Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
1.
Appl Environ Microbiol ; 90(8): e0091524, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38984844

RESUMEN

Humans and animals encounter a summation of exposures during their lifetime (the exposome). In recent years, the scope of the exposome has begun to include microplastics. Microplastics (MPs) have increasingly been found in locations, including in animal gastrointestinal tracts, where there could be an interaction with Salmonella enterica serovar Typhimurium, one of the commonly isolated serovars from processed chicken. However, there is limited knowledge on how gut microbiomes are affected by microplastics and if an effect would be exacerbated by the presence of a pathogen. In this study, we aimed to determine if acute exposure to microplastics in vitro altered the gut microbiome membership and activity. The microbiota response to a 24 h co-exposure to Salmonella enterica serovar Typhimurium and/or low-density polyethylene (PE) microplastics in an in vitro broiler cecal model was determined using 16S rRNA amplicon sequencing (Illumina) and untargeted metabolomics. Community sequencing results indicated that PE fiber with and without S. Typhimurium yielded a lower Firmicutes/Bacteroides ratio compared with other treatment groups, which is associated with poor gut health, and overall had greater changes to the cecal microbial community composition. However, changes in the total metabolome were primarily driven by the presence of S. Typhimurium. Additionally, the co-exposure to PE fiber and S. Typhimurium caused greater cecal microbial community and metabolome changes than either exposure alone. Our results indicate that polymer shape is an important factor in effects resulting from exposure. It also demonstrates that microplastic-pathogen interactions cause metabolic alterations to the chicken cecal microbiome in an in vitro chicken cecal mesocosm. IMPORTANCE: Researching the exposome, a summation of exposure to one's lifespan, will aid in determining the environmental factors that contribute to disease states. There is an emerging concern that microplastic-pathogen interactions in the gastrointestinal tract of broiler chickens may lead to an increase in Salmonella infection across flocks and eventually increased incidence of human salmonellosis cases. In this research article, we elucidated the effects of acute co-exposure to polyethylene microplastics and Salmonella enterica serovar Typhimurium on the ceca microbial community in vitro. Salmonella presence caused strong shifts in the cecal metabolome but not the microbiome. The inverse was true for polyethylene fiber. Polyethylene powder had almost no effect. The co-exposure had worse effects than either alone. This demonstrates that exposure effects to the gut microbial community are contaminant-specific. When combined, the interactions between exposures exacerbate changes to the gut environment, necessitating future experiments studying low-dose chronic exposure effects with in vivo model systems.


Asunto(s)
Ciego , Pollos , Microbioma Gastrointestinal , Metaboloma , Polietileno , Salmonella typhimurium , Animales , Pollos/microbiología , Ciego/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Salmonella typhimurium/efectos de los fármacos , Polietileno/metabolismo , Metaboloma/efectos de los fármacos , Microplásticos , ARN Ribosómico 16S/genética , Salmonelosis Animal/microbiología
2.
Toxicol Appl Pharmacol ; 482: 116773, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036231

RESUMEN

Changes in gene expression underlie many pathogenic endpoints including carcinogenesis. Metals, like arsenic, alter gene expression; however, the consequences of co-exposures of metals with other stressors are less understood. Although arsenic acts as a co-carcinogen by enhancing the development of UVR skin cancers, changes in gene expression in arsenic UVR co-carcinogenesis have not been investigated. We performed RNA-sequencing analysis to profile changes in gene expression distinct from arsenic or UVR exposures alone. A large number of differentially expressed genes (DEGs) were identified after arsenic exposure alone, while after UVR exposure alone fewer genes were changed. A distinct increase in the number of DEGs was identified after exposure to combined arsenic and UVR exposure that was synergistic rather than additive. In addition, a majority of these DEGs were unique from arsenic or UVR alone suggesting a distinct response to combined arsenic-UVR exposure. Globally, arsenic alone and arsenic plus UVR exposure caused a global downregulation of genes while fewer genes were upregulated. Gene Ontology analysis using the DEGs revealed cellular processes related to chromosome instability, cell cycle, cellular transformation, and signaling were targeted by combined arsenic and UVR exposure, distinct from UVR alone and arsenic alone, while others were related to epigenetic mechanisms such as the modification of histones. This result suggests the cellular functions we identified in this study may be key in understanding how arsenic enhances UVR carcinogenesis and that arsenic-enhanced gene expression changes may drive co-carcinogenesis of UVR exposure.


Asunto(s)
Arsénico , Neoplasias Cutáneas , Humanos , Arsénico/toxicidad , Transcriptoma , Rayos Ultravioleta/efectos adversos , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Carcinogénesis
3.
Environ Sci Technol ; 58(1): 751-759, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38113379

RESUMEN

Aquatic environments are complicated systems that contain different types of nanoparticles (NPs). Nevertheless, recent studies of NP toxicity, and especially those that have focused on bioaccumulation have mostly investigated only a single type of NPs. Assessments of the environmental risks of NPs that do not consider co-exposure regimes may lead to inaccurate conclusions and ineffective environmental regulation. Thus, the present study examined the effects of differently sized silica NPs (SiO2 NPs) on the uptake of iron oxide NPs (Fe2O3 NPs) by the zooplankton Daphnia magna. Both SiO2 NPs and Fe2O3 NPs were well dispersed in the experimental medium without significant heteroaggregation. Although all three sizes of SiO2 NPs inhibited the uptake of Fe2O3 NPs, the underlying mechanisms differed. SiO2 NPs smaller than the average mesh size (∼200 nm) of the filtering apparatus of D. magna reduced the accumulation of Fe2O3 NPs through uptake competition, whereas larger SiO2 NPs inhibited the uptake of Fe2O3 NPs mainly by reducing the water filtration rate of the daphnids. Overall, in evaluations of the risks of NPs in the natural environment, the different mechanisms underlying the effects of NPs of different sizes on the uptake of dissimilar NPs should be considered.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Daphnia magna , Daphnia , Dióxido de Silicio/farmacología , Nanopartículas/toxicidad , Nanopartículas Magnéticas de Óxido de Hierro , Contaminantes Químicos del Agua/toxicidad
4.
Biometals ; 37(2): 477-494, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190032

RESUMEN

There is limited experimental evidence on the biochemical consequences of aluminium (Al) and cadmium (Cd) co-exposures during pregnancy and postnatal life.This study investigated the impacts of perinatal Al chloride (AlCl3) and Cd chloride (CdCl2) co-exposures on neuroendocrine functions in mice offspring during postnatal life. The study comprised of four pregnant experimental groups. Group 1 received AlCl3 (10 mg/kg), group 2 were administered CdCl2 (1.5 mg/kg), while group 3 received both AlCl3 (10 mg/kg) and CdCl2 (1.5 mg/kg) (AlCl3+CdCl2), and group 4 received saline (10 mL/kg) only and served as control group. All experimental animals were chemically exposed once daily from gestation days 7-20. Upon delivery, male pups were regrouped based on maternal chemical exposure on postnatal day 21 (PND 21) and allowed to grow to adulthood until PND 78, after which they were sacrificed for assessment of neuroendocrine markers and histological investigations. There was no statistical significance (p > 0.05) on follicle stimulating hormone, testosterone, estrogen and progesterone, thyroid stimulating hormone, thyroxine (T4) in all treatment groups relative to controls|. However, AlCl3 and AlCl3-CdCl2 significantly (p < 0.05) reduced triiodothyronine (T3) levels, with a profound increase in T3:T4 ratio by AlCl3, and AlCl3+CdCl2 compared to control. Furthermore, pups from pregnant mice treated with CdCl2 and AlCl3+CdCl2 demonstrated increased testicular malondialdehyde concentration with increased catalase activity relative to controls, suggesting oxidative imbalance. In addition, AlCl3, CdCl2, and AlCl3+CdCl2 exposures induced testicular and hypothalamic architectural disruption compared to controls, with marked architectural derangement in the AlCl3+CdCl2 group. Our findings suggest that prenatal co-exposures to Alcl3 and CdCl2 induce testicular and hypothalamic alterations in offspring via a testicular oxidative stress and thyrotoxicosis-dependent mechanisms.


Asunto(s)
Aluminio , Cadmio , Embarazo , Femenino , Masculino , Ratones , Animales , Cadmio/toxicidad , Cadmio/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Cloruros , Testículo/metabolismo , Testículo/patología , Estrés Oxidativo , Cloruro de Cadmio/toxicidad , Atrofia/metabolismo , Atrofia/patología
5.
BMC Endocr Disord ; 24(1): 178, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39237954

RESUMEN

BACKGROUND: Previous studies have shown significant associations between individual fat-soluble vitamins (FSVs) and metabolic syndromes (MetS). However, evidence on the multiple FSVs co-exposure and MetS odds is limited. Given that individuals are typically exposed to different levels of FSVs simultaneously, and FSVs can interact with each other. It's necessary to explore the association between multiple FSVs co-exposure and MetS odds. This study aims to address this gap in general U.S. adults aged ≥ 20 years. METHODS: We conducted a cross-sectional study utilizing data from the National Health and Nutrition Examination Surveys (NHANESs) 2003-2006 and 2017-2018. Three FSV, including vitamin A (VA), vitamin E (VE), and vitamin D (VD), and MetS diagnosed according to the ATP III guidelines were selected as exposure and outcome, respectively. Multivariable-adjusted logistic model was used to explore the associations of individual FSV exposure with MetS odds and MetS components. Restricted cubic splines were performed to explore the dose-response relationships among them. The quantile g-computation method was adopted to explore the associations of multiple FSVs co-exposure with MetS odds and MetS components. RESULTS: The presented study included a total of 13,975 individuals, with 2400 (17.17%) were diagnosed with MetS. After adjusting for various confounders, a positive linear pattern was observed for serum VA and VE and MetS associations. Serum VD was found to be negatively associated with MetS in a linear dose-response way. For each component of MetS, higher serum VA and VE were associated with higher triglyceride and high-density lipoprotein; higher serum VD was negatively associated with triglyceride, blood pressure, and fasting plasma glucose. MetS odds increased by 15% and 13%, respectively, in response to one quartile increase in FSVs co-exposure index (qgcomp) in the conditional model (OR = 1.15, 95%CI: 1.06, 1.24) and the marginal structural model (OR = 1.13, 95%CI: 1.06, 1.20). Besides, co-exposure to VA, VE, and VD was positively associated with triglyceride, high-density lipoprotein, and blood pressure levels. CONCLUSION: Findings in the present study revealed that high serum VA and VE levels were associated with elevated MetS odds, while serum VD was inversely associated with MetS odds. FSVs co-exposure was positively associated with MetS odds.


Asunto(s)
Síndrome Metabólico , Encuestas Nutricionales , Vitaminas , Humanos , Síndrome Metabólico/epidemiología , Síndrome Metabólico/sangre , Síndrome Metabólico/etiología , Estudios Transversales , Masculino , Femenino , Adulto , Estados Unidos/epidemiología , Persona de Mediana Edad , Vitaminas/sangre , Vitamina E/sangre , Vitamina D/sangre , Bases de Datos Factuales , Adulto Joven , Vitamina A/sangre
6.
Environ Res ; 242: 117807, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043898

RESUMEN

BACKGROUND: Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) represent significant components of environmental pollution, typically occurring as mixtures, raising concerns about their potential impact on human health. However, the combined effect of HMs and PAHs exposure on depression has not been explored. METHODS: Leveraging National Health and Nutrition Examination Survey (NHANES) data spanning 2005 to 2016, we employ survey-weighted multiple logistic regression models to probe the interrelation between HMs, PAHs, and depression. This exploration is complemented by age and gender-stratified analyses, as well as a determination of the dose-response linkage via restricted cubic spline regression. Furthermore, the combined impact of HMs and PAHs on depression was evaluated through a range of statistical methodologies. RESULTS: The study encompasses 7732 adults. Our findings unveil notable associations, indicating the significant influence of cadmium (Cd), lead (Pb), and all six PAHs metabolites on depression. Moreover, mixed exposure to HMs and PAHs emerges as a substantial contributor to an augmented depression risk, with Cd, Pb, 1-hydroxynaphthalene (1-NAP), 2-hydroxyfluorene (2-FLU), and 1-hydroxypyrene (1-PYR) likely driving this positive relationship. Intriguingly, subgroup analyses highlight greater prominence of these connections among individuals aged 20-59 and among women. Furthermore, the results tentatively suggest a potential interplay between Cd and 2-NAP in relation to depression. CONCLUSION: This study posits that exposure to both individual and combined HMs and PAHs may be associated with an elevated risk of depression. Further prospective investigations are warranted to substantiate these findings.


Asunto(s)
Metales Pesados , Hidrocarburos Policíclicos Aromáticos , Adulto , Humanos , Femenino , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Encuestas Nutricionales , Cadmio , Depresión/inducido químicamente , Depresión/epidemiología , Plomo/toxicidad , Metales Pesados/toxicidad , Biomarcadores
7.
Parasitol Res ; 123(4): 187, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634931

RESUMEN

Co-exposure to multiple parasites can alter parasite success and host life history when compared to single infections. These infection outcomes can be affected by the order of parasite arrival, the host immune response, and the interspecific interactions among co-infecting parasites. In this study, we examined how the arrival order of two trematode parasites, Schistosoma mansoni and Echinostoma caproni, influenced parasite ecology and the life history of their snail host, Biomphalaria glabrata. Snail hosts were exposed to E. caproni cercariae before, with, and after their exposure to S. mansoni miracidia. We then measured the effects of this timing on infection prevalence, infection intensity of E. caproni metacercariae, and cercarial output of S. mansoni, as well as on snail reproduction and survival. Snails infected only with S. mansoni and snails exposed to E. caproni after S. mansoni both shed more cercariae than simultaneously exposed snails. Additionally, S. mansoni prevalence was lower in snails that were first exposed to E. caproni compared to snails that were exposed to E. caproni after S. mansoni. Moreover, snails exposed to E. caproni before S. mansoni did not differ in their survival compared to control snails, whereas simultaneously exposed snails and snails exposed to E. caproni after S. mansoni had lower survival than control snails. Combined, this prevalence and survival data suggest a potential protective role of early E. caproni exposure. The timing of E. caproni exposure impacts S. mansoni establishment and reproduction, but host survival patterns are likely driven by S. mansoni prevalence alone.


Asunto(s)
Biomphalaria , Echinostoma , Parásitos , Animales , Cercarias , Ecología
8.
Ecotoxicol Environ Saf ; 278: 116419, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718726

RESUMEN

3,3',4,4',5-Pentachlorobiphenyl (PCB126) is the most toxic congener of dioxin-like polychlorinated biphenyls (DL PCBs), while nanoplastics (NPs) have recently emerged as significant marine pollutants, both posing threats to aquatic organisms and human health. They coexist in the environment, but their comprehensive toxicological effects remain unclear. In this study, zebrafish embryos were simultaneously exposed to PCB126 and 80-nanometer nanoplastyrene (NPS). Researchers utilized fluorescence microscopy, qPCR, histopathological examination, and transcriptomic sequencing to investigate the developmental toxicity of different concentrations of PCB126 and NPS individually or in combination on zebrafish embryos and larvae. Results indicate that the chorion significantly impedes the accumulation of NPS (p < 0.05). It is noteworthy that this barrier effect diminishes upon simultaneous exposure to PCB126. In this experiment, the semi-lethal concentration of PCB126 for larvae was determined to be 6.33 µg/L. Exposure to PCB126 induces various deformities, primarily mediated through the aryl hydrocarbon receptor (AHR). Similarly, exposure to NPS also activates AHR, leading to developmental impairments. Furthermore, transcriptomic sequencing revealed similar effects of PCB126 and NPS on the gene expression trends in zebrafish larvae, but combined exposure to both exacerbates the risk of cancer and induces more severe cardiac toxicity. At this level, co-exposure to PCB126 and NPS adversely affects the development of zebrafish larvae. This study contributes to a deeper understanding of the in vivo accumulation of DL polychlorinated biphenyls and microplastics in actual aquatic environments and their impact on fish development.


Asunto(s)
Larva , Bifenilos Policlorados , Poliestirenos , Contaminantes Químicos del Agua , Pez Cebra , Animales , Bifenilos Policlorados/toxicidad , Larva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Poliestirenos/toxicidad , Embrión no Mamífero/efectos de los fármacos , Microplásticos/toxicidad , Nanopartículas/toxicidad
9.
Ecotoxicol Environ Saf ; 278: 116336, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691883

RESUMEN

Aflatoxin B1 (AFB1), a common mycotoxin, can occur in agricultural products. As a metabolite of AFB1, aflatoxin M1 (AFM1) mainly exist in dairy products. These two mycotoxins threaten human health, although it is unclear how they affect the function of the intestinal barrier. In this study, mice were exposed to AFB1 (0.3 mg/kg body b.w.) and AFM1(3.0 mg/kg b.w.) either individually or in combination for 28 days to explore the main differentially expressed proteins (DEPs) and the associated enriched pathways. These findings were preliminarily verified by the transcriptomic and proteomic analyses in differentiated Caco-2 cells. The results revealed that AFB1 and AFM1 exposure in mice disrupted the function of the intestinal barrier, and the combined toxicity was greater than that of each toxin alone. Further proteomic analysis in mice demonstrated that the mechanisms underlying these differences could be explained as follows: (i) lipid metabolism was enriched by AFB1-induced DEPs. (ii) protein export pathway was stimulated by AFM1-induced DEPs. (iii) cell metabolic ability was inhibited (as evidenced by changes in UDP-GT1, UDP-GT2, and Gatm6), apoptosis was induced (MAP4K3), and epithelial cell integrity was disrupted (Claudin7 and IQGAP2), resulting in more extensive intestinal damage after combined treatment. In conclusion, the hazardous impact of co-exposure to AFB1 and AFM1 from proteomic perspectives was demonstrated in the present study.


Asunto(s)
Aflatoxina B1 , Aflatoxina M1 , Proteómica , Aflatoxina M1/toxicidad , Aflatoxina B1/toxicidad , Animales , Ratones , Células CACO-2 , Humanos , Masculino , Intestinos/efectos de los fármacos , Intestinos/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo
10.
Ecotoxicol Environ Saf ; 277: 116338, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640799

RESUMEN

Various phthalic acid esters (PAEs) such as dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) co-exist with nanopollutants in aquatic environment. In this study, Daphnia magna was exposed to nano-CuO and DBP or BBP at environmental relevant concentrations for 21-days to investigate these combined toxic effects. Acute EC50 values (48 h) of nano-CuO, DBP, and BBP were 12.572 mg/L, 8.978 mg/L, and 4.785 mg/L, respectively. Results showed that co-exposure with nano-CuO (500 µg/L) for 21 days significantly enhanced the toxicity of DBP (100 µg/L) and BBP (100 µg/L) to Daphnia magna by 18.37% and 18.11%, respectively. The activities of superoxide dismutase, catalase, and glutathione S-transferase were enhanced by 10.95% and 14.07%, 25.63% and 25.91%, and 39.93% and 35.01% in nano-CuO+DBP and nano-CuO+BBP treatments as compared to the individual exposure groups, verifying that antioxidative defense responses were activated. Furthermore, the co-exposure of nano-CuO and PAEs decreased the population richness and diversity microbiota, and changed the microbial community composition in Daphnia magna. Metabolomic analysis elucidated that nano-CuO + PAEs exposure induced stronger disturbance on metabolic network and molecular function, including amino acid, nucleotides, and lipid metabolism-related metabolic pathways, as comparison to PAEs single exposure treatments. In summary, the integration of physiological, microflora, and untargeted metabolomics analysis offers a fresh perspective into the potential ecological risk associated with nanopollutants and phthalate pollution in aquatic ecosystems.


Asunto(s)
Cobre , Daphnia magna , Dibutil Ftalato , Ácidos Ftálicos , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Daphnia magna/efectos de los fármacos , Dibutil Ftalato/toxicidad , Ésteres/toxicidad , Glutatión Transferasa/metabolismo , Metaboloma/efectos de los fármacos , Metabolómica , Nanopartículas del Metal/toxicidad , Microbiota/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ácidos Ftálicos/toxicidad , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/toxicidad
11.
Ecotoxicol Environ Saf ; 283: 116858, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137464

RESUMEN

Organophosphate flame retardants 2-ethylhexyldiphenyl phosphate (EHDPP) and cadmium (Cd) are ubiquitous in environmental matrices, and dermal absorption is a major human exposure pathway. However, their detrimental effects on the human epidermis remain largely unknown. In this study, human keratinocytes (HaCaT cells) were employed to examine the toxicity and underlying mechanisms of co-exposure to EHDPP and Cd. Their influence on cell morphology and viability, oxidative damage, apoptosis, and tight junction were determined. The results showed that co-exposure decreased cell viability by >40 %, induced a higher level of oxidative damage by increasing the generation of reactive oxygen species (1.3 folds) and inhibited CAT (79 %) and GPX (90 %) activities. Moreover, Cd exacerbated EHDPP-induced mitochondrial disorder and cellular apoptosis, which was evidenced by a reduction in mitochondrial membrane potential and an elevation of cyt-c and Caspase-3 mRNA expression. In addition, greater loss of ZO-1 immunoreactivity at cellular boundaries was observed after co-exposure, indicating skin epithelial barrier function disruption, which may increase the human bioavailability of contaminants via the dermal absorption pathway. Taken together, oxidative damage, cell apoptosis, and tight junction disruption played a crucial role in EHDPP + Cd triggered cytotoxicity in HaCaT cells. The detrimental effects of EHDPP + Cd co-exposure were greater than individual exposure, suggesting the current health risk assessment or adverse effects evaluation of individual exposure may underestimate their perniciousness. Our data imply the importance of considering the combined exposure to accurately assess their health implication.


Asunto(s)
Apoptosis , Cadmio , Supervivencia Celular , Retardadores de Llama , Queratinocitos , Estrés Oxidativo , Uniones Estrechas , Humanos , Apoptosis/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Retardadores de Llama/toxicidad , Cadmio/toxicidad , Supervivencia Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Células HaCaT , Organofosfatos/toxicidad , Línea Celular , Compuestos Organofosforados/toxicidad , Contaminantes Ambientales/toxicidad
12.
Ecotoxicol Environ Saf ; 274: 116216, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38503103

RESUMEN

Phthalic acid esters (PAEs) are widely used as plasticizers and have been suggested to engender adverse effects on glucose metabolism. However, epidemiological data regarding the PAE mixture on type 2 diabetes (T2DM), as well as the mediating role of oxidative stress are scarce. This case-control study enrolled 206 T2DM cases and 206 matched controls in Guangdong Province, southern China. The concentrations of eleven phthalate metabolites (mPAEs) and the oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine were determined. Additionally, biomarkers of T2DM in paired serum were measured to assess glycemic status and levels of insulin resistance. Significantly positive associations were observed for mono-(2-ethylhexyl) phthalate (MEHP) and Mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with T2DM (P < 0.001). Restricted cubic spline modeling revealed a non-linear dose-response relationship between MEHHP and T2DM (Pnon-linear = 0.001). The Bayesian kernel machine regression and quantile g-computation analyses demonstrated a significant positive joint effect of PAE exposure on T2DM risk, with MEHHP being the most significant contributor. The mediation analysis revealed marginal evidence that oxidative stress mediated the association between the mPAEs mixture and T2DM, while 8-OHdG respectively mediated 26.88 % and 12.24 % of MEHP and MEHHP on T2DM risk individually (Pmediation < 0.05). Di(2-ethylhexyl) phthalate (DEHP, the parent compound for MEHP and MEHHP) was used to further examine the potential molecular mechanisms by in silico analysis. Oxidative stress may be crucial in the link between DEHP and T2DM, particularly in the reactive oxygen species metabolic process and glucose import/metabolism. Molecular simulation docking experiments further demonstrated the core role of Peroxisome Proliferator Activated Receptor alpha (PPARα) among the DEHP-induced T2DM. These findings suggest that PAE exposure can alter oxidative stress via PPARα, thereby increasing T2DM risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dietilhexil Ftalato , Dietilhexil Ftalato/análogos & derivados , Ácidos Ftálicos , Humanos , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/metabolismo , Diabetes Mellitus Tipo 2/epidemiología , Estudios de Casos y Controles , Teorema de Bayes , PPAR alfa/metabolismo , Ácidos Ftálicos/orina , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Estrés Oxidativo , Biomarcadores/metabolismo , Exposición a Riesgos Ambientales/efectos adversos
13.
Pestic Biochem Physiol ; 203: 106022, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084781

RESUMEN

The extensive application of pesticides and antibiotics in agricultural production makes it possible for them to coexist in farmland, and the interaction of the two pollutants can lead to changes in environmental behavior and toxicity, creating uncertainty risks to soil and soil organisms. In this study, we explored the environmental behavior and the effects of earthworms under co-exposure to amoxicillin and boscalid and further explored the accumulation and toxic effects on earthworms. The results showed that amoxicillin increased the adsorption of boscalid in soil and inhibited its degradation. In addition, we noticed that the co-exposure of amoxicillin and boscalid caused intestinal barrier damage, which increased the bioaccumulation of earthworms for boscalid and led to more severe oxidative stress and metabolic disorders in earthworms. In summary, our findings indicate that amoxicillin can increase the ecological risk of boscalid in the environment and imply that the encounter between antibiotics and pesticides in the environment can amplify the toxic effects of pesticides, which provides new insights into the ecological risks of antibiotics.


Asunto(s)
Amoxicilina , Compuestos de Bifenilo , Niacinamida , Oligoquetos , Animales , Oligoquetos/efectos de los fármacos , Oligoquetos/metabolismo , Amoxicilina/toxicidad , Amoxicilina/farmacología , Niacinamida/farmacología , Niacinamida/toxicidad , Niacinamida/análogos & derivados , Contaminantes del Suelo/toxicidad , Antibacterianos/toxicidad , Antibacterianos/farmacología , Estrés Oxidativo/efectos de los fármacos
14.
J Environ Manage ; 354: 120329, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38373375

RESUMEN

Microplastics (MPs) usually appear in the aquatic environment as complex pollutants in combination with other environmental pollutants, such as levofloxacin (LVFX). After a 45-day exposure to LVFX and MPs with different particle sizes at environmental levels, LVFX was neurotoxic to Rana nigromaculata tadpoles. The order of the effects of the exposure treatment on tadpole behavior was: LVFX-MP3>LVFX-MP1>LVFX-MP2 ≥ LVFX. Results of transcriptome analysis of tadpole brain tissue showed that LVFX in combination with 0.10 and 10.00 µm MP interferes with the nervous system through the cell adhesion molecules pathway. Interestingly, the order of effects of the co-exposure on oxidative stress in the intestine was inconsistent with that of tadpole behavior. We found that Paraacteroides might be a microplastic indicator species for the gut microbiota of aquatic organisms. The results of the targeted metabolism of neurotransmitters in the intestine suggest that in the LVFX-MP2 treatment, LVFX alleviated the intestinal microbiota disorder caused by 1.00 µm MP, by regulating intestinal microbiota participating in the TCA cycle VI and gluconeogenesis and tetrapyrrole biosynthesis I, while downregulating Met and Orn, and upregulating 5HIAA, thereby easing the neurotoxicity to tadpoles exposed to LVFX-MP2. This work is of great significance for the comprehensive assessment of the aquatic ecological risks of microplastics-antibiotic compound pollutants.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Levofloxacino/análisis , Microplásticos/toxicidad , Plásticos , Tamaño de la Partícula , Intestinos/química , Encéfalo , Ranidae , Contaminantes Ambientales/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
15.
J Environ Manage ; 366: 121833, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39003906

RESUMEN

Microplastics (MPs) usually appear in the aquatic environment as complex pollutants with other environmental pollutants, such as levofloxacin (LVFX). After 45-day exposure to LVFX and MPs with different particle sizes at environmental levels, we measured the weight, snout-to-vent length (SVL), and development stages of Rana nigromaculata. Furthermore, we analyzed proteins and genes related to immune system and thyroid axis regulation, intestinal histological, and bioaccumulation of LVFX and MPs in the intestine and brain to further explore the toxic mechanism of co-exposure. We found MPs exacerbated the effect of LVFX on growth and development, and the order of inhibitory effects is as follows: LVFX-MP3>LVFX-MP1>LVFX-MP2. 0.1 and 1 µm MP could penetrate the blood-brain barrier, interact with LVFX in the brain, and affect growth and development by regulating thyroid axis. Besides, LVFX with MPs caused severer interference on thyroid axis compared with LVFX alone. However, 10 µm MP was prone to accumulating in the intestine, causing severe histopathological changes, interfering with the intestinal immune system and influencing growth and development through immune enzyme activity. Thus, we concluded that MPs could regulate the thyroid axis by interfering with the intestinal immune system.


Asunto(s)
Sistema Inmunológico , Levofloxacino , Microplásticos , Tamaño de la Partícula , Glándula Tiroides , Animales , Glándula Tiroides/efectos de los fármacos , Microplásticos/toxicidad , Sistema Inmunológico/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
16.
J Environ Manage ; 369: 122370, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39236605

RESUMEN

Insecticides and fungicides present potential threats to non-target crops, yet our comprehension of their combined phytotoxicity to plants is limited. Silicon (Si) has been acknowledged for its ability to induce crop tolerance to xenobiotic stresses. However, the specific role of Si in alleviating the cypermethrin (CYP) and hymexazol (HML) combined stress has not been thoroughly explored. This study aims to assess the effectiveness of Si in alleviating phytotoxic effects and elucidating the associated mechanisms of CYP and/or HML in tomato seedlings. The findings demonstrated that, compared to exposure to CYP or HML alone, the simultaneous exposure of CYP and HML significantly impeded seedling growth, resulting in more pronounced phytotoxic effects in tomato seedlings. Additionally, CYP and/or HML exposures diminished the content of photosynthetic pigments and induced oxidative stress in tomato seedlings. Pesticide exposure heightened the activity of both antioxidant and detoxification enzymes, increased proline and phenolic accumulation, and reduced thiols and ascorbate content in tomato seedlings. Applying Si (1 mM) to CYP- and/or HML-stressed seedlings alleviated pigment inhibition and oxidative damage by enhancing the activity of the pesticide metabolism system and secondary metabolism enzymes. Furthermore, Si stimulated the phenylpropanoid pathway by boosting phenylalanine ammonia-lyase activity, as confirmed by the increased total phenolic content. Interestingly, the application of Si enhanced the thiols profile, emphasizing its crucial role in pesticide detoxification in plants. In conclusion, these results suggest that externally applying Si significantly alleviates the physio-biochemical level in tomato seedlings exposed to a combination of pesticides, introducing innovative strategies for fostering a sustainable agroecosystem.

17.
Toxicol Appl Pharmacol ; 472: 116569, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37263299

RESUMEN

This study assessed the oxidative stress impacts of Ag NPs and ZnO NPs and their mixtures in zebrafish (Danio rerio). Zebrafish were exposed to sublethal concentrations of each NP and a mixture for 28 days followed by a 28-day recovery period (without NP exposure) and measurements made on hepatic levels of antioxidant enzymes (CAT, SOD, and GPx), MDA levels, expression of the genes for the Hsp70 and Hsp90, and MT, blood biochemical parameters (total protein, globulin, albumin, AST, ALT, ALP, and LDH), and genotoxicity in erythrocytes (via measurement of micronuclei (MN) and nuclear (NA) abnormalities). There was a tendency for an increase in the variation in the responses of antioxidant defense systems and there were higher MDA levels with increasing exposure concentration of Ag NPs and with increasing exposure time. Total protein, globulin, and albumin decreased during the exposure period, especially on the days of 28. Moreover, levels of AST and LDH increased significantly in the NPs co-exposure treatments, while levels of ALT and ALP significantly decreased. The highest expression levels for these genes occurred on day 14 and in the NPs co-exposure treatments. For exposure to both NPs individually and as a mixture, the frequency of MN and other NA were significantly increased (p < 0.05). During the recovery periods, most of the effects seen were reduced, most notably in the individual NPs treatments. The overall results suggest that the toxic effects of Ag NPs and ZnO NPs in combination significantly increase their toxicity in zebrafish.


Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Animales , Pez Cebra/genética , Óxido de Zinc/toxicidad , Nanopartículas del Metal/toxicidad , Antioxidantes/farmacología , Plata/toxicidad , Estrés Oxidativo
18.
Mutagenesis ; 38(4): 227-237, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37418160

RESUMEN

The aim of this study was to investigate if age and body mass of humans have an impact on the DNA-damaging properties of high-frequency mobile phone-specific electromagnetic fields (HF-EMF, 1950 MHz, universal mobile telecommunications system, UMTS signal) and if this form of radiation has an impact on the genotoxic effects of occupationally relevant exposures. Pooled peripheral blood mononuclear cells (PBMC) from three groups [young normal weight, young obese (YO), and older age normal weight individuals] were exposed to different doses of HF-EMF (0.25, 0.5, and 1.0 W/kg specific absorption rate-SAR) and simultaneously or sequentially to different chemicals which cause DNA damage (CrO3, NiCl2, benzo[a]pyrene diol epoxide-BPDE, and 4-nitroquinoline 1-oxide-4NQO) via different molecular mechanisms. We found no difference in regard to the background values in the three groups but a significant increase of DNA damage (81% without and 36% with serum) in cells from old participants after radiation with 1.0 W/kg SAR 16 h. In combined treatment experiments we found no impact of the UMTS signal on chemically induced DNA damage in the different groups in general. However, a moderate decrease of DNA damage was seen in simultaneous treatment experiments with BPDE and 1.0 W/kg SAR in the YO group (decline 18%). Taken together our findings indicate that HF-EMF cause DNA damage in PBMC from older subjects (69.1 years). Furthermore, they show that the radiation does not increase induction of DNA damage by occupationally relevant chemicals.


Asunto(s)
Teléfono Celular , Campos Electromagnéticos , Humanos , Campos Electromagnéticos/efectos adversos , Leucocitos Mononucleares , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido , Daño del ADN , Demografía
19.
Oecologia ; 202(2): 325-335, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37284861

RESUMEN

Host-parasite interactions do not occur in a vacuum, but in connected multi-parasite networks that can result in co-exposures and coinfections of individual hosts. These can affect host health and disease ecology, including disease outbreaks. However, many host-parasite studies examine pairwise interactions, meaning we still lack a general understanding of the influence of co-exposures and coinfections. Using the bumble bee Bombus impatiens, we study the effects of larval exposure to a microsporidian Nosema bombi, implicated in bumble bee declines, and adult exposure to Israeli Acute Paralysis Virus (IAPV), an emerging infectious disease from honey bee parasite spillover. We hypothesize that infection outcomes will be modified by co-exposure or coinfection. Nosema bombi is a potentially severe, larval-infecting parasite, and we predict that prior exposure will result in decreased host resistance to adult IAPV infection. We predict double parasite exposure will also reduce host tolerance of infection, as measured by host survival. Although our larval Nosema exposure mostly did not result in viable infections, it partially reduced resistance to adult IAPV infection. Nosema exposure also negatively affected survival, potentially due to a cost of immunity in resisting the exposure. There was a significant negative effect of IAPV exposure on survivorship, but prior Nosema exposure did not alter this survival outcome, suggesting increased tolerance given the higher IAPV infections in the bees previously exposed to Nosema. These results again demonstrate that infection outcomes can be non-independent when multiple parasites are present, even when exposure to one parasite does not result in a substantial infection.


Asunto(s)
Coinfección , Nosema , Abejas , Animales , Interacciones Huésped-Parásitos
20.
Environ Res ; 219: 115158, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36580988

RESUMEN

Occupational workers and residents near petrochemical industry facilities are exposed to multiple contaminants on a daily basis. However, little is known about the co-exposure effects of different pollutants based on biotransformation. The study examined benzo[a]pyrene (BaP), a representative polycyclic aromatic hydrocarbon related to the petrochemical industry, to investigate changes in toxicity and co-exposure mechanism associated with different monoaromatic hydrocarbons (MAHs). A central composite design method was used to simulate site co-exposure scenarios to reveal biotransformation of BaP when co-exposed with benzene, toluene, chlorobenzene, or nitrobenzene in microsome systems. BaP metabolism depended on MAH concentration, and association of MAH with microsome concentration/incubation time. Particularly, MAH co-exposure negatively affected BaP glucuronidation, an important phase Ⅱ detoxification process. BaP metabolite intensities decreased to 43%-80% for OH-BaP-G, and 32%-71% for diOH-BaP-G in co-exposure system with MAHs, compared with control group. Furthermore, glucuronidation was affected by competitive and time-dependent inhibition. Co-exposure significantly decreased gene expression of UGT 1A10 and BCRP/ABCG2 in HepG2 cells, which are involved in BaP detoxification through metabolism and transmembrane transportation. Therefore, human co-exposure to multiple contaminants may deteriorate toxic effects of these chemicals by disturbing metabolic pathways. This study provides a reference for assessing toxic effects and co-exposure risks of pollutants.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Humanos , Benzo(a)pireno/toxicidad , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Proteínas de Neoplasias/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Ambientales/toxicidad , Tolueno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA