Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Bioessays ; 46(7): e2400058, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38724251

RESUMEN

The genetic code is a set of instructions that determine how the information in our genetic material is translated into amino acids. In general, it is universal for all organisms, from viruses and bacteria to humans. However, in the last few decades, exceptions to this rule have been identified both in pro- and eukaryotes. In this review, we discuss the 16 described alternative eukaryotic nuclear genetic codes and observe theories of their appearance in evolution. We consider possible molecular mechanisms that allow codon reassignment. Most reassignments in nuclear genetic codes are observed for stop codons. Moreover, in several organisms, stop codons can simultaneously encode amino acids and serve as termination signals. In this case, the meaning of the codon is determined by the additional factors besides the triplets. A comprehensive review of various non-standard coding events in the nuclear genomes provides a new insight into the translation mechanism in eukaryotes.


Asunto(s)
Código Genético , Biosíntesis de Proteínas , ARN Mensajero , Código Genético/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biosíntesis de Proteínas/genética , Animales , Codón de Terminación/genética , Núcleo Celular/genética , Evolución Molecular , Codón/genética , Eucariontes/genética
2.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36952281

RESUMEN

Bifunctional stop codons that have both translation and termination functions in the same species are important for understanding the evolution and function of genetic codes in living organisms. Considering the high frequency of bifunctional codons but limited number of available genomes in ciliates, we de novo sequenced seven representative ciliate genomes to explore the evolutionary history of stop codons. We further propose a stop codon reassignment quantification method (stopCR) that can identify bifunctional codons and measure their frequencies in various eukaryotic organisms. Using our newly developed method, we found two previously undescribed genetic codes, illustrating the prevalence of bifunctional stop codons in ciliates. Overall, evolutionary genomic analyses suggest that gain or loss of reassigned stop codons in ciliates is shaped by their living environment, the eukaryotic release factor 1, and suppressor tRNAs. This study provides novel clues about the functional diversity and evolutionary history of stop codons in eukaryotic organisms.


Asunto(s)
Cilióforos , Factores de Terminación de Péptidos , Codón de Terminación , Factores de Terminación de Péptidos/genética , Cilióforos/genética , Código Genético , Secuencia de Bases
3.
BMC Cancer ; 23(1): 502, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270525

RESUMEN

BACKGROUND: Cancer immunotherapy is implemented by identifying antigens that are presented on the cell surface of cancer cells and illicit T-cell response (Schumacher and Schreiber, Science 348:69-74, 2015; Waldman et al., Nat Rev Immunol 20:651-668, 2020; Zhang et al., Front Immunol 12:672,356, 2021b). Classical candidates of such antigens are the peptides resulting from genetic alterations and are named "neoantigen" (Schumacher and Schreiber, Science 348:69-74, 2015). Neoantigens have been widely catalogued across several human cancer types (Tan et al., Database (Oxford) 2020;2020b; Vigneron et al., Cancer Immun 13:15, 2013; Yi et al., iScience 24:103,107, 2021; Zhang et al., BMC Bioinformatics 22:40, 2021a). Recently, a new class of inducible antigens has been identified, namely Substitutants, that are produced as a result of aberrant protein translation (Pataskar et al., Nature 603:721-727, 2022). MAIN: Catalogues of Substitutant expression across human cancer types, their specificity and association to gene expression signatures remain elusive for the scientific community's access. As a solution, we present ABPEPserver, an online database and analytical platform that can visualize a large-scale tumour proteomics analysis of Substitutant expression across eight tumour types sourced from the CPTAC database (Edwards et al., J Proteome Res 14:2707-2713, 2015). Functionally, ABPEPserver offers the analysis of gene-association signatures of Substitutant peptides, a comparison of enrichment between tumour and tumour-adjacent normal tissues, and a list of peptides that serve as candidates for immunotherapy design. ABPEPserver will significantly enhance the exploration of aberrant protein production in human cancer, as exemplified in a case study. CONCLUSION: ABPEPserver is designed on an R SHINY platform to catalogue Substitutant peptides in human cancer. The application is available at https://rhpc.nki.nl/sites/shiny/ABPEP/ . The code is available under GNU General public license from GitHub ( https://github.com/jasminesmn/ABPEPserver ).


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Péptidos , Antígenos , Inmunoterapia , Documentación
4.
Biochem Biophys Res Commun ; 546: 35-39, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33561746

RESUMEN

Most of the currently approved therapeutic antibodies are of the immunoglobulin gamma (IgG) κ isotype, leaving a vast opportunity for the use of IgGλ in medical treatments. The incorporation of designer amino acids into antibodies enables efficient and precise manufacturing of antibody chemical conjugates. Useful conjugation sites have been explored in the constant domain of the human κ-light chain (LCκ), which is no more than 38% identical to its LCλ counterpart in amino acid sequence. In the present study, we used an expanded genetic code for site-specifically incorporating Nε-(o-azidobenzyloxycarbonyl)-l-lysine (o-Az-Z-Lys) into the antigen-binding fragment (Fab) of an IgGλ, cixutumumab. Ten sites in the LCλ constant domain were found to support efficient chemical conjugation exploiting the bio-orthogonal azido chemistry. Most of the identified positions are located in regions that differ between the two light chain isotypes, thus being specific to the λ isotype. Finally, o-Az-Z-Lys was incorporated into the Fab fragments of cixutumumab and trastuzumab to chemically combine them; the resulting bispecific Fab-dimers showed a strong antagonistic activity against a cancer cell line. The present results expand the utility of the chemical conjugation method to the whole spectrum of humanized antibodies, including the λ isotype.


Asunto(s)
Código Genético , Inmunoconjugados/química , Inmunoconjugados/genética , Cadenas lambda de Inmunoglobulina/química , Cadenas lambda de Inmunoglobulina/genética , Secuencia de Aminoácidos , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/inmunología , Humanos , Inmunoconjugados/inmunología , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/inmunología , Isotipos de Inmunoglobulinas/química , Isotipos de Inmunoglobulinas/genética , Isotipos de Inmunoglobulinas/inmunología , Cadenas kappa de Inmunoglobulina/química , Cadenas kappa de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/inmunología , Cadenas lambda de Inmunoglobulina/inmunología , Lisina/química , Lisina/genética , Modelos Moleculares , Multimerización de Proteína , Receptor ErbB-2/inmunología , Receptor IGF Tipo 1/inmunología
5.
Mol Phylogenet Evol ; 159: 107112, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33609708

RESUMEN

The class Oligohymenophorea is one of the most diverse assemblage of ciliated protists, which are particularly important in fundamental biological studies including understanding the evolutionary relationships among the lineages. Phylogenetic relationships within the class remain largely elusive, especially within the subclass Peniculia, which contains the long-standing problematic taxa Urocentrum and Paranassula. In the present study, we sequenced the genomes and/or transcriptomes of six non-culturable oligohymenophoreans using single-cell sequencing techniques. Phylogenomic analysis was performed based on expanded taxon sampling of 85 taxa, including 157 nuclear genes encoding 36,953 amino acids. The results indicate that: (1) urocentrids form an independent branch that is sister to the clade formed by Scuticociliatia and Hymenostomatia, which, together with the morphological data, supports the establishment of a new subclass, Urocentria n. subcl., within Oligohymenophorea; (2) phylogenomic analysis and ortholog comparison reveal a close relationship between Paranassula and peniculines, providing corroborative evidence for removing Paranassula from Nassulida and elevating it as an order, Paranassulida, within the subclass Peniculia; (3) based on the phylogenomic analyses and morphological data, we hypothesize that Peritrichia is the earliest diverging clade within Oligohymenophorea while Scuticociliatia and Hymenostomatia share the most common ancestor, followed successively by Urocentria and Peniculia. In addition, stop codon analyses indicate that oligohymenophoreans widely use UGA as the stop codon, while UAR are reassigned to glutamate (peritrichs) or glutamine (others), supporting the evolutionary hypothesis.


Asunto(s)
Oligohimenóforos/clasificación , Filogenia , Evolución Biológica , Núcleo Celular/genética , Codón de Terminación , Intrones , Análisis de Secuencia de ADN , Transcriptoma
6.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34768910

RESUMEN

A protocol was designed for plasmid curing using a novel counter-selectable marker, named pylSZK-pylT, in Escherichia coli. The pylSZK-pylT marker consists of the archaeal pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNApyl) with modification, and incorporates an unnatural amino acid (Uaa), Nε-benzyloxycarbonyl-l-lysine (ZK), at a sense codon in ribosomally synthesized proteins, resulting in bacterial growth inhibition or killing. Plasmid curing is performed by exerting toxicity on pylSZK-pylT located on the target plasmid, and selecting only proliferative bacteria. All tested bacteria obtained using this protocol had lost the target plasmid (64/64), suggesting that plasmid curing was successful. Next, we attempted to exchange plasmids with the identical replication origin and an antibiotic resistance gene without plasmid curing using a modified protocol, assuming substitution of plasmids complementing genomic essential genes. All randomly selected bacteria after screening had only the substitute plasmid and no target plasmid (25/25), suggesting that plasmid exchange was also accomplished. Counter-selectable markers based on PylRS-tRNApyl, such as pylSZK-pylT, may be scalable in application due to their independence from the host genotype, applicability to a wide range of species, and high tunability due to the freedom of choice of target codons and Uaa's to be incorporated.


Asunto(s)
Aminoácidos/química , Aminoacil-ARNt Sintetasas/metabolismo , Codón/metabolismo , Escherichia coli/metabolismo , Lisina/análogos & derivados , Plásmidos/metabolismo , ARN de Transferencia/metabolismo , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/genética , Codón/genética , Escherichia coli/genética , Lisina/química , Lisina/genética , Plásmidos/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Especificidad por Sustrato
7.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477414

RESUMEN

Genetic code expansion has largely focused on the reassignment of amber stop codons to insert single copies of non-canonical amino acids (ncAAs) into proteins. Increasing effort has been directed at employing the set of aminoacyl tRNA synthetase (aaRS) variants previously evolved for amber suppression to incorporate multiple copies of ncAAs in response to sense codons in Escherichia coli. Predicting which sense codons are most amenable to reassignment and which orthogonal translation machinery is best suited to each codon is challenging. This manuscript describes the directed evolution of a new, highly efficient variant of the Methanosarcina barkeri pyrrolysyl orthogonal tRNA/aaRS pair that activates and incorporates tyrosine. The evolved M. barkeri tRNA/aaRS pair reprograms the amber stop codon with 98.1 ± 3.6% efficiency in E. coli DH10B, rivaling the efficiency of the wild-type tyrosine-incorporating Methanocaldococcus jannaschii orthogonal pair. The new orthogonal pair is deployed for the rapid evaluation of sense codon reassignment potential using our previously developed fluorescence-based screen. Measurements of sense codon reassignment efficiencies with the evolved M. barkeri machinery are compared with related measurements employing the M. jannaschii orthogonal pair system. Importantly, we observe different patterns of sense codon reassignment efficiency for the M. jannaschii tyrosyl and M. barkeri pyrrolysyl systems, suggesting that particular codons will be better suited to reassignment by different orthogonal pairs. A broad evaluation of sense codon reassignment efficiencies to tyrosine with the M. barkeri system will highlight the most promising positions at which the M. barkeri orthogonal pair may infiltrate the E. coli genetic code.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Codón/genética , Evolución Molecular Dirigida , ARN de Transferencia/genética , Aminoácidos/genética , Codón de Terminación/genética , Escherichia coli/genética , Código Genético/genética , Methanosarcina barkeri/genética , Biosíntesis de Proteínas/genética , Tirosina/genética
8.
Mol Biol Evol ; 36(4): 766-783, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30698742

RESUMEN

Genetic code deviations involving stop codons have been previously reported in mitochondrial genomes of several green plants (Viridiplantae), most notably chlorophyte algae (Chlorophyta). However, as changes in codon recognition from one amino acid to another are more difficult to infer, such changes might have gone unnoticed in particular lineages with high evolutionary rates that are otherwise prone to codon reassignments. To gain further insight into the evolution of the mitochondrial genetic code in green plants, we have conducted an in-depth study across mtDNAs from 51 green plants (32 chlorophytes and 19 streptophytes). Besides confirming known stop-to-sense reassignments, our study documents the first cases of sense-to-sense codon reassignments in Chlorophyta mtDNAs. In several Sphaeropleales, we report the decoding of AGG codons (normally arginine) as alanine, by tRNA(CCU) of various origins that carry the recognition signature for alanine tRNA synthetase. In Chromochloris, we identify tRNA variants decoding AGG as methionine and the synonymous codon CGG as leucine. Finally, we find strong evidence supporting the decoding of AUA codons (normally isoleucine) as methionine in Pycnococcus. Our results rely on a recently developed conceptual framework (CoreTracker) that predicts codon reassignments based on the disparity between DNA sequence (codons) and the derived protein sequence. These predictions are then validated by an evaluation of tRNA phylogeny, to identify the evolution of new tRNAs via gene duplication and loss, and structural modifications that lead to the assignment of new tRNA identities and a change in the genetic code.


Asunto(s)
Chlorophyta/genética , Evolución Molecular , Código Genético , Genoma Mitocondrial , Filogenia , ARN de Transferencia/genética
9.
Chembiochem ; 21(16): 2274-2286, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32203635

RESUMEN

A quantitative understanding of how system composition and molecular properties conspire to determine the fidelity of translation is lacking. Our strategy directs an orthogonal tRNA to directly compete against endogenous tRNAs to decode individual targeted codons in a GFP reporter. Sets of directed sense codon reassignment measurements allow the isolation of particular factors contributing to translational fidelity. In this work, we isolated the effect of tRNA concentration on translational fidelity by evaluating reassignment of the 15 least commonly employed E. coli sense codons. Eight of the rarely used codons are reassigned with greater than 20 % efficiency. Both tRNA abundance and codon demand moderately inversely correlate with reassignment efficiency. Furthermore, the reassignment of rarely used codons does not appear to confer a fitness advantage relative to reassignment of other codons. These direct competition experiments also map potential targets for genetic code expansion. The isoleucine AUA codon is particularly attractive for the incorporation of noncanonical amino acids, with a nonoptimized reassignment efficiency of nearly 70 %.


Asunto(s)
Codón/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Sustitución de Aminoácidos , Escherichia coli/genética , Genoma Bacteriano/genética , Proteómica
10.
Mol Phylogenet Evol ; 152: 106908, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32702525

RESUMEN

Mitochondrial translation often exhibits departures from the standard genetic code, but the full spectrum of these changes has certainly not yet been described and the molecular mechanisms behind the changes in codon meaning are rarely studied. Here we report a detailed analysis of the mitochondrial genetic code in the stramenopile group Labyrinthulea (Labyrinthulomycetes) and their relatives. In the genus Aplanochytrium, UAG is not a termination codon but encodes tyrosine, in contrast to the unaffected meaning of the UAA codon. This change is evolutionarily independent of the reassignment of both UAG and UAA as tyrosine codons recently reported from two uncultivated labyrinthuleans (S2 and S4), which we show are not thraustochytrids as proposed before, but represent the clade LAB14 previously recognised in environmental 18S rRNA gene surveys. We provide rigorous evidence that the UUA codon in the mitochondria of all labyrinthuleans serves as a termination codon instead of encoding leucine, and propose that a sense-to-stop reassignment has also affected the AGG and AGA codons in the LAB14 clade. The distribution of the different forms of sense-to-stop and stop-to-sense reassignments correlates with specific modifications of the mitochondrial release factor mtRF2a in different subsets of labyrinthuleans, and with the unprecedented loss of mtRF1a in Aplanochytrium and perhaps also in the LAB14 clade, pointing towards a possible mechanistic basis of the code changes observed. Curiously, we show that labyrinthulean mitochondria also exhibit a sense-to-sense codon reassignment, manifested as AUA encoding methionine instead of isoleucine. Furthermore, we show that this change evolved independently in the uncultivated stramenopile lineage MAST8b, together with the reassignment of the AGR codons from arginine to serine. Altogether, our study has uncovered novel variants of the mitochondrial genetic code and previously unknown modifications of the mitochondrial translation machinery, further enriching our understanding of the rules governing the evolution of one of the central molecular process in the cell.


Asunto(s)
Evolución Molecular , Código Genético , Mitocondrias/genética , Estramenopilos/clasificación , Estramenopilos/genética , Codón , Filogenia , Biosíntesis de Proteínas/genética
11.
J Eukaryot Microbiol ; 67(1): 144-149, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31419839

RESUMEN

The ciliate Euplotes deviates from the universal genetic code by translating UGA as cysteine and using UAA and UAG as the termination codon. Here, we cloned and sequenced the Cathepsin B gene of Euplotes octocarinatus (Eo-CTSB) which containing several in-frame stop codons throughout the coding sequence. We provide evidences, based on 3'-RACE method and Western blot, that the Eo-CTSB gene is actively expressed. Comparison of the derived amino acid sequence with the homologs in other eukaryotes revealed that UAA and UAG may code for glutamine in Eo-CTSB. These findings imply an evolutionary complexity of stop codon reassignment in eukaryotes.


Asunto(s)
Catepsina B/genética , Euplotes/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Secuencia de Bases , Catepsina B/metabolismo , Codón de Terminación , Euplotes/enzimología , Euplotes/metabolismo , Proteínas Protozoarias/metabolismo , Alineación de Secuencia
12.
Bioessays ; 39(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28318058

RESUMEN

The canonical genetic code ubiquitously translates nucleotide into peptide sequence with several alterations known in viruses, bacteria, mitochondria, plastids, and single-celled eukaryotes. A new hypothesis to explain genetic code changes, termed tRNA loss driven codon reassignment, has been proposed recently when the polyphyly of the yeast codon reassignment events has been uncovered. According to this hypothesis, the driving force for genetic code changes are tRNA or translation termination factor loss-of-function mutations or loss-of-gene events. The free codon can subsequently be captured by all tRNAs that have an appropriately mutated anticodon and are efficiently charged. Thus, codon capture most likely happens by near-cognate tRNAs and tRNAs whose anticodons are not part of the recognition sites of the respective aminoacyl-tRNA-synthetases. This hypothesis comprehensively explains the CTG codon translation as alanine in Pachysolen yeast together with the long known translation of the same codon as serine in Candida albicans and related species, and can also be applied to most other known reassignments.


Asunto(s)
Codón/genética , Evolución Molecular , Código Genético , Secuencia de Aminoácidos , Ascomicetos/clasificación , Ascomicetos/genética , Núcleo Celular/genética , Cilióforos/citología , Cilióforos/genética , Genómica , Modelos Genéticos , Filogenia , Biosíntesis de Proteínas , ARN de Transferencia/genética , Especificidad de la Especie
13.
BMC Biol ; 15(1): 8, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28193262

RESUMEN

BACKGROUND: Departures from the standard genetic code in eukaryotic nuclear genomes are known for only a handful of lineages and only a few genetic code variants seem to exist outside the ciliates, the most creative group in this regard. Most frequent code modifications entail reassignment of the UAG and UAA codons, with evidence for at least 13 independent cases of a coordinated change in the meaning of both codons. However, no change affecting each of the two codons separately has been documented, suggesting the existence of underlying evolutionary or mechanistic constraints. RESULTS: Here, we present the discovery of two new variants of the nuclear genetic code, in which UAG is translated as an amino acid while UAA is kept as a termination codon (along with UGA). The first variant occurs in an organism noticed in a (meta)transcriptome from the heteropteran Lygus hesperus and demonstrated to be a novel insect-dwelling member of Rhizaria (specifically Sainouroidea). This first documented case of a rhizarian with a non-canonical genetic code employs UAG to encode leucine and represents an unprecedented change among nuclear codon reassignments. The second code variant was found in the recently described anaerobic flagellate Iotanema spirale (Metamonada: Fornicata). Analyses of transcriptomic data revealed that I. spirale uses UAG to encode glutamine, similarly to the most common variant of a non-canonical code known from several unrelated eukaryotic groups, including hexamitin diplomonads (also a lineage of fornicates). However, in these organisms, UAA also encodes glutamine, whereas it is the primary termination codon in I. spirale. Along with phylogenetic evidence for distant relationship of I. spirale and hexamitins, this indicates two independent genetic code changes in fornicates. CONCLUSIONS: Our study documents, for the first time, that evolutionary changes of the meaning of UAG and UAA codons in nuclear genomes can be decoupled and that the interpretation of the two codons by the cytoplasmic translation apparatus is mechanistically separable. The latter conclusion has interesting implications for possibilities of genetic code engineering in eukaryotes. We also present a newly developed generally applicable phylogeny-informed method for inferring the meaning of reassigned codons.


Asunto(s)
Núcleo Celular/genética , Codón/genética , Código Genético , Animales , Cilióforos/genética , Evolución Molecular , Glutamina/genética , Insectos/parasitología , Leucina/genética , Sistemas de Lectura Abierta/genética , Filogenia , Rhizaria/genética
14.
Mol Biol Evol ; 33(11): 2885-2889, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27501944

RESUMEN

mRNA translation in many ciliates utilizes variant genetic codes where stop codons are reassigned to specify amino acids. To characterize the repertoire of ciliate genetic codes, we analyzed ciliate transcriptomes from marine environments. Using codon substitution frequencies in ciliate protein-coding genes and their orthologs, we inferred the genetic codes of 24 ciliate species. Nine did not match genetic code tables currently assigned by NCBI. Surprisingly, we identified a novel genetic code where all three standard stop codons (TAA, TAG, and TGA) specify amino acids in Condylostoma magnum We provide evidence suggesting that the functions of these codons in C. magnum depend on their location within mRNA. They are decoded as amino acids at internal positions, but specify translation termination when in close proximity to an mRNA 3' end. The frequency of stop codons in protein coding sequences of closely related Climacostomum virens suggests that it may represent a transitory state.


Asunto(s)
Cilióforos/genética , Codón de Terminación , Alveolados/genética , Secuencia de Aminoácidos , Codón , Código Genético , Variación Genética/genética , Sistemas de Lectura Abierta , Factores de Terminación de Péptidos/genética , Biosíntesis de Proteínas , Alineación de Secuencia/métodos
15.
RNA Biol ; 14(3): 293-299, 2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-28095181

RESUMEN

mRNA decoding by tRNAs and tRNA charging by aminoacyl-tRNA synthetases are biochemically separated processes that nevertheless in general involve the same nucleotides. The combination of charging and decoding determines the genetic code. Codon reassignment happens when a differently charged tRNA replaces a former cognate tRNA. The recent discovery of the polyphyly of the yeast CUG sense codon reassignment challenged previous mechanistic considerations and led to the proposal of the so-called tRNA loss driven codon reassignment hypothesis. Accordingly, codon capture is caused by loss of a tRNA or by mutations in the translation termination factor, subsequent reduction of the codon frequency through reduced translation fidelity and final appearance of a new cognate tRNA. Critical for codon capture are sequence and structure of the new tRNA, which must be compatible with recognition regions of aminoacyl-tRNA synthetases. The proposed hypothesis applies to all reported nuclear and organellar codon reassignments.


Asunto(s)
Codón/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Animales , Anticodón , Codón de Terminación , Código Genético , Humanos , Levaduras/genética , Levaduras/metabolismo
16.
J Theor Biol ; 408: 237-242, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27544417

RESUMEN

The standard genetic code (SGC) assigns amino acids to codons in such a way that the impact of point mutations is reduced, this is termed 'error minimization' (EM). The occurrence of EM has been attributed to the direct action of selection, however it is difficult to explain how the searching of alternative codes for an error minimized code can occur via codon reassignments, given that these are likely to be disruptive to the proteome. An alternative scenario is that EM has arisen via the process of genetic code expansion, facilitated by the duplication of genes encoding charging enzymes and adaptor molecules. This is likely to have led to similar amino acids being assigned to similar codons. Strikingly, we show that if during code expansion the most similar amino acid to the parent amino acid, out of the set of unassigned amino acids, is assigned to codons related to those of the parent amino acid, then genetic codes with EM superior to the SGC easily arise. This scheme mimics code expansion via the gene duplication of charging enzymes and adaptors. The result is obtained for a variety of different schemes of genetic code expansion and provides a mechanistically realistic manner in which EM has arisen in the SGC. These observations might be taken as evidence for self-organization in the earliest stages of life.


Asunto(s)
Código Genético , Modelos Genéticos , Codón/genética , Evolución Molecular , Duplicación de Gen , Mutación
17.
Proc Natl Acad Sci U S A ; 110(27): 11079-84, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23776239

RESUMEN

Many fungi restructured their proteomes through incorporation of serine (Ser) at thousands of protein sites coded by the leucine (Leu) CUG codon. How these fungi survived this potentially lethal genetic code alteration and its relevance for their biology are not understood. Interestingly, the human pathogen Candida albicans maintains variable Ser and Leu incorporation levels at CUG sites, suggesting that this atypical codon assignment flexibility provided an effective mechanism to alter the genetic code. To test this hypothesis, we have engineered C. albicans strains to misincorporate increasing levels of Leu at protein CUG sites. Tolerance to the misincorporations was very high, and one strain accommodated the complete reversion of CUG identity from Ser back to Leu. Increasing levels of Leu misincorporation decreased growth rate, but production of phenotypic diversity on a phenotypic array probing various metabolic networks, drug resistance, and host immune cell responses was impressive. Genome resequencing revealed an increasing number of genotype changes at polymorphic sites compared with the control strain, and 80% of Leu misincorporation resulted in complete loss of heterozygosity in a large region of chromosome V. The data unveil unanticipated links between gene translational fidelity, proteome instability and variability, genome diversification, and adaptive phenotypic diversity. They also explain the high heterozygosity of the C. albicans genome and open the door to produce microorganisms with genetic code alterations for basic and applied research.


Asunto(s)
Candida albicans/genética , Código Genético , Genoma Fúngico , Inestabilidad Genómica , Proteoma/genética , Animales , Candida albicans/química , Candida albicans/patogenicidad , Codón/genética , Células Dendríticas/química , Células Dendríticas/metabolismo , Evolución Molecular , Femenino , Proteínas Fúngicas/genética , Tamización de Portadores Genéticos , Variación Genética , Humanos , Ratones , Ratones Endogámicos C57BL , Fenotipo , Polimorfismo de Nucleótido Simple , ARN de Hongos/genética
18.
Chembiochem ; 15(12): 1750-4, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25044341

RESUMEN

The rare AGG codon in Escherichia coli has been reassigned to code non-canonical amino acids (ncAAs) by using the PylRS-tRNA(Pyl)(CCU) pair. When N(ε) -alloc-lysine was used as a PylRS substrate, almost quantitative occupancy of N(ε) -alloc-lysine at an AGG codon site was achieved in minimal medium. ncAAs can be potentially incorporated at the AGG codon with varying efficiencies, depending on their activities towards corresponding enzymes. As AGG is a sense codon, the approach reported here resolves the typical low ncAA incorporation issue that has been associated with ncAA mutagenesis and therefore allows bulk preparation of proteins with site-selectively incorporated ncAAs for applications such as therapeutic protein production.


Asunto(s)
Aminoácidos/genética , Codón/genética , Escherichia coli/genética , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Escherichia coli/metabolismo , Conformación Molecular
19.
RNA Biol ; 11(10): 1313-23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25603118

RESUMEN

Eumetazoan mitochondrial tRNAs possess structures (identity elements) that require the specific recognition by their cognate nuclear-encoded aminoacyl-tRNA synthetases. The AGA (arginine) codon of the standard genetic code has been reassigned to serine/glycine/termination in eumetazoan organelles and is translated in some organisms by a mitochondrially encoded tRNA(Ser)UCU. One mechanism to prevent mistranslation of the AGA codon as arginine would require a set of tRNA identity elements distinct from those possessed by the cytoplasmic tRNAArg in which the major identity elements permit the arginylation of all 5 encoded isoacceptors. We have performed comparative in vitro aminoacylation using an insect mitochondrial arginyl-tRNA synthetase and tRNAArgUCG structural variants. The established identity elements are sufficient to maintain the fidelity of tRNASerUCU reassignment. tRNAs having a UCU anticodon cannot be arginylated but can be converted to arginine acceptance by identity element transplantation. We have examined the evolutionary distribution and functionality of these tRNA elements within metazoan taxa. We conclude that the identity elements that have evolved for the recognition of mitochondrial tRNAArgUCG by the nuclear encoded mitochondrial arginyl-tRNA synthetases of eumetazoans have been extensively, but not universally conserved, throughout this clade. They ensure that the AGR codon reassignment in eumetazoan mitochondria is not compromised by misaminoacylation. In contrast, in other metazoans, such as Porifera, whose mitochondrial translation is dictated by the universal genetic code, recognition of the 2 encoded tRNAArgUCG/UCU isoacceptors is achieved through structural features that resemble those employed by the yeast cytoplasmic system.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Anticodón/genética , Evolución Biológica , Mitocondrias/genética , ARN de Transferencia de Arginina/metabolismo , Aminoacilación de ARN de Transferencia/fisiología , Aminoacil-ARNt Sintetasas/genética , Animales , Secuencia de Bases , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Escarabajos , Código Genético , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Transferencia de Arginina/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
20.
Adv Sci (Weinh) ; : e2402284, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994917

RESUMEN

Although messenger RNA translation is tightly regulated to preserve protein synthesis and cellular homeostasis, chronic exposure to interferon-γ (IFN-γ) in several cancers can lead to tryptophan (Trp) shortage via the indoleamine-2,3-dioxygenase (IDO)- kynurenine pathway and therefore promotes the production of aberrant peptides by ribosomal frameshifting and tryptophan-to-phenylalanine (W>F) codon reassignment events (substitutants) specifically at Trp codons. However, the effect of Trp depletion on the generation of aberrant peptides by ribosomal mistranslation in gastric cancer (GC) is still obscure. Here, it is shows that the abundant infiltrating lymphocytes in EBV-positive GC continuously secreted IFN-γ, upregulated IDO1 expression, leading to Trp shortage and the induction of W>F substitutants. Intriguingly, the production of W>F substitutants in EBV-positive GC is linked to antigen presentation and the activation of the mTOR/eIF4E signaling pathway. Inhibiting either the mTOR/eIF4E pathway or EIF4E expression counteracted the production and antigen presentation of W>F substitutants. Thus, the mTOR/eIF4E pathway exposed the vulnerability of gastric cancer by accelerating the production of aberrant peptides and boosting immune activation through W>F substitutant events. This work proposes that EBV-positive GC patients with mTOR/eIF4E hyperactivation may benefit from anti-tumor immunotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA