Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Mol Cell ; 79(1): 140-154.e7, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32464091

RESUMEN

Recent studies of bacterial DNA replication have led to a picture of the replisome as an entity that freely exchanges DNA polymerases and displays intermittent coupling between the helicase and polymerase(s). Challenging the textbook model of the polymerase holoenzyme acting as a stable complex coordinating the replisome, these observations suggest a role of the helicase as the central organizing hub. We show here that the molecular origin of this newly found plasticity lies in the 500-fold increase in strength of the interaction between the polymerase holoenzyme and the replicative helicase upon association of the primase with the replisome. By combining in vitro ensemble-averaged and single-molecule assays, we demonstrate that this conformational switch operates during replication and promotes recruitment of multiple holoenzymes at the fork. Our observations provide a molecular mechanism for polymerase exchange and offer a revised model for the replication reaction that emphasizes its stochasticity.


Asunto(s)
ADN Primasa/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , AdnB Helicasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Holoenzimas/química , ADN Primasa/genética , ADN Bacteriano , ADN Polimerasa Dirigida por ADN/genética , AdnB Helicasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Holoenzimas/genética , Holoenzimas/metabolismo , Conformación Molecular , Unión Proteica , Conformación Proteica
2.
Trends Biochem Sci ; 47(7): 620-630, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35351361

RESUMEN

Dedicated loader proteins play essential roles in bacterial DNA replication by opening ring-shaped DnaB-family helicases and chaperoning single-stranded (ss)DNA into a central motor chamber as a prelude to DNA unwinding. Although unrelated in sequence, the Escherichia coli DnaC and bacteriophage λ P loaders feature a similar overall architecture: a globular domain linked to an extended lasso/grappling hook element, located at their N and C termini, respectively. Both loaders remodel a closed DnaB ring into nearly identical right-handed open conformations. The sole element shared by the loaders is a single alpha helix, which binds to the same site on the helicase. Physical features of the loaders establish that DnaC and λ P evolved independently to converge, through molecular mimicry, on a common helicase-opening mechanism.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Bacterianas/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , ADN de Cadena Simple , AdnB Helicasas/química , AdnB Helicasas/genética , AdnB Helicasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química
3.
J Biol Chem ; 300(5): 107275, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588814

RESUMEN

DNA replication in Escherichia coli starts with loading of the replicative helicase, DnaB, onto DNA. This reaction requires the DnaC loader protein, which forms a 6:6 complex with DnaB and opens a channel in the DnaB hexamer through which single-stranded DNA is thought to pass. During replication, replisomes frequently encounter DNA damage and nucleoprotein complexes that can lead to replication fork collapse. Such events require DnaB re-loading onto DNA to allow replication to continue. Replication restart proteins mediate this process by recruiting DnaB6/DnaC6 to abandoned DNA replication forks. Several dnaC mutations that bypass the requirement for replication restart proteins or that block replication restart have been identified in E. coli. To better understand how these DnaC variants function, we have purified and characterized the protein products of several such alleles. Unlike wild-type DnaC, three of the variants (DnaC 809, DnaC 809,820, and DnaC 811) can load DnaB onto replication forks bound by single-stranded DNA-binding protein. DnaC 809 can also load DnaB onto double-stranded DNA. These results suggest that structural changes in the variant DnaB6/DnaC6 complexes expand the range of DNA substrates that can be used for DnaB loading, obviating the need for the existing replication restart pathways. The protein product of dnaC1331, which phenocopies deletion of the priB replication restart gene, blocks loading through the major restart pathway in vitro. Overall, the results of our study highlight the utility of bacterial DnaC variants as tools for probing the regulatory mechanisms that govern replicative helicase loading.


Asunto(s)
Replicación del ADN , AdnB Helicasas , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/genética , AdnB Helicasas/metabolismo , AdnB Helicasas/genética , AdnB Helicasas/química , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Mutación
4.
Crit Rev Biochem Mol Biol ; 56(6): 621-639, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34404299

RESUMEN

Ring-shaped hexameric helicases are essential motor proteins that separate duplex nucleic acid strands for DNA replication, recombination, and transcriptional regulation. Two evolutionarily distinct lineages of these enzymes, predicated on RecA and AAA+ ATPase folds, have been identified and characterized to date. Hexameric helicases couple NTP hydrolysis with conformational changes that move nucleic acid substrates through a central pore in the enzyme. How hexameric helicases productively engage client DNA or RNA segments and use successive rounds of NTPase activity to power translocation and unwinding have been longstanding questions in the field. Recent structural and biophysical findings are beginning to reveal commonalities in NTP hydrolysis and substrate translocation by diverse hexameric helicase families. Here, we review these molecular mechanisms and highlight aspects of their function that are yet to be understood.


Asunto(s)
ADN Helicasas/metabolismo , Animales , Bacterias/enzimología , Bacterias/metabolismo , ADN/metabolismo , Replicación del ADN , Eucariontes/enzimología , Eucariontes/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica
5.
Virol J ; 20(1): 186, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605144

RESUMEN

The genomic components of multipartite viruses are encapsidated in separate virus particles, and the frequencies of genomic components represent one of the key genetic features. Many begomoviruses of economic significance are bipartite, and the details of the association between their genomic components remain largely unexplored. We first analyzed the temporal dynamics of the quantities of DNA-A and DNA-B and the B/A ratio of the squash leaf curl China virus (SLCCNV) in plants and found that while the quantities of DNA-A and DNA-B varied significantly during infection, the B/A ratio remained constant. We then found that changes in the B/A ratio in agrobacteria inoculum may significantly alter the B/A ratio in plants at 6 days post inoculation, but the differences disappeared shortly thereafter. We next showed that while the quantities of DNA-A and DNA-B among plants infected by agrobacteria, sap transmission and whitefly-mediated transmission differed significantly, the B/A ratios were similar. Further analysis of gene expression revealed that the ratio of the expression of genes encoded by DNA-A and DNA-B varied significantly during infection. Finally, we monitored the temporal dynamics of the quantities of DNA-A and DNA-B and the B/A ratio of another bipartite begomovirus, and a constant B/A ratio was similarly observed. Our findings highlight the maintenance of a constant ratio between the two genomic components of bipartite begomoviruses during infection and transmission, and provide new insights into the biology of begomoviruses.


Asunto(s)
Begomovirus , Begomovirus/genética , Vacunación , Virión , Genómica
6.
J Biol Chem ; 295(32): 11131-11143, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32540966

RESUMEN

The DNA replication protein DnaA in Escherichia coli constructs higher-order complexes on the origin, oriC, to unwind this region. DnaB helicase is loaded onto unwound oriC via interactions with the DnaC loader and the DnaA complex. The DnaB-DnaC complex is recruited to the DnaA complex via stable binding of DnaB to DnaA domain I. The DnaB-DnaC complex is then directed to unwound oriC via a weak interaction between DnaB and DnaA domain III. Previously, we showed that Phe46 in DnaA domain I binds to DnaB. Here, we searched for the DnaA domain I-binding site in DnaB. The DnaB L160A variant was impaired in binding to DnaA complex on oriC but retained its DnaC-binding and helicase activities. DnaC binding moderately stimulated DnaA binding of DnaB L160A, and loading of DnaB L160A onto oriC was consistently and moderately inhibited. In a helicase assay with partly single-stranded DNA bearing a DnaA-binding site, DnaA stimulated DnaB loading, which was strongly inhibited in DnaB L160A even in the presence of DnaC. DnaB L160A was functionally impaired in vivo On the basis of these findings, we propose that DnaB Leu160 interacts with DnaA domain I Phe46 DnaB Leu160 is exposed on the lateral surface of the N-terminal domain, which can explain unobstructed interactions of DnaA domain I-bound DnaB with DnaC, DnaG primase, and DnaA domain III. We propose a probable structure for the DnaA-DnaB-DnaC complex, which could be relevant to the process of DnaB loading onto oriC.


Asunto(s)
AdnB Helicasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Origen de Réplica , Secuencia de Aminoácidos , Sitios de Unión , AdnB Helicasas/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Dominios Proteicos
7.
Chemistry ; 27(28): 7745-7755, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33822417

RESUMEN

Paramagnetic metal ions can be inserted into ATP-fueled motor proteins by exchanging the diamagnetic Mg2+ cofactor with Mn2+ or Co2+ . Then, paramagnetic relaxation enhancement (PRE) or pseudo-contact shifts (PCSs) can be measured to report on the localization of the metal ion within the protein. We determine the metal position in the oligomeric bacterial DnaB helicase from Helicobacter pylori complexed with the transition-state ATP-analogue ADP:AlF4 - and single-stranded DNA using solid-state NMR and a structure-calculation protocol employing CYANA. We discuss and compare the use of Mn2+ and Co2+ in localizing the ATP cofactor in large oligomeric protein assemblies. 31 P PCSs induced in the Co2+ -containing sample are then used to localize the DNA phosphate groups on the Co2+ PCS tensor surface enabling structural insights into DNA binding to the DnaB helicase.


Asunto(s)
ADN de Cadena Simple , Helicobacter pylori , Proteínas Bacterianas , AdnB Helicasas/metabolismo , Iones , Espectroscopía de Resonancia Magnética
8.
J Struct Biol ; 212(1): 107573, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32679070

RESUMEN

DciA is a newly discovered bacterial protein involved in loading the replicative helicase DnaB onto DNA at the initiation step of chromosome replication. Its three-dimensional structure is composed of a folded N-terminal domain (residues 1-111) resembling K Homology domains and a long disordered C-terminal tail (residues 112-157) which structure-activity relationship remains to be elucidated. In the present study on Vibrio cholerae DciA, we emphasize the importance of its disordered region to load DnaB onto DNA using surface plasmon resonance (SPR) and isothermal titration microcalorimetry (ITC). Then we characterize the conformational ensemble of the full-length protein using a combination of circular dichroism (CD), small angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations. The atomic-level structural ensemble generated by MD simulations is in very good agreement with SAXS data. From initial conformations of the C-terminal tail without any secondary structure, our simulations bring to light several transient helical structures in this segment, which might be molecular recognition features (MoRFs) for the binding to DnaB and its recruitment and loading onto DNA.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN/metabolismo , AdnB Helicasas/química , AdnB Helicasas/metabolismo , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Vibrio cholerae/metabolismo , Difracción de Rayos X/métodos
9.
Chembiochem ; 21(3): 324-330, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31310428

RESUMEN

Protein-nucleic acid interactions play important roles not only in energy-providing reactions, such as ATP hydrolysis, but also in reading, extending, packaging, or repairing genomes. Although they can often be analyzed in detail with X-ray crystallography, complementary methods are needed to visualize them in complexes, which are not crystalline. Here, we show how solid-state NMR spectroscopy can detect and classify protein-nucleic interactions through site-specific 1 H- and 31 P-detected spectroscopic methods. The sensitivity of 1 H chemical-shift values on noncovalent interactions involved in these molecular recognition processes is exploited allowing us to probe directly the chemical bonding state, an information, which is not directly accessible from an X-ray structure. We show that these methods can characterize interactions in easy-to-prepare sediments of the 708 kDa dodecameric DnaB helicase in complex with ADP:AlF4- :DNA, and this despite the very challenging size of the complex.


Asunto(s)
AdnB Helicasas/química , Resonancia Magnética Nuclear Biomolecular , Nucleótidos/análisis , Cristalografía por Rayos X , AdnB Helicasas/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Nucleótidos/metabolismo , Isótopos de Fósforo , Protones
10.
Biochem J ; 476(21): 3261-3279, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31548270

RESUMEN

Helicase loaders are required for the loading of helicases at the vicinity of replication origins. In Helicobacter pylori, Hp0897 has been shown to be a potential helicase loader for replicative helicase (HpDnaB) although it does not show any sequence homology with conventional DnaC like helicase loader proteins. Therefore, it is important to investigate the in vivo role of Hp0897 and structure-function analysis with respect to domain mapping of Hp0897 and HpDnaB. Although HporiC is divided into oriC1 and oriC2, the latter has been assigned as functional origin based on loading of initiator protein HpDnaA. Using chromatin immunoprecipitation (ChIP) experiment, we show preferential binding of Hp0897 at oriC2 over oriC1 like HpDnaA highlighting its helicase loader function in vivo. Furthermore, we generated series of deletion mutants for HpDnaB and Hp0897 that enabled us to map the domains of interaction between these two proteins. Interestingly, the C-terminal domain of Hp0897 (Hp0897CTD) shows stronger interaction with HpDnaB over the N-terminal region of Hp0897 (Hp0897NTD). Similar to the full-length protein, Hp0897CTD also stimulates the DNA binding activity of HpDnaB. Furthermore, overexpression of Hp0897 full-length protein in H. pylori leads to an elongated cell phenotype. While the overexpression of Hp0897CTD does not show a phenotype of cell elongation, overexpression of Hp0897NTD shows extensive cell elongation. These results highlight the possible role of Hp0897CTD in helicase loading and Hp0897NTD's unique function linked to cell division that make Hp0897 as a potential drug target against H. pylori.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , Helicobacter pylori/enzimología , Proteínas Bacterianas/genética , ADN Helicasas/genética , AdnB Helicasas/química , AdnB Helicasas/genética , AdnB Helicasas/metabolismo , Helicobacter pylori/química , Helicobacter pylori/genética , Unión Proteica , Dominios Proteicos
11.
Molecules ; 25(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198135

RESUMEN

Nucleoside triphosphates (NTPs) are used as chemical energy source in a variety of cell systems. Structural snapshots along the NTP hydrolysis reaction coordinate are typically obtained by adding stable, nonhydrolyzable adenosine triphosphate (ATP) -analogues to the proteins, with the goal to arrest a state that mimics as closely as possible a physiologically relevant state, e.g., the pre-hydrolytic, transition and post-hydrolytic states. We here present the lessons learned on two distinct ATPases on the best use and unexpected pitfalls observed for different analogues. The proteins investigated are the bacterial DnaB helicase from Helicobacter pylori and the multidrug ATP binding cassette (ABC) transporter BmrA from Bacillus subtilis, both belonging to the same division of P-loop fold NTPases. We review the magnetic-resonance strategies which can be of use to probe the binding of the ATP-mimics, and present carbon-13, phosphorus-31, and vanadium-51 solid-state nuclear magnetic resonance (NMR) spectra of the proteins or the bound molecules to unravel conformational and dynamic changes upon binding of the ATP-mimics. Electron paramagnetic resonance (EPR), and in particular W-band electron-electron double resonance (ELDOR)-detected NMR, is of complementary use to assess binding of vanadate. We discuss which analogues best mimic the different hydrolysis states for the DnaB helicase and the ABC transporter BmrA. These might be relevant also to structural and functional studies of other NTPases.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/química , Bacillus subtilis/enzimología , AdnB Helicasas/metabolismo , Helicobacter pylori/enzimología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenilil Imidodifosfato/química , Compuestos de Aluminio/química , Proteínas Bacterianas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Electrones , Fluoruros/química , Hidrólisis , Espectroscopía de Resonancia Magnética , Conformación Proteica
12.
Biochem J ; 475(21): 3493-3509, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30315069

RESUMEN

The helicase-primase interaction is an essential event in DNA replication and is mediated by the highly variable C-terminal domain of primase (DnaG) and N-terminal domain of helicase (DnaB). To understand the functional conservation despite the low sequence homology of the DnaB-binding domains of DnaGs of eubacteria, we determined the crystal structure of the helicase-binding domain of DnaG from Mycobacterium tuberculosis (MtDnaG-CTD) and did so to a resolution of 1.58 Å. We observed the overall structure of MtDnaG-CTD to consist of two subdomains, the N-terminal globular region (GR) and the C-terminal helical hairpin region (HHR), connected by a small loop. Despite differences in some of its helices, the globular region was found to have broadly similar arrangements across the species, whereas the helical hairpins showed different orientations. To gain insights into the crucial helicase-primase interaction in M. tuberculosis, a complex was modeled using the MtDnaG-CTD and MtDnaB-NTD crystal structures. Two nonconserved hydrophobic residues (Ile605 and Phe615) of MtDnaG were identified as potential key residues interacting with MtDnaB. Biosensor-binding studies showed a significant decrease in the binding affinity of MtDnaB-NTD with the Ile605Ala mutant of MtDnaG-CTD compared with native MtDnaG-CTD. The loop, connecting the two helices of the HHR, was concluded to be largely responsible for the stability of the DnaB-DnaG complex. Also, MtDnaB-NTD showed micromolar affinity with DnaG-CTDs from Escherichia coli and Helicobacter pylori and unstable binding with DnaG-CTD from Vibrio cholerae The interacting domains of both DnaG and DnaB demonstrate the species-specific evolution of the replication initiation system.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Primasa/metabolismo , AdnB Helicasas/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Cristalografía por Rayos X , ADN Primasa/química , ADN Primasa/genética , AdnB Helicasas/química , AdnB Helicasas/genética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Mycobacterium tuberculosis/genética , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína
13.
J Biol Chem ; 292(46): 19001-19012, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28939774

RESUMEN

Replicative hexameric helicases are thought to unwind duplex DNA by steric exclusion (SE) where one DNA strand is encircled by the hexamer and the other is excluded from the central channel. However, interactions with the excluded strand on the exterior surface of hexameric helicases have also been shown to be important for DNA unwinding, giving rise to the steric exclusion and wrapping (SEW) model. For example, the archaeal Sulfolobus solfataricus minichromosome maintenance (SsoMCM) helicase has been shown to unwind DNA via a SEW mode to enhance unwinding efficiency. Using single-molecule FRET, we now show that the analogous Escherichia coli (Ec) DnaB helicase also interacts specifically with the excluded DNA strand during unwinding. Mutation of several conserved and positively charged residues on the exterior surface of EcDnaB resulted in increased interaction dynamics and states compared with wild type. Surprisingly, these mutations also increased the DNA unwinding rate, suggesting that electrostatic contacts with the excluded strand act as a regulator for unwinding activity. In support of this, experiments neutralizing the charge of the excluded strand with a morpholino substrate instead of DNA also dramatically increased the unwinding rate. Of note, although the stability of the excluded strand was nearly identical for EcDnaB and SsoMCM, these enzymes are from different superfamilies and unwind DNA with opposite polarities. These results support the SEW model of unwinding for EcDnaB that expands on the existing SE model of hexameric helicase unwinding to include contributions from the excluded strand to regulate the DNA unwinding rate.


Asunto(s)
ADN Bacteriano/metabolismo , AdnB Helicasas/metabolismo , Escherichia coli/metabolismo , Secuencia de Aminoácidos , ADN Bacteriano/química , AdnB Helicasas/química , Escherichia coli/química , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Alineación de Secuencia , Electricidad Estática
14.
J Biomol NMR ; 71(4): 237-245, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29948439

RESUMEN

Segmental isotope labelling enables the NMR study of an individual domain within a multidomain protein, but still in the context of the entire full-length protein. Compared to the fully labelled protein, spectral overlap can be greatly reduced. We here describe segmental labelling of the (double-) hexameric DnaB helicase from Helicobacter pylori using a ligation approach. Solid-state spectra demonstrate that the ligated protein has the same structure and structural order as the directly expressed full-length protein. We uniformly 13C/15N labeled the N-terminal domain (147 residues) of the protein, while the C-terminal domain (311 residues) remained in natural abundance. The reduced signal overlap in solid-state NMR spectra allowed to identify structural "hotspots" for which the structure of the N-terminal domain in the context of the oligomeric full-length protein differs from the one in the isolated form. They are located near the linker between the two domains, in an α-helical hairpin.


Asunto(s)
Marcaje Isotópico/métodos , Proteínas Motoras Moleculares/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas Bacterianas/química , Espectroscopía de Resonancia Magnética con Carbono-13 , AdnB Helicasas/química , Helicobacter pylori/química , Isótopos de Nitrógeno , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos
15.
Appl Microbiol Biotechnol ; 102(16): 7061-7069, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29951857

RESUMEN

Inteins, also known as "protein introns," have been found to be present in many microbial species and widely employed for the expression and purification of recombinant proteins in Escherichia coli. However, interestingly, until now there has not been much information on the identification and application of inteins to protein expression in Bacillus subtilis. In this article, for the first time, despite the likelihood of absence of inteins in B. subtilis, this bacterium was shown to be able to facilitate auto-catalytic cleavages of fusions formed between inteins and recombinant proteins. Employing a construct expressing the intein, Ssp DnaB, (DnaB), which was fused at its N-terminus with the cellulose-binding domain (CellBD) of an endoglucanase encoded by the cenA gene of Cellulomonas fimi, the construct was demonstrated to be capable of mediating intracellular expression of basic fibroblast growth factor (bFGF), followed by auto-processing of the CellBD-DnaB-bFGF fusion to result in bFGF possessing the 146-residue authentic structure. The mentioned fusion was shown to result in a high yield of 84 mg l-1 of biologically active bFGF. Future work in improving the growth of B. subtilis may enable the use of this bacterium, working in cooperation with inteins, to result in a new platform for efficient expression of valuable proteins.


Asunto(s)
Bacillus subtilis/genética , Factor 2 de Crecimiento de Fibroblastos/genética , Microbiología Industrial/métodos , Proteínas Recombinantes/genética , Bacillus subtilis/metabolismo , Humanos , Inteínas , Empalme de Proteína
16.
J Biol Chem ; 291(35): 18384-96, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27382050

RESUMEN

Collisions between DNA replication complexes (replisomes) and barriers such as damaged DNA or tightly bound protein complexes can dissociate replisomes from chromosomes prematurely. Replisomes must be reloaded under these circumstances to avoid incomplete replication and cell death. Bacteria have evolved multiple pathways that initiate DNA replication restart by recognizing and remodeling abandoned replication forks and reloading the replicative helicase. In vitro, the simplest of these pathways is mediated by the single-domain PriC protein, which, along with the DnaC helicase loader, can load the DnaB replicative helicase onto DNA bound by the single-stranded DNA (ssDNA)-binding protein (SSB). Previous biochemical studies have identified PriC residues that mediate interactions with ssDNA and SSB. However, the mechanisms by which PriC drives DNA replication restart have remained poorly defined due to the limited structural information available for PriC. Here, we report the NMR structure of full-length PriC from Cronobacter sakazakii PriC forms a compact bundle of α-helices that brings together residues involved in ssDNA and SSB binding at adjacent sites on the protein surface. Disruption of these interaction sites and of other conserved residues leads to decreased DnaB helicase loading onto SSB-bound DNA. We also demonstrate that PriC can directly interact with DnaB and the DnaB·DnaC complex. These data lead to a model in which PriC acts as a scaffold for recruiting DnaB·DnaC to SSB/ssDNA sites present at stalled replication forks.


Asunto(s)
Proteínas Bacterianas/química , Cronobacter sakazakii/química , Proteínas de Unión al ADN/química , Proteínas Bacterianas/metabolismo , Cronobacter sakazakii/metabolismo , ADN Bacteriano/biosíntesis , ADN Bacteriano/química , ADN de Cadena Simple/biosíntesis , ADN de Cadena Simple/química , Proteínas de Unión al ADN/metabolismo , AdnB Helicasas/química , AdnB Helicasas/metabolismo , Estructura Secundaria de Proteína , Relación Estructura-Actividad
17.
J Biomol NMR ; 65(2): 79-86, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27240588

RESUMEN

The use of protein building blocks for the structure determination of multidomain proteins and protein-protein complexes, also known as the "divide and conquer" approach, is an important strategy for obtaining protein structures. Atomic-resolution X-ray or NMR data of the individual domains are combined with lower-resolution electron microscopy maps or X-ray data of the full-length protein or the protein complex. Doing so, it is often assumed that the individual domain structures remain invariant in the context of the superstructure. In this work, we show the potentials and limitations of NMR to validate this approach at the example of the dodecameric DnaB helicase from Helicobacter pylori. We investigate how sequentially assigned spectra, as well as unassigned spectral fingerprints can be used to indicate the conservation of individual domains, and also to highlight conformational differences.


Asunto(s)
Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Proteínas/química , AdnB Helicasas/química , Evolución Molecular , Variación Genética , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Dominios Proteicos/genética , Proteínas/genética
18.
J Biomol NMR ; 64(3): 189-95, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26961129

RESUMEN

We here investigate the interactions between the DnaB helicase and the C-terminal domain of the corresponding DnaG primase of Helicobacter pylori using solid-state NMR. The difficult crystallization of this 387 kDa complex, where the two proteins interact in a six to three ratio, is circumvented by simple co-sedimentation of the two proteins directly into the MAS-NMR rotor. While the amount of information that can be extracted from such a large protein is still limited, we can assign a number of amino-acid residues experiencing significant chemical-shift perturbations upon helicase-primase complex formation. The location of these residues is used as a guide to model the interaction interface between the two proteins in the complex. Chemical-shift perturbations also reveal changes at the interaction interfaces of the hexameric HpDnaB assembly on HpDnaG binding. A structural model of the complex that explains the experimental findings is obtained.


Asunto(s)
ADN Primasa/química , Helicobacter pylori/enzimología , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos
19.
RNA ; 20(5): 681-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24671764

RESUMEN

The ZC3H14 gene, which encodes a ubiquitously expressed, evolutionarily conserved, nuclear, zinc finger polyadenosine RNA-binding protein, was recently linked to autosomal recessive, nonsyndromic intellectual disability. Although studies have been carried out to examine the function of putative orthologs of ZC3H14 in Saccharomyces cerevisiae, where the protein is termed Nab2, and Drosophila, where the protein has been designated dNab2, little is known about the function of mammalian ZC3H14. Work from both budding yeast and flies implicates Nab2/dNab2 in poly(A) tail length control, while a role in poly(A) RNA export from the nucleus has been reported only for budding yeast. Here we provide the first functional characterization of ZC3H14. Analysis of ZC3H14 function in a neuronal cell line as well as in vivo complementation studies in a Drosophila model identify a role for ZC3H14 in proper control of poly(A) tail length in neuronal cells. Furthermore, we show here that human ZC3H14 can functionally substitute for dNab2 in fly neurons and can rescue defects in development and locomotion that are present in dNab2 null flies. These rescue experiments provide evidence that this zinc finger-containing class of nuclear polyadenosine RNA-binding proteins plays an evolutionarily conserved role in controlling the length of the poly(A) tail in neurons.


Asunto(s)
Neuronas/metabolismo , Proteínas Nucleares/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Animales , Secuencia Conservada , Drosophila/genética , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas de Unión a Poli(A) , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética
20.
Anal Biochem ; 509: 46-49, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27372608

RESUMEN

The DnaB helicase from Bacillus stearothermophilus (DnaBBst) was a model protein for studying the bacterial DNA replication. In this work, a non-radioactive method for measuring ATPase activity of DnaBBst helicase was described. The working parameters and conditions were optimized. Furthermore, this method was applied to investigate effects of DnaG primase, ssDNA and helicase loader protein (DnaI) on ATPase activity of DnaBBst. Our results showed this method was sensitive and efficient. Moreover, it is suitable for the investigation of functional interaction between DnaB and related factors.


Asunto(s)
Proteínas Bacterianas/metabolismo , AdnB Helicasas/metabolismo , Geobacillus stearothermophilus/enzimología , Colorantes de Rosanilina/farmacología , ADN Primasa/metabolismo , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Colorantes de Rosanilina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA