Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Korean J Physiol Pharmacol ; 27(5): 493-511, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37641811

RESUMEN

Hippo/YAP signaling hinders cancer progression. Inactivation of this pathway contributes to the development of esophageal cancer by activation of Akt. However, the possible interaction between Akt and Hippo/YAP pathways in esophageal cancer progression is unclear. In this study, we found that ursolic acid (UA) plus 3'3-diindolylmethane (DIM) efficiently suppressed the oncogenic Akt/Gsk-3ß signaling pathway while activating the Hippo tumor suppressor pathway in esophageal cancer cells. Moreover, the addition of the Akt inhibitor LY294002 and the PI3K inhibitor 3-methyladenine enhanced the inhibitory effects of UA plus DIM on Akt pathway activation and further stimulated the Hippo pathway, including the suppression of YAP nuclear translocation in esophageal cancer cells. Silencing YAP under UA plus DIM conditions significantly increased the activation of the tumor suppressor PTEN in esophageal cancer cells, while decreasing p-Akt activation, indicating that the Akt signaling pathway could be down-regulated in esophageal cancer cells by targeting PTEN. Furthermore, in a xenograft nude mice model, UA plus DIM treatment effectively diminished esophageal tumors by inactivating the Akt pathway and stimulating the Hippo signaling pathway. Thus, our study highlights a feedback loop between the PI3K/Akt and Hippo signaling pathways in esophageal cancer cells, implying that a low dose of UA plus DIM could serve as a promising chemotherapeutic combination strategy in the treatment of esophageal cancer.

2.
Cancer Rep (Hoboken) ; 6(3): e1759, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36534072

RESUMEN

BACKGROUND: Esophageal cancer (EC) is the sixth leading cause of cancer-related death, despite many advances in treatment, the survival of patients still remains poor. In recent years, the N6-methyladenosine (m6A) has been introduced as one of the most important modifications at the epitranscriptome level, with an important role in the mRNA regulation in various diseases, such as cancers. The m6A is regulated by different factors, including FTO as a demethylase. The m6A modification, especially through FTO overexpression has an oncogenic role in different cancer types such as EC. Recent studies showed that entacapone, a catechol-o-methyl transferase (COMT) inhibitor currently applied for Parkinson's disease, can inhibit FTO enzyme. AIMS: In this study, we aimed to investigate the effect of entacapone as an FTO inhibitor on the m6A level and also apoptosis and cell cycle response in KYSE-30 and YM-1 of esophageal squamous cancer cell (ESCC) lines. METHODS: Cell toxicity and IC50 of entacapone were evaluated using The MTT assay in YM-1 and KYSE-30 cells. Cells were treated into two groups: DMSO (control) and entacapone (mean IC50 ). Total RNA was extracted, and m6A levels were measured via the ELISA method. Subsequently, the apoptosis and cell cycle dys-regulation were detected by annexin-V-FITC/PI staining and PI staining via flow cytometry. RESULTS: Entacapone has the cytotoxicity effect on both esophageal cancer cell lines compared to normal PBMC cells. As well, entacapone treatment (140 µM) can induce apoptosis (KYSE-30: 50%. YM-1:22.6%) and has a modulatory effect on cell cycle progression in both YM-1 and KYSE-30 cells (p-value<.05). However, no significant difference in the m6A concentration was observed. CONCLUSION: Our findings suggested that entacapone has the inhibitory effect on ESCC cell lines through induction of the apoptosis and modulation of the cell cycle without toxicity on the normal PBMC.


Asunto(s)
Catecol O-Metiltransferasa , Neoplasias Esofágicas , Humanos , Catecol O-Metiltransferasa/farmacología , Leucocitos Mononucleares/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Apoptosis , Ciclo Celular , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA