Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Plant Biotechnol J ; 21(5): 1022-1032, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36688739

RESUMEN

Brassica rapa comprises many important cultivated vegetables and oil crops. However, Chiifu v3.0, the current B. rapa reference genome, still contains hundreds of gaps. Here, we presented a near-complete genome assembly of B. rapa Chiifu v4.0, which was 424.59 Mb with only two gaps, using Oxford Nanopore Technology (ONT) ultralong-read sequencing and Hi-C technologies. The new assembly contains 12 contigs, with a contig N50 of 38.26 Mb. Eight of the ten chromosomes were entirely reconstructed in a single contig from telomere to telomere. We found that the centromeres were mainly invaded by ALE and CRM long terminal repeats (LTRs). Moreover, there is a high divergence of centromere length and sequence among B. rapa genomes. We further found that centromeres are enriched for Copia invaded at 0.14 MYA on average, while pericentromeres are enriched for Gypsy LTRs invaded at 0.51 MYA on average. These results indicated the different invasion mechanisms of LTRs between the two structures. In addition, a novel repetitive sequence PCR630 was identified in the pericentromeres of B. rapa. Overall, the near-complete genome assembly, B. rapa Chiifu v4.0, offers valuable tools for genomic and genetic studies of Brassica species and provides new insights into the evolution of centromeres.


Asunto(s)
Brassica rapa , Brassica , Brassica rapa/genética , Genoma de Planta/genética , Brassica/genética , Genómica , Centrómero/genética
2.
Exp Eye Res ; 212: 108764, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34508729

RESUMEN

Virulence-factor encoding genes (VFGs) and antimicrobial resistance genes (ARGs) of ocular Methicillin-Resistant Staphylococcus aureus (MRSA), are the reason behind the common cause of severe and untreatable ocular infection and are largely unknown. The unavailability of the complete genome sequence of ocular MRSA strains hinders the unambiguous determination of ARGs and VRGs role in disease pathogenesis and their genomic location. To fulfill this critical need, we achieved the high-quality complete genome of four ocular MRSA strains (AMRF3 - AMRF6) by combining MinION nanopore sequencing technology, followed by polishing with Illumina sequence reads. We obtained a single chromosome and a plasmid in each strain. Sequence typing revealed that AMRF3 and AMRF5 strains harbored ST772, whereas AMRF4 and AMRF6 harbored ST 2066. All plasmids carried heavy metal cadmium resistance genes cadC and cadD, while cadA was detected only in the plasmid pSaa6159 of AMRF4 and AMRF6 strains. Further, pSaa6159 contains a complete Tn552 transposon with beta-lactamase genes, blaI, blaR1, and blaZ. Interestingly, pSaa6159 in AMRF6 carried five copies of Tn552 transposon. Several exotoxins and enterotoxins were identified across ocular MRSA strains and ST2066 strains found to be not carried any enterotoxins; this finding suggests that these two strains are exotoxigenic. Besides, ST2066 strains carried serine proteases (splA, splB, splD, splE and spIF) and exotoxin (seb and set 21) for their virulence, while ST772 carried antimicrobial resistance genes (blaZ, dfrG, msrA, mphC and fosB) and enterotoxin sec for virulence, suggesting sequence type-specific resistance and virulence. Also, we identified many VFGs and ARGs, that provided multi-drug resistance, enterotoxigenic, exotoxigenic, biofilm-forming, host tissue adhesion and immune response evasion in ocular MRSA strains. Thus, our study provides a better insight into the genomes of ocular MRSA strains that would provide more effective treatment strategies for ocular MRSA infection.


Asunto(s)
Farmacorresistencia Microbiana/genética , Infecciones Bacterianas del Ojo/microbiología , Genes Bacterianos/genética , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/microbiología , Factores de Virulencia/genética , Infecciones Bacterianas del Ojo/tratamiento farmacológico , Infecciones Bacterianas del Ojo/genética , Humanos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Análisis de Secuencia de ADN , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/genética , Virulencia
3.
Microorganisms ; 12(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930609

RESUMEN

Dermacoccus barathri is the first reported pathogen within the Dermacoccus genus to cause a catheter-related bloodstream infection, which occurred in 2015. In this study, the complete genome assembly of Dermacoccus barathri was constructed, and the complete genome of Dermacoccus barathri FBCC-B549 consists of a single chromosome (3,137,745 bp) without plasmids. The constructed genome of D. barathri was compared with those of two closely related species within the Dermacoccus genus. D. barathri exhibited a pattern similar to Dermacoccus abyssi in terms of gene clusters and synteny analysis. Contrary to previous studies, biosynthetic gene cluster (BGC) analysis for predicting secondary metabolites revealed the presence of the LAP biosynthesis pathway in the complete genome of D. barathri, predicting the potential synthesis of the secondary metabolite plantazolicin. Furthermore, an analysis to investigate the potential pathogenicity of D. barathri did not reveal any antibiotic resistance genes; however, nine virulence factors were identified in the Virulence Factor Database (VFDB). According to these matching results in the VFDB, despite identifying a few factors involved in biofilm formation, further research is required to determine the actual impact of D. barathri on pathogenicity. The complete genome of D. barathri is expected to serve as a valuable resource for future studies on D. barathri, which currently lack sufficient genomic sequence information.

4.
Front Plant Sci ; 14: 1183361, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384358

RESUMEN

This study presents a chromosome-level, near-complete genome assembly of Thalia dealbata (Marantaceae), a typical emergent wetland plant with high ornamental and environmental value. Based on 36.99 Gb PacBio HiFi reads and 39.44 Gb Hi-C reads, we obtained a 255.05 Mb assembly, of which 251.92 Mb (98.77%) were anchored into eight pseudo-chromosomes. Five pseudo-chromosomes were completely assembled, and the other three had one to two gaps. The final assembly had a high contig N50 value (29.80 Mb) and benchmarking universal single-copy orthologs (BUSCO) recovery score (97.52%). The T. dealbata genome had 100.35 Mb repeat sequences, 24,780 protein-coding genes, and 13,679 non-coding RNAs. Phylogenetic analysis revealed that T. dealbata was closest to Zingiber officinale, whose divergence time was approximately 55.41 million years ago. In addition, 48 and 52 significantly expanded and contracted gene families were identified within the T. dealbata genome. Moreover, 309 gene families were specific to T. dealbata, and 1,017 genes were positively selected. The T. dealbata genome reported in this study provides a valuable genomic resource for further research on wetland plant adaptation and the genome evolution dynamics. This genome is also beneficial for the comparative genomics of Zingiberales species and flowering plants.

5.
Viruses ; 14(7)2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35891513

RESUMEN

BK polyomavirus (BKPyV) is a human DNA virus generally divided into twelve subgroups based on the genetic diversity of Viral Protein 1 (VP1). BKPyV can cause polyomavirus-associated nephropathy (PVAN) after kidney transplantation. Detection of BKPyV DNA in blood (viremia) is a source of concern and increase in plasma viral load is associated with a higher risk of developing PVAN. In this work, we looked for possible associations of specific BKPyV genetic features with higher plasma viral load in kidney transplant patients. We analyzed BKPyV complete genome in three-month samples from kidney recipients who developed viremia during their follow-up period. BKPyV sequences were obtained by next-generation sequencing and were de novo assembled using the new BKAnaLite pipeline. Based on the data from 72 patients, we identified 24 viral groups with unique amino acid sequences: three in the VP1 subgroup IVc2, six in Ib1, ten in Ib2, one in Ia, and four in II. In none of the groups did the mean plasma viral load reach a statistically significant difference from the overall mean observed at three months after transplantation. Further investigation is needed to better understand the link between the newly described BKPyV genetic variants and pathogenicity in kidney transplant recipients.


Asunto(s)
Virus BK , Enfermedades Renales , Trasplante de Riñón , Infecciones por Polyomavirus , Poliomavirus , Infecciones Tumorales por Virus , Virus BK/genética , ADN Viral/genética , Variación Genética , Humanos , Trasplante de Riñón/efectos adversos , Poliomavirus/genética , Receptores de Trasplantes , Viremia
6.
Syst Appl Microbiol ; 41(1): 13-22, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29153257

RESUMEN

Microorganisms classified in to the Pseudomonas genus are a ubiquitous bacteria inhabiting variety of environmental niches and have been isolated from soil, sediment, water and different parts of higher organisms (plants and animals). Members of this genus are known for their metabolic versatility and are able to utilize different chemical compounds as a source of carbon, nitrogen or phosphorus, which makes them an interesting microorganism for bioremediation or bio-transformation. Moreover, Pseudomonas sp. has been described as a microorganism that can easily adapt to new environmental conditions due to its resistance to the presence of high concentrations of heavy metals or chemical pollution. Here we present the isolation and analysis of Pseudomonas silesiensis sp. nov. strain A3T isolated from peaty soil used in a biological wastewater treatment plant exploited by a pesticide packaging company. Phylogenetic MLSA analysis of 4 housekeeping genes (16S rRNA, gyrB, rpoD and rpoB), complete genome sequence comparison (ANIb, Tetranucleotide identity, digital DDH), FAME analysis, and other biochemical tests indicate the A3T strain (type strain PCM 2856T=DSM 103370T) differs significantly from the closest relative species and therefore represents a new species within the Pseudomonas genus. Moreover, bioinformatic analysis of the complete sequenced genome showed that it consists of 6,823,539bp with a 59.58mol% G+C content and does not contain any additional plasmids. Genome annotation predicted the presence of 6066 genes, of which 5875 are coding proteins and 96 are RNA genes.


Asunto(s)
Genoma Bacteriano , Pseudomonas/clasificación , Pseudomonas/aislamiento & purificación , Aguas del Alcantarillado/microbiología , Composición de Base , Agentes de Control Biológico , Análisis por Conglomerados , Girasa de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ARN Polimerasas Dirigidas por ADN/genética , Contaminantes Ambientales , Anotación de Secuencia Molecular , Tipificación de Secuencias Multilocus , Filogenia , Pseudomonas/genética , Pseudomonas/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Factor sigma/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA