Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 896
Filtrar
Más filtros

Intervalo de año de publicación
1.
Am J Hum Genet ; 111(5): 841-862, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38593811

RESUMEN

RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.


Asunto(s)
Transdiferenciación Celular , Fibroblastos , Neuronas , Análisis de Secuencia de ARN , Humanos , Transdiferenciación Celular/genética , Fibroblastos/metabolismo , Fibroblastos/citología , Análisis de Secuencia de ARN/métodos , Neuronas/metabolismo , Neuronas/citología , Transcriptoma , Reproducibilidad de los Resultados , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/diagnóstico , RNA-Seq/métodos , Femenino , Masculino
2.
Hum Mol Genet ; 33(11): 945-957, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38453143

RESUMEN

Inherited retinal diseases (IRDs) are a group of rare genetic eye conditions that cause blindness. Despite progress in identifying genes associated with IRDs, improvements are necessary for classifying rare autosomal dominant (AD) disorders. AD diseases are highly heterogenous, with causal variants being restricted to specific amino acid changes within certain protein domains, making AD conditions difficult to classify. Here, we aim to determine the top-performing in-silico tools for predicting the pathogenicity of AD IRD variants. We annotated variants from ClinVar and benchmarked 39 variant classifier tools on IRD genes, split by inheritance pattern. Using area-under-the-curve (AUC) analysis, we determined the top-performing tools and defined thresholds for variant pathogenicity. Top-performing tools were assessed using genome sequencing on a cohort of participants with IRDs of unknown etiology. MutScore achieved the highest accuracy within AD genes, yielding an AUC of 0.969. When filtering for AD gain-of-function and dominant negative variants, BayesDel had the highest accuracy with an AUC of 0.997. Five participants with variants in NR2E3, RHO, GUCA1A, and GUCY2D were confirmed to have dominantly inherited disease based on pedigree, phenotype, and segregation analysis. We identified two uncharacterized variants in GUCA1A (c.428T>A, p.Ile143Thr) and RHO (c.631C>G, p.His211Asp) in three participants. Our findings support using a multi-classifier approach comprised of new missense classifier tools to identify pathogenic variants in participants with AD IRDs. Our results provide a foundation for improved genetic diagnosis for people with IRDs.


Asunto(s)
Simulación por Computador , Linaje , Enfermedades de la Retina , Humanos , Enfermedades de la Retina/genética , Femenino , Masculino , Mutación , Genes Dominantes , Predisposición Genética a la Enfermedad , Biología Computacional/métodos , Fenotipo , Adulto
3.
Annu Rev Genomics Hum Genet ; 24: 151-176, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37285546

RESUMEN

DECIPHER (Database of Genomic Variation and Phenotype in Humans Using Ensembl Resources) shares candidate diagnostic variants and phenotypic data from patients with genetic disorders to facilitate research and improve the diagnosis, management, and therapy of rare diseases. The platform sits at the boundary between genomic research and the clinical community. DECIPHER aims to ensure that the most up-to-date data are made rapidly available within its interpretation interfaces to improve clinical care. Newly integrated cardiac case-control data that provide evidence of gene-disease associations and inform variant interpretation exemplify this mission. New research resources are presented in a format optimized for use by a broad range of professionals supporting the delivery of genomic medicine. The interfaces within DECIPHER integrate and contextualize variant and phenotypic data, helping to determine a robust clinico-molecular diagnosis for rare-disease patients, which combines both variant classification and clinical fit. DECIPHER supports discovery research, connecting individuals within the rare-disease community to pursue hypothesis-driven research.


Asunto(s)
Genómica , Genómica/métodos , Humanos , Enfermedades Raras/genética , Alelos , Guías de Práctica Clínica como Asunto , Variaciones en el Número de Copia de ADN , Bases de Datos Genéticas
4.
Am J Hum Genet ; 110(11): 1976-1982, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37802069

RESUMEN

Certain classes of genetic variation still escape detection in clinical sequencing analysis. One such class is retroelement insertion, which has been reported as a cause of Mendelian diseases and may offer unique therapeutic implications. Here, we conducted retroelement profiling on whole-genome sequencing data from a cohort of 237 individuals with ataxia telangiectasia (A-T). We found 15 individuals carrying retroelement insertions in ATM, all but one of which integrated in noncoding regions. Systematic functional characterization via RNA sequencing, RT-PCR, and/or minigene splicing assays showed that 12 out of 14 intronic insertions led or contributed to ATM loss of function by exon skipping or activating cryptic splice sites. We also present proof-of-concept antisense oligonucleotides that suppress cryptic exonization caused by a deep intronic retroelement insertion. These results provide an initial systematic estimate of the contribution of retroelements to the genetic architecture of recessive Mendelian disorders as ∼2.1%-5.5%. Our study highlights the importance of retroelement insertions as causal variants and therapeutic targets in genetic diseases.


Asunto(s)
Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Retroelementos/genética , Mutación , Empalme del ARN/genética , Sitios de Empalme de ARN , Intrones
5.
Trends Genet ; 38(9): 956-971, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35908999

RESUMEN

Neuromuscular disorders (NMDs) are a wide-ranging group of diseases that seriously affect the quality of life of affected individuals. The development of next-generation sequencing revolutionized the diagnosis of NMD, enabling the discovery of hundreds of NMD genes and many more pathogenic variants. However, the diagnostic yield of genetic testing in NMD cohorts remains incomplete, indicating a large number of genetic diagnoses are not identified through current methods. Fortunately, recent advancements in sequencing technologies, analytical tools, and high-throughput functional screening provide an opportunity to circumvent current challenges. Here, we discuss reasons for missing genetic diagnoses in NMD, how emerging technologies and tools can overcome these hurdles, and examine future approaches to improving diagnostic yields in NMD.


Asunto(s)
Enfermedades Neuromusculares , Calidad de Vida , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Ensayos Analíticos de Alto Rendimiento , Humanos , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genética
6.
Am J Hum Genet ; 109(3): 508-517, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35172124

RESUMEN

Non-obstructive azoospermia (NOA) is a severe and frequent cause of male infertility, often treated by testicular sperm extraction followed by intracytoplasmic sperm injection. The aim of this study is to improve the genetic diagnosis of NOA, by identifying new genes involved in human NOA and to better assess the chances of successful sperm extraction according to the individual's genotype. Exome sequencing was performed on 96 NOA-affected individuals negative for routine genetic tests. Bioinformatics analysis was limited to a panel of 151 genes selected as known causal or candidate genes for NOA. Only highly deleterious homozygous or hemizygous variants were retained as candidates. A likely causal defect was identified in 16 genes in a total of 22 individuals (23%). Six genes had not been described in man (DDX25, HENMT1, MCMDC2, MSH5, REC8, TDRKH) and 10 were previously reported (C14orf39, DMC1, FANCM, GCNA, HFM1, MCM8, MEIOB, PDHA2, TDRD9, TERB1). Seven individuals had defects in genes from piwi or DNA repair pathways, three in genes involved in post-meiotic maturation, and 12 in meiotic processes. Interestingly, all individuals with defects in meiotic genes had an unsuccessful sperm retrieval, indicating that genetic diagnosis prior to TESE could help identify individuals with low or null chances of successful sperm retrieval and thus avoid unsuccessful surgeries.


Asunto(s)
Azoospermia , Azoospermia/diagnóstico , Azoospermia/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Masculino , Recuperación de la Esperma , Testículo/metabolismo , Secuenciación del Exoma
7.
J Allergy Clin Immunol ; 153(1): 67-76, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977527

RESUMEN

Chronic nonmalignant lymphoproliferation and autoimmune cytopenia are relevant manifestations of immunohematologic diseases of childhood. Their diagnostic classification is challenging but important for therapy. Autoimmune lymphoproliferative syndrome (ALPS) is a genetically defined inborn error of immunity combining these manifestations, but it can explain only a small proportion of cases. Diagnostic categories such as ALPS-like disease, common variable immunodeficiency, or Evans syndrome have therefore been used. Advances in genetics and increasing availablity of targeted therapies call for more therapy-oriented disease classification. Moreover, recent discoveries in the (re)analysis of genetic conditions affecting FAS signaling ask for a more precise definition of ALPS. In this review, we propose the term autoimmune lymphoproliferative immunodeficiencies for a disease phenotype that is enriched for patients with genetic diseases for which targeted therapies are available. For patients without a current molecular diagnosis, this term defines a subgroup of immune dysregulatory disorders for further studies. Within the concept of autoimmune lymphoproliferative immunodeficiencies, we propose a revision of the ALPS classification, restricting use of this term to conditions with clear evidence of perturbation of FAS signaling and resulting specific biologic and clinical consequences. This proposed approach to redefining ALPS and other lymphoproliferative conditions provides a framework for disease classification and diagnosis that is relevant for the many specialists confronted with these diseases.


Asunto(s)
Anemia Hemolítica Autoinmune , Enfermedades Autoinmunes , Síndrome Linfoproliferativo Autoinmune , Inmunodeficiencia Variable Común , Enfermedades del Sistema Inmune , Trastornos Linfoproliferativos , Humanos , Síndrome Linfoproliferativo Autoinmune/diagnóstico , Síndrome Linfoproliferativo Autoinmune/genética , Síndrome Linfoproliferativo Autoinmune/terapia , Fenotipo , Receptor fas/genética , Trastornos Linfoproliferativos/diagnóstico , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/terapia
8.
Curr Issues Mol Biol ; 46(5): 5010-5022, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38785568

RESUMEN

Numerous hereditary ophthalmic diseases display significant genetic diversity. Consequently, the utilization of gene panel sequencing allows a greater number of patients to receive a genetic diagnosis for their clinical manifestations. We investigated how to improve the yield of genetic diagnosis through additional gene panel sequencing in hereditary ophthalmic diseases. A gene panel sequencing consisting of a customized hereditary retinopathy panel or hereditary retinitis pigmentosa (RP) panel was prescribed and referred to a CAP-accredited clinical laboratory. If no significant mutations associated with hereditary retinopathy and RP were detected in either panel, additional gene panel sequencing was requested for research use, utilizing the remaining panel. After additional gene panel sequencing, a total of 16 heterozygous or homozygous variants were identified in 15 different genes associated with hereditary ophthalmic diseases. Of 15 patients carrying any candidate variants, the clinical symptoms could be tentatively accounted for by genetic mutations in seven patients. However, in the remaining eight patients, given the in silico mutation predictive analysis, variant allele frequency in gnomAD, inheritance pattern, and genotype-phenotype correlation, fully elucidating the clinical manifestations with the identified rare variant was challenging. Our study highlights the utility of gene panel sequencing in achieving accurate diagnoses for hereditary ophthalmic diseases and enhancing the diagnostic yield through additional gene panel sequencing. Thus, gene panel sequencing can serve as a primary tool for the genetic diagnosis of hereditary ophthalmic diseases, even in cases where a single genetic cause is suspected. With a deeper comprehension of the genetic mechanisms underlying these diseases, it becomes feasible.

9.
J Clin Immunol ; 44(7): 165, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052144

RESUMEN

More than 450 genetic defects result in inborn errors of immunity (IEI). Their individual prevalence in specific cohorts is influenced by national characteristics and other factors. We present results of genetic testing conducted in 1809 Russian children with IEI. Genetic defects confirming IEI were found in 1112 out of 1809 (61.5%) probands. These defects included variants in 118 single genes (87.9% of patients) and aberrations in 6 chromosomes (11.8%). Notably, three patients harbored pathogenic variants in more than one IEI gene. Large deletions constituted 5% of all defects. Out of the 799 original variants, 350 (44%) have not been described previously. Rare genetic defects (10 or fewer patients per gene) were identified in 20% of the patients. Among 967 probands with germline variants, defects were inherited in an autosomal dominant manner in 29%, X-linked in 34%, and autosomal recessive in 37%. Four females with non-random X-inactivation exhibited symptoms of X-linked diseases (BTK, WAS, CYBB, IKBKG gene defects). Despite a relatively low rate of consanguinity in Russia, 47.9% of autosomal recessive gene defects were found in a homozygous state. Notably, 28% of these cases carried "Slavic" mutation of the NBN gene or known hot-spot mutations in other genes. The diversity of IEI genetic forms and the high frequency of newly described variants underscore the genetic heterogeneity within the Russian IEI group. The new variants identified in this extensive cohort will enrich genetic databases.


Asunto(s)
Pruebas Genéticas , Humanos , Femenino , Masculino , Niño , Preescolar , Lactante , Estudios de Cohortes , Federación de Rusia/epidemiología , Adolescente , Mutación/genética , Recién Nacido , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/inmunología , Enfermedades Genéticas Congénitas/epidemiología , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/diagnóstico , Predisposición Genética a la Enfermedad
10.
J Clin Immunol ; 44(7): 157, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954121

RESUMEN

Molecular diagnosis of inborn errors of immunity (IEI) plays a critical role in determining patients' long-term prognosis, treatment options, and genetic counseling. Over the past decade, the broader utilization of next-generation sequencing (NGS) techniques in both research and clinical settings has facilitated the evaluation of a significant proportion of patients for gene variants associated with IEI. In addition to its role in diagnosing known gene defects, the application of high-throughput techniques such as targeted, exome, and genome sequencing has led to the identification of novel disease-causing genes. However, the results obtained from these different methods can vary depending on disease phenotypes or patient characteristics. In this study, we conducted whole-exome sequencing (WES) in a sizable cohort of IEI patients, consisting of 303 individuals from 21 different clinical immunology centers in Türkiye. Our analysis resulted in likely genetic diagnoses for 41.1% of the patients (122 out of 297), revealing 52 novel variants and uncovering potential new IEI genes in six patients. The significance of understanding outcomes across various IEI cohorts cannot be overstated, and we believe that our findings will make a valuable contribution to the existing literature and foster collaborative research between clinicians and basic science researchers.


Asunto(s)
Secuenciación del Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Femenino , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/diagnóstico , Síndromes de Inmunodeficiencia/inmunología , Predisposición Genética a la Enfermedad , Niño , Preescolar , Mutación/genética , Pruebas Genéticas/métodos , Lactante , Exoma/genética , Adolescente
11.
J Clin Immunol ; 44(4): 92, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578558

RESUMEN

PURPOSE: Leukocyte adhesion deficiency (LAD) represents a rare group of inherited inborn errors of immunity (IEI) characterized by bacterial infections, delayed umbilical stump separation, and autoimmunity. This single-center study aimed at describing the clinical, immunological, and molecular characterizations of 34 LAD-I Egyptian pediatric patients. METHODS: Details of 34 patients' personal medical history, clinical and laboratory findings were recorded; Genetic material from 28 patients was studied. Mutational analysis was done by Sanger sequencing. RESULTS: Omphalitis, skin and soft tissue infections with poorly healing ulcers, delayed falling of the umbilical stump, and recurrent or un-resolving pneumonia were the most common presentations, followed by chronic otitis media, enteropathy, periodontitis; and recurrent oral thrush. Persistent leukocytosis and neutrophilia were reported in all patients, as well as CD18 and CD11b deficiency. CD18 expression was < 2% in around 90% of patients. Sixteen different pathological gene variants were detected in 28 patients who underwent ITGß2 gene sequencing, of those, ten were novel and six were previously reported. Three families received a prenatal diagnosis. Patients were on antimicrobials according to culture's results whenever available, and on prophylactic Trimethoprim-Sulfamethoxazole 5 mg/kg once daily, with regular clinical follow up. Hematopoietic stem cell transplantation (HSCT) was offered for 4 patients. However due to severity of the disease and delay in diagnosis, 58% of the patients passed away in the first 2 years of life. CONCLUSION: This study highlights the importance of early diagnosis and distribution of ITGß2 gene mutation in Egyptian children. Further molecular studies, however, remain a challenging necessity for better disease characterization in the region.


Asunto(s)
Antígenos CD18 , Síndrome de Deficiencia de Adhesión del Leucocito , Humanos , Niño , Antígenos CD18/genética , Antígenos CD18/metabolismo , Egipto/epidemiología , Síndrome de Deficiencia de Adhesión del Leucocito/diagnóstico , Síndrome de Deficiencia de Adhesión del Leucocito/genética , Síndrome de Deficiencia de Adhesión del Leucocito/terapia , Leucocitos/metabolismo
12.
Immunogenetics ; 76(3): 189-202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38683392

RESUMEN

Hypogammaglobulinemia without B-cells is a subgroup of inborn errors of immunity (IEI) which is characterized by a significant decline in all serum immunoglobulin isotypes, coupled with a pronounced reduction or absence of B-cells. Approximately 80 to 90% of individuals exhibit genetic variations in Bruton's agammaglobulinemia tyrosine kinase (BTK), whereas a minority of cases, around 5-10%, are autosomal recessive agammaglobulinemia (ARA). Very few cases are grouped into distinct subcategories. We evaluated phenotypically and genetically 27 patients from 13 distinct families with hypogammaglobinemia and no B-cells. Genetic analysis was performed via whole-exome and Sanger sequencing. The most prevalent genetic cause was mutations in BTK. Three novel mutations in the BTK gene include c.115 T > C (p. Tyr39His), c.685-686insTTAC (p.Asn229llefs5), and c.163delT (p.Ser55GlnfsTer2). Our three ARA patients include a novel homozygous stop-gain mutation in the immunoglobulin heavy constant Mu chain (IGHM) gene, a novel frameshift mutation of the B-cell antigen receptor complex-associated protein (CD79A) gene, a novel bi-allelic stop-gain mutation in the transcription factor 3 (TCF3) gene. Three patients with agammaglobulinemia have an autosomal dominant inheritance pattern, which includes a missense variant in PIK3CD, a novel missense variant in PIK3R1 and a homozygous silent mutation in the phosphoinositide-3-kinase regulatory subunit (RASGRP1) gene. This study broadens the genetic spectrum of hypogammaglobulinemia without B-cells and presented a few novel variants within the Iranian community, which may also have implications in other Middle Eastern populations. Notably, disease control was better in the second affected family member in families with multiple cases.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Agammaglobulinemia , Linfocitos B , Mutación , Sistema de Registros , Humanos , Agammaglobulinemia/genética , Agammaglobulinemia/inmunología , Masculino , Linfocitos B/inmunología , Femenino , Agammaglobulinemia Tirosina Quinasa/genética , Niño , Preescolar , Adolescente , Lactante , Linaje , Fosfatidilinositol 3-Quinasa Clase Ia
13.
J Hum Genet ; 69(9): 425-431, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839994

RESUMEN

Since variants of uncertain significance (VUS) reported in genetic testing cannot be acted upon clinically, this classification may delay or prohibit precise diagnosis and genetic counseling in adult genetic disorders patients. Large-scale analyses about qualitatively distinct lines of evidence used for VUS can make them re-classification more accurately. We analyzed 458 Chinese adult patients WES data, within 15 pathogenic evidence PS1, PS2, PM1, PM6 and PP4 were not used for VUS pathogenic classification, meanwhile the PP3, BP4, PP2 were used much more frequently. The PM2_Supporting was used most widely for all reported variants. There were also 31 null variants (nonsense, frameshift, canonical ±1 or 2 splice sites) which were probably the disease-causing variants of the patients were classified as VUS. By analyzed the evidence used for all VUS we recommend that appropriate genetic counseling, reliable releasing of in-house data, allele frequency comparison between case and control, expanded verification in patient family, co-segregation analysis and functional assays were urgent need to gather more evidence to reclassify VUS. We also found adult patients with nervous system disease were reported the most phenotype-associated VUS and the lower the phenotypic specificity, the more reported VUS. This result emphasized the importance of pretest genetic counseling which would make less reporting of VUS. Our result revealed the characteristics of the pathogenic classification evidence used for VUS in adult genetic disorders patients for the first time, recommend a rules-based process to evaluate the pathogenicity of VUS which could provide a strong basis for accurately evaluating the pathogenicity and clinical grade information of VUS. Meanwhile, we further expanded the genetic spectrum and improve the diagnostic rate of adult genetic disorders.


Asunto(s)
Asesoramiento Genético , Enfermedades Genéticas Congénitas , Pruebas Genéticas , Humanos , Adulto , Pruebas Genéticas/métodos , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/clasificación , Enfermedades Genéticas Congénitas/diagnóstico , Variación Genética , Fenotipo , Frecuencia de los Genes , Femenino , Secuenciación del Exoma , Masculino , Predisposición Genética a la Enfermedad
14.
Clin Genet ; 105(2): 185-189, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37904629

RESUMEN

Dilated cardiomyopathy (DCM) is a heart disease characterized by left ventricular dilatation and systolic dysfunction. In 30% of cases, pathogenic variants, essentially private to each patient, are identified in at least one of almost 50 reported genes. Thus, while costly, exons capture-based Next Generation Sequencing (NGS) of a targeted gene panel appears as the best strategy to genetically diagnose DCM. Here, we report a NGS strategy applied to pools of 8 DNAs from DCM patients and validate its robustness for rare variants detection at 4-fold reduced cost. Our pipeline uses Freebayes to detect variants with the expected 1/16 allele frequency. From the whole set of detected rare variants in 96 pools we set the variants quality parameters optimizing true positives calling. When compared to simplex DNA sequencing in a shared subset of 50 DNAs, 96% of SNVs/InsDel were accurately identified in pools. Extended to the 384 DNAs included in the study, we detected 100 variants (ACMG class 4 and 5), mostly in well-known morbid gene causing DCM such as TTN, MYH7, FLNC, and TNNT2. To conclude, we report an original pool-sequencing NGS method accurately detecting rare variants. This innovative approach is cost-effective for genetic diagnostic in rare diseases.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Humanos , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Análisis Costo-Beneficio , ADN/genética , Frecuencia de los Genes
15.
Clin Genet ; 106(2): 119-126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38440907

RESUMEN

We present GeneBe, an online platform streamlining the automated application of American College of Medical Genetics and Genomics (ACMG), Association for Molecular Pathology (AMP), and the College of American Pathologists (CAP) criteria for assessment of pathogenicity of genetic variants. GeneBe utilizes automated algorithms that evaluate 17 criteria from 28, closely aligning with current guidelines and leveraging data from diverse sources, including ClinVar. The user-friendly web interface enables manual refinement of assignments for specific criteria based on site-collected data. Our algorithm demonstrates a high correlation (r = 0.90) of assigned pathogenicity scores compared to expert assessments from the ClinGen Evidence Repository and substantial concordance with ClinVar verdict assignments (κ = 0.69). Comparative analysis with other published tools reveals that GeneBe performs similarly to VarSome while being superior over TAPES and InterVar. In contrast to some other tools, GeneBe's web implementation is tracker-free and third-party request-free, safeguarding user privacy. Additionally, GeneBe offers an Application Programming Interface (API) for enhanced flexibility and integration into existing workflows and is provided free of charge for research purposes. GeneBe is available at https://genebe.net.


Asunto(s)
Algoritmos , Genómica , Programas Informáticos , Humanos , Genómica/métodos , Variación Genética , Bases de Datos Genéticas , Genética Médica/métodos , Biología Computacional/métodos , Pruebas Genéticas/métodos , Internet
16.
Clin Genet ; 106(3): 258-266, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38576124

RESUMEN

This research aims to compile recent clinical and genetic data from Turkish patients with inherited retinal disorders and evaluate the effectiveness of targeted Next-generation sequencing panels. The study included Turkish individuals with hereditary retinal diseases who visited the Medical Genetic Department of Erciyes University between 2019 and 2022. One proband per family was selected based on eligibility. We used Hereditary Disorder Solution (HDS) by Sophia Genetics and performed next-generation sequencing (NGS) with Illumina NextSeq-500. Bioinformatics analysis using Sophia DDM® SaaS algorithms and ACMG guidelines classified genomic changes. The study involved 354 probands. Disease-causing variants were found in 58.1% of patients, with ABCA4, USH2A, RDH12, and EYS being the most frequently implicated genes. Forty-eight novel variants were detected. This study enhances the knowledge of clinical diagnoses, symptom onset, inheritance patterns, and genetic details for Turkish individuals with hereditary retinal disease. It contributes to broader health strategies by enabling comparisons with other studies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Fenotipo , Enfermedades de la Retina , Humanos , Turquía , Masculino , Enfermedades de la Retina/genética , Enfermedades de la Retina/diagnóstico , Femenino , Adulto , Niño , Adolescente , Persona de Mediana Edad , Linaje , Proteínas del Ojo/genética , Predisposición Genética a la Enfermedad , Oxidorreductasas de Alcohol/genética , Transportadoras de Casetes de Unión a ATP/genética , Preescolar , Biología Computacional/métodos , Estudios de Cohortes , Adulto Joven , Pruebas Genéticas/métodos , Lactante , Proteínas de la Matriz Extracelular
17.
Clin Genet ; 106(1): 13-26, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38685133

RESUMEN

The gold standard for facioscapulohumeral muscular dystrophy (FSHD) genetic diagnostic procedures was published in 2012. With the increasing complexity of the genetics of FSHD1 and 2, the increase of genetic testing centers, and the start of clinical trials for FSHD, it is crucial to provide an update on our knowledge of the genetic features of the FSHD loci and renew the international consensus on the molecular testing recommendations. To this end, members of the FSHD European Trial Network summarized the evidence presented during the 2022 ENMC meeting on Genetic diagnosis, clinical outcome measures, and biomarkers. The working group additionally invited genetic and clinical experts from the USA, India, Japan, Australia, South-Africa, and Brazil to provide a global perspective. Six virtual meetings were organized to reach consensus on the minimal requirements for genetic confirmation of FSHD1 and FSHD2. Here, we present the clinical and genetic features of FSHD, specific features of FSHD1 and FSHD2, pros and cons of established and new technologies (Southern blot in combination with either linear or pulsed-field gel electrophoresis, molecular combing, optical genome mapping, FSHD2 methylation analysis and FSHD2 genotyping), the possibilities and challenges of prenatal testing, including pre-implantation genetic testing, and the minimal requirements and recommendations for genetic confirmation of FSHD1 and FSHD2. This consensus is expected to contribute to current clinical management and trial-readiness for FSHD.


Asunto(s)
Pruebas Genéticas , Distrofia Muscular Facioescapulohumeral , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/diagnóstico , Humanos , Pruebas Genéticas/normas , Pruebas Genéticas/métodos , Guías de Práctica Clínica como Asunto
18.
Hum Reprod ; 39(9): 1899-1908, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38970367

RESUMEN

Recent advances in preimplantation genetic testing for aneuploidy (PGT-A) have significantly enhanced its application in ART, providing critical insights into embryo viability, and potentially reducing both the time spent in fertility treatments and the risk of pregnancy loss. With the integration of next-generation sequencing, PGT-A now offers greater diagnostic precision, although challenges related to segmental aneuploidies and mosaicism remain. The emergence of non-invasive PGT-A (niPGT-A), which analyzes DNA in spent embryo culture media, promises a simpler aneuploidy screening method. This mini review assesses the methodological criteria for test validation, the current landscape of PGT-A, and the potential of niPGT-A, while evaluating its advantages and potential pitfalls. It underscores the importance of a robust three-phase validation process to ensure the clinical reliability of PGT-A. Despite initial encouraging data, niPGT-A not only confronts issues of DNA amplification failure and diagnostic inaccuracies but also has yet to meet the three-prong criteria required for appropriate test validation, necessitating further research for its clinical adoption. The review underscores that niPGT-A, like traditional PGT-A, must attain the high standards of precision and reliability expected of any genetic testing platform used in clinical settings before it can be adopted into routine ART protocols.


Asunto(s)
Aneuploidia , Pruebas Genéticas , Diagnóstico Preimplantación , Diagnóstico Preimplantación/métodos , Humanos , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Femenino , Embarazo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reproducibilidad de los Resultados
19.
Eur J Clin Invest ; 54(6): e14191, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38440843

RESUMEN

BACKGROUND: Genetic diagnosis of inborn errors of immunity (IEI) is complex due to the large number of genes involved and their molecular features. Missense variants have been reported as the most common cause of IEI. However, the frequency of copy number variants (CNVs) may be underestimated since their detection requires specific quantitative techniques. At this point, the use of Next Generation Sequencing (NGS) is acquiring relevance. METHODS: In this article, we present our experience in the genetic diagnosis of IEI based on three diagnostic algorithms that allowed the detection of single nucleotide variants (SNVs) and CNVs. Following this approximation, 703 index cases were evaluated between 2014 and 2021. Sanger sequencing, MLPA, CGH array, breakpoint spanning PCR or a customized NGS-based multigene-targeted panel were performed. RESULTS: A genetic diagnosis was reached in 142 of the 703 index cases (20%), 19 of them presented deletions as causal variants. Deletions were also detected in 5 affected relatives and 16 healthy carriers during the family studies. Additionally, we compile, characterize and present all the CNVs detected by our diagnostic algorithms, representing the largest cohort of deletions related to IEI to date. Furthermore, three bioinformatic tools (LACONv, XHMM, VarSeq™) based on NGS data were evaluated. VarSeq™ was the most sensitive and specific bioinformatic tool; detecting 21/23 (91%) deletions located in captured regions. CONCLUSION: Based on our results, we propose a strategy to guide the molecular diagnosis that can be followed by expert and non-expert centres in the field of IEI.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Variaciones en el Número de Copia de ADN/genética , Algoritmos , Masculino , Femenino , Polimorfismo de Nucleótido Simple , Niño , Mutación Missense/genética
20.
Reprod Biol Endocrinol ; 22(1): 8, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172815

RESUMEN

BACKGROUND: The process of gamete formation and early embryonic development involves rapid DNA replication, chromosome segregation and cell division. These processes may be affected by mutations in the BRCA1/2 genes. The aim of this study was to evaluate BRCA mutation inheritance and its effect on early embryonic development according to the parental origin of the mutation. The study question was approached by analyzing in vitro fertilization cycles (IVF) that included pre-implantation testing (PGT-M) for a BRCA gene mutation. METHODS: This retrospective cohort study compared cycles of pre-implantation genetic testing for mutations (PGT-M) between male and female patients diagnosed with BRCA 1/2 mutations (cases), to a control group of two other mutations with dominant inheritance (myotonic dystrophy (MD) and polycystic kidney disease (PKD)). Results were compared according to mutation type and through a generalized linear model analysis. RESULTS: The cohort included 88 PGT-M cycles (47 BRCA and 41 non-BRCA) among 50 patients. Maternal and paternal ages at oocyte retrieval were comparable between groups. When tested per cycle, FSH dose, maximum estradiol level, oocytes retrieved, number of zygotes, and number of embryos available for biopsy and affected embryos, were not significantly different among mutation types. All together 444 embryos were biopsied: the rate of affected embryos was comparable between groups. Among BRCA patients, the proportion of affected embryos was similar between maternal and paternal mutation origin (p = 0.24). In a generalized linear model analysis, the relative oocyte yield in maternal BRCA patients was significantly lower (0.7, as related to the non BRCA group)(p < 0.001). Zygote formation and blastulation were not affected by the BRCA gene among paternal cases (P = 0.176 and P = 0.293 respectively), nor by paternal versus maternal BRCA carriage (P = 0.904 and P = 0.149, respectively). CONCLUSIONS: BRCA PGT-M cycles performed similarly compared to non-BRCA cycles. Inheritance rate and cycle parameters were not affected by the parental origin of the mutation.


Asunto(s)
Proteína BRCA1 , Diagnóstico Preimplantación , Embarazo , Humanos , Masculino , Femenino , Estudios de Cohortes , Proteína BRCA1/genética , Estudios Retrospectivos , Diagnóstico Preimplantación/métodos , Proteína BRCA2/genética , Pruebas Genéticas/métodos , Fertilización In Vitro/métodos , Mutación , Aneuploidia , Padres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA