealed enhanced DSG2 localization and binding at cell borders upon EGFR inhibition. Enhanced area composita length and desmosome assembly were observed upon EGFR inhibition, confirmed by enhanced DSG2 and desmoplakin (DP) recruitment to cell borders. PamGene Kinase assay performed in HL-1 cardiomyocytes treated with erlotinib, an EGFR inhibitor, revealed upregulation of Rho-associated protein kinase (ROCK). Erlotinib-mediated desmosome assembly and cardiomyocyte cohesion were abolished upon ROCK inhibition. Thus, inhibiting EGFR and, thereby, stabilizing desmosome integrity via ROCK might provide treatment options for AC.


Asunto(s)
Desmosomas , Miocitos Cardíacos , Animales , Ratones , Adhesión Celular/fisiología , Desmogleína 2/metabolismo , Desmosomas/metabolismo , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Miocitos Cardíacos/metabolismo , Quinasas Asociadas a rho/metabolismo
19.
J Clin Invest ; 133(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36881486

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) frequently presents with metastasis, but the molecular programs in human PDAC cells that drive invasion are not well understood. Using an experimental pipeline enabling PDAC organoid isolation and collection based on invasive phenotype, we assessed the transcriptomic programs associated with invasion in our organoid model. We identified differentially expressed genes in invasive organoids compared with matched noninvasive organoids from the same patients, and we confirmed that the encoded proteins were enhanced in organoid invasive protrusions. We identified 3 distinct transcriptomic groups in invasive organoids, 2 of which correlated directly with the morphological invasion patterns and were characterized by distinct upregulated pathways. Leveraging publicly available single-cell RNA-sequencing data, we mapped our transcriptomic groups onto human PDAC tissue samples, highlighting differences in the tumor microenvironment between transcriptomic groups and suggesting that non-neoplastic cells in the tumor microenvironment can modulate tumor cell invasion. To further address this possibility, we performed computational ligand-receptor analysis and validated the impact of multiple ligands (TGF-ß1, IL-6, CXCL12, MMP9) on invasion and gene expression in an independent cohort of fresh human PDAC organoids. Our results identify molecular programs driving morphologically defined invasion patterns and highlight the tumor microenvironment as a potential modulator of these programs.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Transcriptoma , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/metabolismo , Organoides/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Microambiente Tumoral/genética
20.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36422990

RESUMEN

Pulmonary fibrosis is characterized by stiffening of the extracellular matrix. Fibroblasts migrate in the direction of greater stiffness, a phenomenon termed durotaxis. The mechanically guided fibroblast migration could be a crucial step in the progression of lung fibrosis. In this study, we found primary human lung fibroblasts sense increasing matrix stiffness with a change of mitochondrial dynamics in favor of mitochondrial fission and increased production of ATP. Mitochondria polarize in the direction of a physiologically relevant stiffness gradient, with conspicuous localization to the leading edge, primarily lamellipodia and filopodia, of migrating lung fibroblasts. Matrix stiffness-regulated mitochondrial fission and durotactic lung fibroblast migration are mediated by a dynamin-related protein 1/mitochondrial fission factor-dependent (DRP1/MFF-dependent) pathway. Importantly, we found that the DRP1/MFF pathway is activated in fibrotic lung myofibroblasts in both human IPF and bleomycin-induced mouse lung fibrosis. These findings suggest that energy-producing mitochondria need to be sectioned via fission and repositioned in durotactic lung fibroblasts to meet the higher energy demand. This represents a potentially new mechanism through which mitochondria may contribute to the progression of fibrotic lung diseases. Inhibition of durotactic migration of lung fibroblasts may play an important role in preventing the progression of human idiopathic pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Dinámicas Mitocondriales , Humanos , Animales , Ratones , Pulmón/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Metabolismo Energético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA