Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 507
Filtrar
Más filtros

Intervalo de año de publicación
1.
Am J Hum Genet ; 111(6): 1084-1099, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38723630

RESUMEN

Transcriptome-wide association studies (TWASs) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have focused on the regulatory effects of risk-associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWASs of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole-genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents an in-depth look into the role of trans eQTLs in the complex molecular mechanisms underlying these diseases.


Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Ováricas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Teorema de Bayes , Transcriptoma , Regulación Neoplásica de la Expresión Génica
2.
Proc Natl Acad Sci U S A ; 121(12): e2321907121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38457490

RESUMEN

The discovery of the 32-bp deletion allele of the chemokine receptor gene CCR5 showed that homozygous carriers display near-complete resistance to HIV infection, irrespective of exposure. Algorithms of molecular evolutionary theory suggested that the CCR5-∆32 mutation occurred but once in the last millennium and rose by strong selective pressure relatively recently to a ~10% allele frequency in Europeans. Several lines of evidence support the hypothesis that CCR5-∆32 was selected due to its protective influence to resist Yersinia pestis, the agent of the Black Death/bubonic plague of the 14th century. Powerful anti-AIDS entry inhibitors targeting CCR5 were developed as a treatment for HIV patients, particularly those whose systems had developed resistance to powerful anti-retroviral therapies. Homozygous CCR5-∆32/∆32 stem cell transplant donors were used to produce HIV-cleared AIDS patients in at least five "cures" of HIV infection. CCR5 has also been implicated in regulating infection with Staphylococcus aureus, in recovery from stroke, and in ablation of the fatal graft versus host disease (GVHD) in cancer transplant patients. While homozygous CCR5-∆32/32 carriers block HIV infection, alternatively they display an increased risk for encephalomyelitis and death when infected with the West Nile virus.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Humanos , Infecciones por VIH/genética , Infecciones por VIH/tratamiento farmacológico , Frecuencia de los Genes , Receptores CCR5/genética , Síndrome de Inmunodeficiencia Adquirida/genética , Mutación , Homocigoto
3.
Annu Rev Med ; 75: 247-262, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37827193

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. COPD heterogeneity has hampered progress in developing pharmacotherapies that affect disease progression. This issue can be addressed by precision medicine approaches, which focus on understanding an individual's disease risk, and tailoring management based on pathobiology, environmental exposures, and psychosocial issues. There is an urgent need to identify COPD patients at high risk for poor outcomes and to understand at a mechanistic level why certain individuals are at high risk. Genetics, omics, and network analytic techniques have started to dissect COPD heterogeneity and identify patients with specific pathobiology. Drug repurposing approaches based on biomarkers of specific inflammatory processes (i.e., type 2 inflammation) are promising. As larger data sets, additional omics, and new analytical approaches become available, there will be enormous opportunities to identify high-risk individuals and treat COPD patients based on their specific pathophysiological derangements. These approaches show great promise for risk stratification, early intervention, drug repurposing, and developing novel therapeutic approaches for COPD.


Asunto(s)
Inflamación , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Progresión de la Enfermedad , Medicina de Precisión , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/genética
4.
Am J Hum Genet ; 110(2): 336-348, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36649706

RESUMEN

Genome-wide association studies (GWASs) have been performed to identify host genetic factors for a range of phenotypes, including for infectious diseases. The use of population-based common control subjects from biobanks and extensive consortia is a valuable resource to increase sample sizes in the identification of associated loci with minimal additional expense. Non-differential misclassification of the outcome has been reported when the control subjects are not well characterized, which often attenuates the true effect size. However, for infectious diseases the comparison of affected subjects to population-based common control subjects regardless of pathogen exposure can also result in selection bias. Through simulated comparisons of pathogen-exposed cases and population-based common control subjects, we demonstrate that not accounting for pathogen exposure can result in biased effect estimates and spurious genome-wide significant signals. Further, the observed association can be distorted depending upon strength of the association between a locus and pathogen exposure and the prevalence of pathogen exposure. We also used a real data example from the hepatitis C virus (HCV) genetic consortium comparing HCV spontaneous clearance to persistent infection with both well-characterized control subjects and population-based common control subjects from the UK Biobank. We find biased effect estimates for known HCV clearance-associated loci and potentially spurious HCV clearance associations. These findings suggest that the choice of control subjects is especially important for infectious diseases or outcomes that are conditional upon environmental exposures.


Asunto(s)
Enfermedades Transmisibles , Hepatitis C , Humanos , Estudio de Asociación del Genoma Completo , Enfermedades Transmisibles/genética , Fenotipo , Hepatitis C/genética , Hepacivirus
5.
Am J Hum Genet ; 110(2): 195-214, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736292

RESUMEN

Evidence on the validity of drug targets from randomized trials is reliable but typically expensive and slow to obtain. In contrast, evidence from conventional observational epidemiological studies is less reliable because of the potential for bias from confounding and reverse causation. Mendelian randomization is a quasi-experimental approach analogous to a randomized trial that exploits naturally occurring randomization in the transmission of genetic variants. In Mendelian randomization, genetic variants that can be regarded as proxies for an intervention on the proposed drug target are leveraged as instrumental variables to investigate potential effects on biomarkers and disease outcomes in large-scale observational datasets. This approach can be implemented rapidly for a range of drug targets to provide evidence on their effects and thus inform on their priority for further investigation. In this review, we present statistical methods and their applications to showcase the diverse opportunities for applying Mendelian randomization in guiding clinical development efforts, thus enabling interventions to target the right mechanism in the right population group at the right time. These methods can inform investigators on the mechanisms underlying drug effects, their related biomarkers, implications for the timing of interventions, and the population subgroups that stand to gain the most benefit. Most methods can be implemented with publicly available data on summarized genetic associations with traits and diseases, meaning that the only major limitations to their usage are the availability of appropriately powered studies for the exposure and outcome and the existence of a suitable genetic proxy for the proposed intervention.


Asunto(s)
Descubrimiento de Drogas , Análisis de la Aleatorización Mendeliana , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Causalidad , Biomarcadores , Sesgo
6.
Am J Hum Genet ; 110(6): 950-962, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37164006

RESUMEN

Genome-wide association studies (GWASs) have identified more than 200 genomic loci for breast cancer risk, but specific causal genes in most of these loci have not been identified. In fact, transcriptome-wide association studies (TWASs) of breast cancer performed using gene expression prediction models trained in breast tissue have yet to clearly identify most target genes. To identify candidate genes, we performed a GWAS analysis in a breast cancer dataset from UK Biobank (UKB) and combined the results with the GWAS results of the Breast Cancer Association Consortium (BCAC) by a meta-analysis. Using the summary statistics from the meta-analysis, we performed a joint TWAS analysis that combined TWAS signals from multiple tissues. We used expression prediction models trained in 11 tissues that are potentially relevant to breast cancer from the Genotype-Tissue Expression (GTEx) data. In the GWAS analysis, we identified eight loci distinct from those reported previously. In the TWAS analysis, we identified 309 genes at 108 genomic loci to be significantly associated with breast cancer at the Bonferroni threshold. Of these, 17 genes were located in eight regions that were at least 1 Mb away from published GWAS hits. The remaining TWAS-significant genes were located in 100 known genomic loci from previous GWASs of breast cancer. We found that 21 genes located in known GWAS loci remained statistically significant after conditioning on previous GWAS index variants. Our study provides insights into breast cancer genetics through mapping candidate target genes in a large proportion of known GWAS loci and discovering multiple new loci.


Asunto(s)
Neoplasias de la Mama , Transcriptoma , Humanos , Femenino , Transcriptoma/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias de la Mama/genética , Sitios de Carácter Cuantitativo/genética , Polimorfismo de Nucleótido Simple/genética
7.
Am J Hum Genet ; 109(5): 767-782, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35452592

RESUMEN

Mendelian randomization and colocalization are two statistical approaches that can be applied to summarized data from genome-wide association studies (GWASs) to understand relationships between traits and diseases. However, despite similarities in scope, they are different in their objectives, implementation, and interpretation, in part because they were developed to serve different scientific communities. Mendelian randomization assesses whether genetic predictors of an exposure are associated with the outcome and interprets an association as evidence that the exposure has a causal effect on the outcome, whereas colocalization assesses whether two traits are affected by the same or distinct causal variants. When considering genetic variants in a single genetic region, both approaches can be performed. While a positive colocalization finding typically implies a non-zero Mendelian randomization estimate, the reverse is not generally true: there are several scenarios which would lead to a non-zero Mendelian randomization estimate but lack evidence for colocalization. These include the existence of distinct but correlated causal variants for the exposure and outcome, which would violate the Mendelian randomization assumptions, and a lack of strong associations with the outcome. As colocalization was developed in the GWAS tradition, typically evidence for colocalization is concluded only when there is strong evidence for associations with both traits. In contrast, a non-zero estimate from Mendelian randomization can be obtained despite only nominally significant genetic associations with the outcome at the locus. In this review, we discuss how the two approaches can provide complementary information on potential therapeutic targets.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Causalidad , Humanos , Fenotipo
8.
Am J Hum Genet ; 109(2): 240-252, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090585

RESUMEN

Body mass index (BMI) is a complex disease risk factor known to be influenced by genes acting via both metabolic pathways and appetite regulation. In this study, we aimed to gain insight into the phenotypic consequences of BMI-associated genetic variants, which may be mediated by their expression in different tissues. First, we harnessed meta-analyzed gene expression datasets derived from subcutaneous adipose (n = 1257) and brain (n = 1194) tissue to identify 86 and 140 loci, respectively, which provided evidence of genetic colocalization with BMI. These two sets of tissue-partitioned loci had differential effects with respect to waist-to-hip ratio, suggesting that the way they influence fat distribution might vary despite their having very similar average magnitudes of effect on BMI itself (adipose = 0.0148 and brain = 0.0149 standard deviation change in BMI per effect allele). For instance, BMI-associated variants colocalized with TBX15 expression in adipose tissue (posterior probability [PPA] = 0.97), but not when we used TBX15 expression data derived from brain tissue (PPA = 0.04) This gene putatively influences BMI via its role in skeletal development. Conversely, there were loci where BMI-associated variants provided evidence of colocalization with gene expression in brain tissue (e.g., NEGR1, PPA = 0.93), but not when we used data derived from adipose tissue, suggesting that these genes might be more likely to influence BMI via energy balance. Leveraging these tissue-partitioned variant sets through a multivariable Mendelian randomization framework provided strong evidence that the brain-tissue-derived variants are predominantly responsible for driving the genetically predicted effects of BMI on cardiovascular-disease endpoints (e.g., coronary artery disease: odds ratio = 1.05, 95% confidence interval = 1.04-1.07, p = 4.67 × 10-14). In contrast, our analyses suggested that the adipose tissue variants might predominantly be responsible for the underlying relationship between BMI and measures of cardiac function, such as left ventricular stroke volume (beta = 0.21, 95% confidence interval = 0.09-0.32, p = 6.43 × 10-4).


Asunto(s)
Índice de Masa Corporal , Moléculas de Adhesión Celular Neuronal/genética , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/genética , Obesidad/genética , Proteínas de Dominio T Box/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Encéfalo/metabolismo , Encéfalo/patología , Moléculas de Adhesión Celular Neuronal/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Sitios Genéticos , Variación Genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Redes y Vías Metabólicas/genética , Obesidad/metabolismo , Obesidad/patología , Volumen Sistólico/fisiología , Proteínas de Dominio T Box/metabolismo , Relación Cintura-Cadera
9.
Hum Genomics ; 18(1): 60, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858783

RESUMEN

BACKGROUND: Epidemiological studies have revealed a significant association between impaired kidney function and certain mental disorders, particularly bipolar disorder (BIP) and major depressive disorder (MDD). However, the evidence regarding shared genetics and causality is limited due to residual confounding and reverse causation. METHODS: In this study, we conducted a large-scale genome-wide cross-trait association study to investigate the genetic overlap between 5 kidney function biomarkers (eGFRcrea, eGFRcys, blood urea nitrogen (BUN), serum urate, and UACR) and 2 mental disorders (MDD, BIP). Summary-level data of European ancestry were extracted from UK Biobank, Chronic Kidney Disease Genetics Consortium, and Psychiatric Genomics Consortium. RESULTS: Using LD score regression, we found moderate but significant genetic correlations between kidney function biomarker traits on BIP and MDD. Cross-trait meta-analysis identified 1 to 19 independent significant loci that were found shared among 10 pairs of 5 kidney function biomarkers traits and 2 mental disorders. Among them, 3 novel genes: SUFU, IBSP, and PTPRJ, were also identified in transcriptome-wide association study analysis (TWAS), most of which were observed in the nervous and digestive systems (FDR < 0.05). Pathway analysis showed the immune system could play a role between kidney function biomarkers and mental disorders. Bidirectional mendelian randomization analysis suggested a potential causal relationship of kidney function biomarkers on BIP and MDD. CONCLUSIONS: In conclusion, the study demonstrated that both BIP and MDD shared genetic architecture with kidney function biomarkers, providing new insights into their genetic architectures and suggesting that larger GWASs are warranted.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Estudio de Asociación del Genoma Completo , Humanos , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/patología , Trastorno Bipolar/genética , Trastorno Bipolar/patología , Polimorfismo de Nucleótido Simple/genética , Riñón/fisiopatología , Riñón/patología , Predisposición Genética a la Enfermedad , Biomarcadores/sangre , Tasa de Filtración Glomerular/genética , Sitios de Carácter Cuantitativo/genética , Ácido Úrico/sangre
10.
J Cell Mol Med ; 28(8): e18119, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38534090

RESUMEN

Hearing loss is a clinically and genetically heterogeneous disorder, with over 148 genes and 170 loci associated with its pathogenesis. The spectrum and frequency of causal variants vary across different genetic ancestries and are more prevalent in populations that practice consanguineous marriages. Pakistan has a rich history of autosomal recessive gene discovery related to non-syndromic hearing loss. Since the first linkage analysis with a Pakistani family that led to the mapping of the DFNB1 locus on chromosome 13, 51 genes associated with this disorder have been identified in this population. Among these, 13 of the most prevalent genes, namely CDH23, CIB2, CLDN14, GJB2, HGF, MARVELD2, MYO7A, MYO15A, MSRB3, OTOF, SLC26A4, TMC1 and TMPRSS3, account for more than half of all cases of profound hearing loss, while the prevalence of other genes is less than 2% individually. In this review, we discuss the most common autosomal recessive non-syndromic hearing loss genes in Pakistani individuals as well as the genetic mapping and sequencing approaches used to discover them. Furthermore, we identified enriched gene ontology terms and common pathways involved in these 51 autosomal recessive non-syndromic hearing loss genes to gain a better understanding of the underlying mechanisms. Establishing a molecular understanding of the disorder may aid in reducing its future prevalence by enabling timely diagnostics and genetic counselling, leading to more effective clinical management and treatments of hearing loss.


Asunto(s)
Sordera , Pérdida Auditiva , Humanos , Genes Recesivos , Pakistán , Mutación , Pérdida Auditiva/genética , Linaje , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Serina Endopeptidasas/genética , Proteína 2 con Dominio MARVEL/genética
11.
Am J Epidemiol ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38904434

RESUMEN

Mendelian randomization is an epidemiological technique that can explore the potential effect of perturbing a pharmacological target. Plasma caffeine levels can be used as a biomarker to measure the pharmacological effects of caffeine. Alternatively, this can be assessed using a behavioral proxy, such as average number of caffeinated drinks consumed per day. Either variable can be used as the exposure in a Mendelian randomization investigation, and to select which genetic variants to use as instrumental variables. Another possibility is to choose variants in gene regions with known biological relevance to caffeine level regulation. These choices affect the causal question that is being addressed by the analysis, and the validity of the analysis assumptions. Further, even when using the same genetic variants, the sign of Mendelian randomization estimates (positive or negative) can change depending on the choice of exposure. Some genetic variants that decrease caffeine metabolism associate with higher levels of plasma caffeine, but lower levels of caffeine consumption, as individuals with these variants require less caffeine consumption for the same physiological effect. We explore Mendelian randomization estimates for the effect of caffeine on body mass index, and discuss implications for variant and exposure choice in drug target Mendelian randomization investigations.

12.
Trends Genet ; 37(12): 1056-1059, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34400010

RESUMEN

Important factors contribute to a gained momentum in candidate gene association studies (CGASs), including the generalized use of next-generation sequencing (NGS), growing opportunities for hospital-based research, and the availability of open-source databases and bioinformatics tools. This article summarizes the general principles and analytical methods as a guide to CGASs in today's favorable context.


Asunto(s)
Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Biología Computacional/métodos , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
13.
Hum Genomics ; 17(1): 100, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957681

RESUMEN

BACKGROUND: Accumulating observational studies have identified associations between type 1 diabetes (T1D) and polycystic ovary syndrome (PCOS). Still, the evidence about the causal effect of this association is uncertain. METHODS: We performed a two-sample Mendelian randomization (MR) analysis to test for the causal association between T1D and PCOS using data from a large-scale biopsy-confirmed genome-wide association study (GWAS) in European ancestries. We innovatively divided T1D into nine subgroups to be analyzed separately, including: type1 diabetes wide definition, type1 diabetes early onset, type 1 diabetes with coma, type 1 diabetes with ketoacidosis, type 1 diabetes with neurological complications, type 1 diabetes with ophthalmic complications, type 1 diabetes with peripheral circulatory complications, type 1 diabetes with renal complications, and type 1 diabetes with other specified/multiple/unspecified complications. GWAS data for PCOS were obtained from a large-scale GWAS (10,074 cases and 103,164 controls) for primary analysis and the IEU consortium for replication and meta-analysis. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy. RESULTS: Following rigorous instrument selection steps, the number of SNPs finally used for T1D nine subgroups varying from 6 to 36 was retained in MR estimation. However, we did not observe evidence of causal association between type 1 diabetes nine subgroups and PCOS using the IVW analysis, MR-Egger regression, and weighted median approaches, and all P values were > 0.05 with ORs near 1. Subsequent replicates and meta-analyses also yielded consistent results. A number of sensitivity analyses also did not reveal heterogeneity and pleiotropy, including Cochran's Q test, MR-Egger intercept test, MR-PRESSO global test, leave-one-out analysis, and funnel plot analysis. CONCLUSION: This is the first MR study to investigate the causal relationship between type 1 diabetes and PCOS. Our findings failed to find substantial causal effect of type 1 diabetes on risk of PCOS. Further randomized controlled studies and MR studies are necessary.


Asunto(s)
Diabetes Mellitus Tipo 1 , Síndrome del Ovario Poliquístico , Femenino , Humanos , Biopsia , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Ojo , Estudio de Asociación del Genoma Completo , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/genética , Análisis de la Aleatorización Mendeliana
14.
Bioessays ; 44(5): e2100170, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35279859

RESUMEN

Complex-trait genetics has advanced dramatically through methods to estimate the heritability tagged by SNPs, both genome-wide and in genomic regions of interest such as those defined by functional annotations. The models underlying many of these analyses are inadequate, and consequently many SNP-heritability results published to date are inaccurate. Here, we review the modelling issues, both for analyses based on individual genotype data and association test statistics, highlighting the role of a low-dimensional model for the heritability of each SNP. We use state-of-art models to present updated results about how heritability is distributed with respect to functional annotations in the human genome, and how it varies with allele frequency, which can reflect purifying selection. Our results give finer detail to the picture that has emerged in recent years of complex trait heritability widely dispersed across the genome. Confounding due to population structure remains a problem that summary statistic analyses cannot reliably overcome. Also see the video abstract here: https://youtu.be/WC2u03V65MQ.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Frecuencia de los Genes , Genoma Humano/genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable
15.
Respiration ; 103(7): 368-377, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38588657

RESUMEN

INTRODUCTION: The prevalence of alpha-1 antitrypsin deficiency (AATD) in Macaronesia (i.e., Azores, Madeira, Canary Islands, and Cape Verde archipelagos) is poorly known. Our goal was to update it by selecting the most reliable available articles. METHOD: Literature search using MEDLINE, Embase (via Ovid), and Google Scholar, until December 2023, for studies on prevalence of AATD in the general population and in screenings, published in peer-reviewed journals. RESULTS: Three studies carried out in the general population of Madeira, La Palma, and Cape Verde, and three screenings carried out in La Palma (2) and Gran Canaria (1) were selected. The frequencies of PI*S in the general population showed an ascending gradient, from South to North, with values (per thousand) of 35 in Cape Verde, 82 in La Palma, and 180 in Madeira. The PI*Z frequencies showed this same gradient, with values of 2 × 1,000 in Cape Verde, 21 in La Palma, and 25 in Madeira. Screenings detected high percentages of defective alleles, including several rare and null alleles, some unique to these islands. CONCLUSION: The frequencies of PI*S and PI*Z in Madeira are comparable to the highest in the world. Those of the Canary Islands are similar to those of the peninsular population of Spain, and contrast with the low rates of Cape Verde. Screenings detected high numbers of deficient alleles. These results support the systematic investigation of AATD in clinically suspected patients and in relatives of index cases, to reduce underdiagnosis and apply early preventive and therapeutic measures in those affected.


Asunto(s)
Deficiencia de alfa 1-Antitripsina , Humanos , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/epidemiología , Prevalencia , alfa 1-Antitripsina/genética , Cabo Verde/epidemiología , Azores/epidemiología
16.
BMC Public Health ; 24(1): 305, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279121

RESUMEN

OBJECTIVES: To explore the prevalence and associated factors of obesity in Tibetan adults in Qinghai, China, and to determine the association between the FTO (rs1121980 and rs17817449) and MC4R gene (rs17782313 and rs12970134) polymorphisms with obesity. METHODS: A cross-sectional survey was conducted in 2015 in Qinghai to selected Tibetan adults aged 20 to 80 years. Prevalence of obesity (BMI ≥ 28 kg/m2) and overweight (BMI 24 ~ 27.9 kg/m2) were evaluated. Multivariable logistic models were used to determine the associated factors. Pair-matched subjects of obesity cases and normal-weight controls were selected for the gene polymorphism analyses. Conditional logistic models were used to assess the association between gene polymorphisms with obesity. Additive and multiplicative gene-environment interactions were tested. RESULTS: A total of 1741 Tibetan adults were enrolled. The age- and sex- standardized prevalence of obesity and overweight was 18.09% and 31.71%, respectively. Male sex, older age, heavy level of leisure-time exercise, current smoke, and heavy level of occupational physical activity were associated with both obesity and overweight. MC4R gene polymorphisms were associated with obesity in Tibetan adults. No significant gene-environment interaction was detected. CONCLUSION: The prevalence of obesity and overweight in Tibetan adults was high. Both environmental and genetic factors contributed to the obesity prevalent.


Asunto(s)
Predisposición Genética a la Enfermedad , Sobrepeso , Adulto , Masculino , Humanos , Sobrepeso/epidemiología , Sobrepeso/genética , Prevalencia , Estudios Transversales , Tibet/epidemiología , Índice de Masa Corporal , Polimorfismo de Nucleótido Simple , Obesidad/epidemiología , Obesidad/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
17.
Hum Hered ; 88(1): 79-90, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37651993

RESUMEN

INTRODUCTION: Non-linear Mendelian randomization is an extension of conventional Mendelian randomization that performs separate instrumental variable analyses in strata of the study population with different average levels of the exposure. The approach estimates a localized average causal effect function, representing the average causal effect of the exposure on the outcome at different levels of the exposure. The commonly used residual method for dividing the population into strata works under the assumption that the effect of the genetic instrument on the exposure is linear and constant in the study population. However, this assumption may not hold in practice. METHODS: We use the recently developed doubly ranked method to re-analyse various datasets previously analysed using the residual method. In particular, we consider a genetic score for 25-hydroxyvitamin D (25[OH]D) used in a recent non-linear Mendelian randomization analysis to assess the potential effect of vitamin D supplementation on all-cause mortality. RESULTS: The effect of the genetic score on 25(OH)D concentrations varies strongly, with a five-fold difference in the estimated genetic association with the exposure in the lowest and highest decile groups. Evidence for a protective causal effect of vitamin D supplementation on all-cause mortality in low vitamin D individuals is evident for the residual method but not for the doubly ranked method. We show that the constant genetic effect assumption is more reasonable for some exposures and less reasonable for others. If the doubly ranked method indicates that this assumption is violated, then estimates from both the residual and doubly ranked methods can be biased, although bias was smaller on average in the doubly ranked method. CONCLUSION: Analysts wanting to perform non-linear Mendelian randomization should compare results from both the residual and doubly ranked methods, as well as consider transforming the exposure for the residual method to reduce heterogeneity in the genetic effect on the exposure.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Deficiencia de Vitamina D , Vitamina D , Humanos , Sesgo , Causalidad , Suplementos Dietéticos , Análisis de la Aleatorización Mendeliana/métodos , Vitamina D/administración & dosificación , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/mortalidad
18.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125939

RESUMEN

The extended-spectrum ß-lactamases (ESßLs) are bacterial enzymes capable of hydrolyzing penicillins, cephalosporins, and aztreonam. The prevalence of ESßL is increasing among clinically significant microorganisms worldwide, drastically reducing the therapeutic management of infectious diseases. The study aimed to determine the drug susceptibility of ESßL-positive clinical isolates acquired from patients hospitalized in Lodz, central Poland, and analyze the prevalence of specific genes, determining acquired resistance in these bacteria. The samples of ESßL-positive clinical isolates were gathered in 2022 from medical microbiological laboratories in the city of Lodz, central Poland. The strains were subjected to biochemical identification and antimicrobial susceptibility testing following EUCAST guidelines. The presence of studied genes (blaCTX-M, blaSHV, blaTEM, blaPER, blaVEB) was confirmed by PCR. Over 50% of studied isolates were resistant to gentamicin, cefepime, ceftazidime and ciprofloxacin. The most common ESßL gene was blaCTX-M. In most isolates, the resistance genes occurred simultaneously. The blaPER was not detected in any of the tested strains. ESßL-producing strains are largely susceptible to the currently available antibiotics. The observation of the coexistence of different genes in most clinical isolates is alarming.


Asunto(s)
Antibacterianos , Infecciones por Enterobacteriaceae , Enterobacteriaceae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Humanos , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Polonia/epidemiología , Antibacterianos/farmacología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/aislamiento & purificación , Enterobacteriaceae/enzimología , Epidemiología Molecular , Masculino , Femenino , Adulto , Persona de Mediana Edad , Ciprofloxacina/farmacología
19.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279346

RESUMEN

Genome-wide association studies (GWAS) are commonly employed to study the genetic basis of complex traits/diseases, and a key question is how much heritability could be explained by all single nucleotide polymorphisms (SNPs) in GWAS. One widely used approach that relies on summary statistics only is linkage disequilibrium score regression (LDSC); however, this approach requires certain assumptions about the effects of SNPs (e.g., all SNPs contribute to heritability and each SNP contributes equal variance). More flexible modeling methods may be useful. We previously developed an approach recovering the "true" effect sizes from a set of observed z-statistics with an empirical Bayes approach, using only summary statistics. However, methods for standard error (SE) estimation are not available yet, limiting the interpretation of our results and the applicability of the approach. In this study, we developed several resampling-based approaches to estimate the SE of SNP-based heritability, including two jackknife and three parametric bootstrap methods. The resampling procedures are performed at the SNP level as it is most common to estimate heritability from GWAS summary statistics alone. Simulations showed that the delete-d-jackknife and parametric bootstrap approaches provide good estimates of the SE. In particular, the parametric bootstrap approaches yield the lowest root-mean-squared-error (RMSE) of the true SE. We also explored various methods for constructing confidence intervals (CIs). In addition, we applied our method to estimate the SNP-based heritability of 12 immune-related traits (levels of cytokines and growth factors) to shed light on their genetic architecture. We also implemented the methods to compute the sum of heritability explained and the corresponding SE in an R package SumVg. In conclusion, SumVg may provide a useful alternative tool for calculating SNP heritability and estimating SE/CI, which does not rely on distributional assumptions of SNP effects.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Estudio de Asociación del Genoma Completo/métodos , Teorema de Bayes , Fenotipo , Polimorfismo de Nucleótido Simple
20.
Breast Cancer Res ; 25(1): 93, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559094

RESUMEN

BACKGROUND: Genome-wide studies of gene-environment interactions (G×E) may identify variants associated with disease risk in conjunction with lifestyle/environmental exposures. We conducted a genome-wide G×E analysis of ~ 7.6 million common variants and seven lifestyle/environmental risk factors for breast cancer risk overall and for estrogen receptor positive (ER +) breast cancer. METHODS: Analyses were conducted using 72,285 breast cancer cases and 80,354 controls of European ancestry from the Breast Cancer Association Consortium. Gene-environment interactions were evaluated using standard unconditional logistic regression models and likelihood ratio tests for breast cancer risk overall and for ER + breast cancer. Bayesian False Discovery Probability was employed to assess the noteworthiness of each SNP-risk factor pairs. RESULTS: Assuming a 1 × 10-5 prior probability of a true association for each SNP-risk factor pairs and a Bayesian False Discovery Probability < 15%, we identified two independent SNP-risk factor pairs: rs80018847(9p13)-LINGO2 and adult height in association with overall breast cancer risk (ORint = 0.94, 95% CI 0.92-0.96), and rs4770552(13q12)-SPATA13 and age at menarche for ER + breast cancer risk (ORint = 0.91, 95% CI 0.88-0.94). CONCLUSIONS: Overall, the contribution of G×E interactions to the heritability of breast cancer is very small. At the population level, multiplicative G×E interactions do not make an important contribution to risk prediction in breast cancer.


Asunto(s)
Neoplasias de la Mama , Interacción Gen-Ambiente , Adulto , Femenino , Humanos , Predisposición Genética a la Enfermedad , Neoplasias de la Mama/etiología , Neoplasias de la Mama/genética , Teorema de Bayes , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA