Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mater Today Bio ; 13: 100199, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35028556

RESUMEN

Controlling bleeding from a raptured tissue, especially during the surgeries, is essentially important. Particularly for soft and dynamic internal organs where use of sutures, staples, or wires is limited, treatments with hemostatic adhesives have proven to be beneficial. However, major drawbacks with clinically used hemostats include lack of adhesion to wet tissue and poor mechanics. In view of these, herein, we engineered a double-crosslinked sealant which showed excellent hemostasis (comparable to existing commercial hemostat) without compromising its wet tissue adhesion. Mechanistically, the engineered hydrogel controlled the bleeding through its wound-sealing capability and inherent chemical activity. This mussel-inspired hemostatic adhesive hydrogel, named gelatin methacryloyl-catechol (GelMAC), contained covalently functionalized catechol and methacrylate moieties and showed excellent biocompatibility both in vitro and in vivo. Hemostatic property of GelMAC hydrogel was initially demonstrated with an in vitro blood clotting assay, which showed significantly reduced clotting time compared to the clinically used hemostat, Surgicel®. This was further assessed with an in vivo liver bleeding test in rats where GelMAC hydrogel closed the incision rapidly and initiated blood coagulation even faster than Surgicel®. The engineered GelMAC hydrogel-based seaalant with excellent hemostatic property and tissue adhesion can be utilized for controlling bleeding and sealing of soft internal organs.

2.
Nanomaterials (Basel) ; 12(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35564167

RESUMEN

To improve the salt resistance of superabsorbent materials and the gel strength of superabsorbent materials after water absorption, a bagasse cellulose-based network structure composite superabsorbent (CAAMC) was prepared via graft copolymerization of acrylamide/acrylic acid (AM/AA) onto bagasse cellulose using silane coupling agent modified nano-CaCO3 (MNC) and N,N'-methylene bisacrylamide (MBA) as a double crosslinker. The acrylamide/acrylic acid was chemically crosslinked with modified nano-CaCO3 by C-N, and a stable double crosslinked (DC) network CAAMC was formed under the joint crosslinking of N,N'-methylene bisacrylamide and modified nano-CaCO3. Modified nano-CaCO3 plays a dual role of crosslinking agent and the filler, and the gel strength of composite superabsorbent is two times higher than that of N,N'-methylene bisacrylamide single crosslinking. The maximum absorbency of CAAMC reached 712 g/g for deionized water and 72 g/g for 0.9 wt% NaCl solution. The adsorption process of CAAMC was simulated by materials studio, and the maximum adsorption energy of amino and carboxyl groups for water molecules is -2.413 kJ/mol and -2.240 kJ/mol, respectively. According to the results of CAAMC soil water retention, a small amount of CAAMC can greatly improve the soil water retention effect.

3.
Bioact Mater ; 43: 441-459, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39399835

RESUMEN

The osteoporotic bone defect caused by excessive activity of osteoclasts has posed a challenge for public healthcare. However, most existing bioinert bone cement fails to effectively regulate the pathological bone microenvironment and reconstruct bone homeostasis in the presence of osteoclast overactivity and osteoblast suppression. Herein, inspired by natural bone tissue, an in-situ modulation system for osteoporotic bone regeneration is developed by fabricating an injectable double-crosslinked PEGylated poly(glycerol sebacate) (PEGS)/calcium phosphate cement (CPC) loaded with sodium alendronate (ALN) (PEGS/CPC@ALN) adhesive bone cement. By incorporating ALN, the organic-inorganic interconnection within PEGS/CPC@ALN results in a 100 % increase in compression modulus and energy dissipation efficiency. Additionally, PEGS/CPC@ALN effectively adheres to the bone by bonding with amine and calcium ions present on the bone surface. Moreover, this in-situ regulation system comprehensively mitigates excessive bone resorption through the buffering effect of CPC to improve the acidic microenvironment of osteoporotic bone and the release of ALN to inhibit hyperactive osteoclasts, and facilitates stem cell proliferation and differentiation into osteoblasts through calcium ion release. Overall, the PEGS/CPC@ALN effectively regulates the pathological microenvironment of osteoporosis while promoting bone regeneration through synergistic effects of drugs and materials, thereby improving bone homeostasis and enabling minimally invasive treatment for osteoporotic defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA