Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.711
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(5): 1191-1205.e15, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38366592

RESUMEN

Carbohydrate intolerance, commonly linked to the consumption of lactose, fructose, or sorbitol, affects up to 30% of the population in high-income countries. Although sorbitol intolerance is attributed to malabsorption, the underlying mechanism remains unresolved. Here, we show that a history of antibiotic exposure combined with high fat intake triggered long-lasting sorbitol intolerance in mice by reducing Clostridia abundance, which impaired microbial sorbitol catabolism. The restoration of sorbitol catabolism by inoculation with probiotic Escherichia coli protected mice against sorbitol intolerance but did not restore Clostridia abundance. Inoculation with the butyrate producer Anaerostipes caccae restored a normal Clostridia abundance, which protected mice against sorbitol-induced diarrhea even when the probiotic was cleared. Butyrate restored Clostridia abundance by stimulating epithelial peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling to restore epithelial hypoxia in the colon. Collectively, these mechanistic insights identify microbial sorbitol catabolism as a potential target for approaches for the diagnosis, treatment, and prevention of sorbitol intolerance.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Microbioma Gastrointestinal , Sorbitol , Animales , Ratones , Antibacterianos/farmacología , Butiratos , Clostridium , Escherichia coli , Sorbitol/metabolismo
2.
Cell ; 184(14): 3794-3811.e19, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34166614

RESUMEN

The microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs). Keratinocyte-intrinsic responses to ERVs depended on cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING) signaling and promoted the induction of commensal-specific T cells. Inhibition of ERV reverse transcription significantly impacted these responses, resulting in impaired immunity to the microbiota and its associated tissue repair function. Conversely, a lipid-enriched diet primed the skin for heightened ERV- expression in response to commensal colonization, leading to increased immune responses and tissue inflammation. Together, our results support the idea that the host may have co-opted its endogenous virome as a means to communicate with the exogenous microbiota, resulting in a multi-kingdom dialog that controls both tissue homeostasis and inflammation.


Asunto(s)
Retrovirus Endógenos/fisiología , Homeostasis , Inflamación/microbiología , Inflamación/patología , Microbiota , Animales , Bacterias/metabolismo , Cromosomas Bacterianos/genética , Dieta Alta en Grasa , Inflamación/inmunología , Inflamación/virología , Interferón Tipo I/metabolismo , Queratinocitos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Nucleotidiltransferasas/metabolismo , Retroelementos/genética , Transducción de Señal , Piel/inmunología , Piel/microbiología , Linfocitos T/inmunología , Transcripción Genética
3.
Cell ; 182(6): 1441-1459.e21, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32888430

RESUMEN

Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food- and microbiome-derived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10+ lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions.


Asunto(s)
Enfermedad de Crohn/microbiología , Células Epiteliales/metabolismo , Microbioma Gastrointestinal , Antígenos de Histocompatibilidad Clase II/metabolismo , Intestino Delgado/inmunología , Intestino Delgado/microbiología , Transcriptoma/genética , Animales , Antibacterianos/farmacología , Relojes Circadianos/fisiología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Dieta , Células Epiteliales/citología , Células Epiteliales/inmunología , Citometría de Flujo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Perfilación de la Expresión Génica , Antígenos de Histocompatibilidad Clase II/genética , Homeostasis , Hibridación Fluorescente in Situ , Interleucina-10/metabolismo , Interleucina-10/farmacología , Intestino Delgado/fisiología , Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periodicidad , Linfocitos T/inmunología , Transcriptoma/fisiología
4.
Cell ; 174(6): 1571-1585.e11, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30193114

RESUMEN

Metabolic diseases are often characterized by circadian misalignment in different tissues, yet how altered coordination and communication among tissue clocks relate to specific pathogenic mechanisms remains largely unknown. Applying an integrated systems biology approach, we performed 24-hr metabolomics profiling of eight mouse tissues simultaneously. We present a temporal and spatial atlas of circadian metabolism in the context of systemic energy balance and under chronic nutrient stress (high-fat diet [HFD]). Comparative analysis reveals how the repertoires of tissue metabolism are linked and gated to specific temporal windows and how this highly specialized communication and coherence among tissue clocks is rewired by nutrient challenge. Overall, we illustrate how dynamic metabolic relationships can be reconstructed across time and space and how integration of circadian metabolomics data from multiple tissues can improve our understanding of health and disease.


Asunto(s)
Relojes Circadianos/fisiología , Metaboloma , Animales , Dieta Alta en Grasa , Metabolismo Energético , Hígado/metabolismo , Masculino , Redes y Vías Metabólicas , Metabolómica , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Corteza Prefrontal/metabolismo , Núcleo Supraquiasmático/metabolismo , Proteína Desacopladora 1/metabolismo
5.
Cell ; 175(6): 1575-1590.e22, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415840

RESUMEN

During aging, stromal functions are thought to be impaired, but little is known whether this stems from changes of fibroblasts. Using population- and single-cell transcriptomics, as well as long-term lineage tracing, we studied whether murine dermal fibroblasts are altered during physiological aging under different dietary regimes that affect longevity. We show that the identity of old fibroblasts becomes undefined, with the fibroblast states present in young skin no longer clearly demarcated. In addition, old fibroblasts not only reduce the expression of genes involved in the formation of the extracellular matrix, but also gain adipogenic traits, paradoxically becoming more similar to neonatal pro-adipogenic fibroblasts. These alterations are sensitive to systemic metabolic changes: long-term caloric restriction reversibly prevents them, whereas a high-fat diet potentiates them. Our results therefore highlight loss of cell identity and the acquisition of adipogenic traits as a mechanism underlying cellular aging, which is influenced by systemic metabolism.


Asunto(s)
Adipogénesis , Senescencia Celular , Fibroblastos/metabolismo , Envejecimiento de la Piel , Animales , Restricción Calórica , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Ratones , Ratones Transgénicos
6.
Immunity ; 56(8): 1844-1861.e6, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37478855

RESUMEN

Obesity is a major risk factor for psoriasis, but how obesity disrupts the regulatory mechanisms that keep skin inflammation in check is unclear. Here, we found that skin was enriched with a unique population of CD4+Foxp3+ regulatory T (Treg) cells expressing the nuclear receptor peroxisome proliferation-activated receptor gamma (PPARγ). PPARγ drove a distinctive transcriptional program and functional suppression of IL-17A+ γδ T cell-mediated psoriatic inflammation. Diet-induced obesity, however, resulted in a reduction of PPARγ+ skin Treg cells and a corresponding loss of control over IL-17A+ γδ T cell-mediated inflammation. Mechanistically, PPARγ+ skin Treg cells preferentially took up elevated levels of long-chain free fatty acids in obese mice, which led to cellular lipotoxicity, oxidative stress, and mitochondrial dysfunction. Harnessing the anti-inflammatory properties of these PPARγ+ skin Treg cells could have therapeutic potential for obesity-associated inflammatory skin diseases.


Asunto(s)
Psoriasis , Linfocitos T Reguladores , Animales , Ratones , PPAR gamma , Interleucina-17 , Piel , Psoriasis/inducido químicamente , Inflamación , Obesidad
7.
Cell ; 170(4): 678-692.e20, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802040

RESUMEN

Normal homeostatic functions of adult stem cells have rhythmic daily oscillations that are believed to become arrhythmic during aging. Unexpectedly, we find that aged mice remain behaviorally circadian and that their epidermal and muscle stem cells retain a robustly rhythmic core circadian machinery. However, the oscillating transcriptome is extensively reprogrammed in aged stem cells, switching from genes involved in homeostasis to those involved in tissue-specific stresses, such as DNA damage or inefficient autophagy. Importantly, deletion of circadian clock components did not reproduce the hallmarks of this reprogramming, underscoring that rewiring, rather than arrhythmia, is associated with physiological aging. While age-associated rewiring of the oscillatory diurnal transcriptome is not recapitulated by a high-fat diet in young adult mice, it is significantly prevented by long-term caloric restriction in aged mice. Thus, stem cells rewire their diurnal timed functions to adapt to metabolic cues and to tissue-specific age-related traits.


Asunto(s)
Células Madre Adultas/patología , Senescencia Celular , Ritmo Circadiano , Epidermis/patología , Músculo Esquelético/patología , Células Madre Adultas/fisiología , Animales , Autofagia , Restricción Calórica , Relojes Circadianos , Daño del ADN , Dieta Alta en Grasa , Homeostasis , Ratones , Estrés Fisiológico , Transcriptoma
8.
Cell ; 165(7): 1762-1775, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27315483

RESUMEN

Maternal obesity during pregnancy has been associated with increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Here, we report that maternal high-fat diet (MHFD) induces a shift in microbial ecology that negatively impacts offspring social behavior. Social deficits and gut microbiota dysbiosis in MHFD offspring are prevented by co-housing with offspring of mothers on a regular diet (MRD) and transferable to germ-free mice. In addition, social interaction induces synaptic potentiation (LTP) in the ventral tegmental area (VTA) of MRD, but not MHFD offspring. Moreover, MHFD offspring had fewer oxytocin immunoreactive neurons in the hypothalamus. Using metagenomics and precision microbiota reconstitution, we identified a single commensal strain that corrects oxytocin levels, LTP, and social deficits in MHFD offspring. Our findings causally link maternal diet, gut microbial imbalance, VTA plasticity, and behavior and suggest that probiotic treatment may relieve specific behavioral abnormalities associated with neurodevelopmental disorders. VIDEO ABSTRACT.


Asunto(s)
Trastorno del Espectro Autista/microbiología , Dieta Alta en Grasa , Microbioma Gastrointestinal , Obesidad/complicaciones , Conducta Social , Animales , Disbiosis/fisiopatología , Femenino , Vida Libre de Gérmenes , Vivienda para Animales , Limosilactobacillus reuteri , Masculino , Ratones , Ratones Endogámicos C57BL , Oxitocina/análisis , Oxitocina/metabolismo , Embarazo , Área Tegmental Ventral
9.
Immunity ; 54(9): 2101-2116.e6, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34469775

RESUMEN

Tissue macrophages are immune cells whose phenotypes and functions are dictated by origin and niches. However, tissues are complex environments, and macrophage heterogeneity within the same organ has been overlooked so far. Here, we used high-dimensional approaches to characterize macrophage populations in the murine liver. We identified two distinct populations among embryonically derived Kupffer cells (KCs) sharing a core signature while differentially expressing numerous genes and proteins: a major CD206loESAM- population (KC1) and a minor CD206hiESAM+ population (KC2). KC2 expressed genes involved in metabolic processes, including fatty acid metabolism both in steady-state and in diet-induced obesity and hepatic steatosis. Functional characterization by depletion of KC2 or targeted silencing of the fatty acid transporter Cd36 highlighted a crucial contribution of KC2 in the liver oxidative stress associated with obesity. In summary, our study reveals that KCs are more heterogeneous than anticipated, notably describing a subpopulation wired with metabolic functions.


Asunto(s)
Antígenos CD36/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Estrés Oxidativo/fisiología , Animales , Ratones
10.
Genes Dev ; 35(3-4): 199-211, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526586

RESUMEN

Stem cells maintain tissues by balancing self-renewal with differentiation. A stem cell's local microenvironment, or niche, informs stem cell behavior and receives inputs at multiple levels. Increasingly, it is becoming clear that the overall metabolic status of an organism or metabolites themselves can function as integral members of the niche to alter stem cell fate. Macroscopic dietary interventions such as caloric restriction, the ketogenic diet, and a high-fat diet systemically alter an organism's metabolic state in different ways. Intriguingly, however, they all converge on a propensity to enhance self-renewal. Here, we highlight our current knowledge on how dietary changes feed into stem cell behavior across a wide variety of tissues and illuminate possible explanations for why diverse interventions can result in similar stem cell phenotypes. In so doing, we hope to inspire new avenues of inquiry into the importance of metabolism in stem cell homeostasis and disease.


Asunto(s)
Dieta , Células Madre/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Ayuno/fisiología , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Células Madre/microbiología , Células Madre/parasitología , Estrés Fisiológico/fisiología
11.
Genes Dev ; 34(5-6): 321-340, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32029456

RESUMEN

Poly(ADP-ribose) polymerases (PARPs or ARTDs), originally described as DNA repair factors, have metabolic regulatory roles. PARP1, PARP2, PARP7, PARP10, and PARP14 regulate central and peripheral carbohydrate and lipid metabolism and often channel pathological disruptive metabolic signals. PARP1 and PARP2 are crucial for adipocyte differentiation, including the commitment toward white, brown, or beige adipose tissue lineages, as well as the regulation of lipid accumulation. Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity. These findings can be translated into humans, as evidenced by studies on identical twins and SNPs affecting PARP activity.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Diferenciación Celular , Poli(ADP-Ribosa) Polimerasas/metabolismo , Metabolismo de los Hidratos de Carbono , Humanos , Metabolismo de los Lípidos/fisiología
12.
Mol Cell ; 76(4): 531-545.e5, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31706703

RESUMEN

The glucocorticoid receptor (GR) is a potent metabolic regulator and a major drug target. While GR is known to play integral roles in circadian biology, its rhythmic genomic actions have never been characterized. Here we mapped GR's chromatin occupancy in mouse livers throughout the day and night cycle. We show how GR partitions metabolic processes by time-dependent target gene regulation and controls circulating glucose and triglycerides differentially during feeding and fasting. Highlighting the dominant role GR plays in synchronizing circadian amplitudes, we find that the majority of oscillating genes are bound by and depend on GR. This rhythmic pattern is altered by high-fat diet in a ligand-independent manner. We find that the remodeling of oscillatory gene expression and postprandial GR binding results from a concomitant increase of STAT5 co-occupancy in obese mice. Altogether, our findings highlight GR's fundamental role in the rhythmic orchestration of hepatic metabolism.


Asunto(s)
Cromatina/metabolismo , Relojes Circadianos , Ritmo Circadiano , Dieta Alta en Grasa , Grasas de la Dieta/metabolismo , Metabolismo Energético , Hígado/metabolismo , Obesidad/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Glucemia/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/sangre , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Ayuno/metabolismo , Regulación de la Expresión Génica , Glucocorticoides/metabolismo , Gluconeogénesis , Ligandos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/sangre , Obesidad/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Periodo Posprandial , Receptores de Glucocorticoides/deficiencia , Receptores de Glucocorticoides/genética , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Vías Secretoras , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Triglicéridos/sangre
13.
Proc Natl Acad Sci U S A ; 121(20): e2306776121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709933

RESUMEN

A high-fat diet (HFD) is a high-risk factor for the malignant progression of cancers through the disruption of the intestinal microbiota. However, the role of the HFD-related gut microbiota in cancer development remains unclear. This study found that obesity and obesity-related gut microbiota were associated with poor prognosis and advanced clinicopathological status in female patients with breast cancer. To investigate the impact of HFD-associated gut microbiota on cancer progression, we established various models, including HFD feeding, fecal microbiota transplantation, antibiotic feeding, and bacterial gavage, in tumor-bearing mice. HFD-related microbiota promotes cancer progression by generating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, the HFD microbiota released abundant leucine, which activated the mTORC1 signaling pathway in myeloid progenitors for PMN-MDSC differentiation. Clinically, the elevated leucine level in the peripheral blood induced by the HFD microbiota was correlated with abundant tumoral PMN-MDSC infiltration and poor clinical outcomes in female patients with breast cancer. These findings revealed that the "gut-bone marrow-tumor" axis is involved in HFD-mediated cancer progression and opens a broad avenue for anticancer therapeutic strategies by targeting the aberrant metabolism of the gut microbiota.


Asunto(s)
Neoplasias de la Mama , Diferenciación Celular , Dieta Alta en Grasa , Progresión de la Enfermedad , Microbioma Gastrointestinal , Leucina , Células Supresoras de Origen Mieloide , Animales , Dieta Alta en Grasa/efectos adversos , Leucina/metabolismo , Femenino , Humanos , Ratones , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/microbiología , Neoplasias de la Mama/metabolismo , Obesidad/microbiología , Obesidad/metabolismo , Obesidad/patología , Línea Celular Tumoral
14.
Proc Natl Acad Sci U S A ; 120(31): e2302809120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37467285

RESUMEN

Hypothalamic inflammation reduces appetite and body weight during inflammatory diseases, while promoting weight gain when induced by high-fat diet (HFD). How hypothalamic inflammation can induce opposite energy balance outcomes remains unclear. We found that prostaglandin E2 (PGE2), a key hypothalamic inflammatory mediator of sickness, also mediates diet-induced obesity (DIO) by activating appetite-promoting melanin-concentrating hormone (MCH) neurons in the hypothalamus in rats and mice. The effect of PGE2 on MCH neurons is excitatory at low concentrations while inhibitory at high concentrations, indicating that these neurons can bidirectionally respond to varying levels of inflammation. During prolonged HFD, endogenous PGE2 depolarizes MCH neurons through an EP2 receptor-mediated inhibition of the electrogenic Na+/K+-ATPase. Disrupting this mechanism by genetic deletion of EP2 receptors on MCH neurons is protective against DIO and liver steatosis in male and female mice. Thus, an inflammatory mediator can directly stimulate appetite-promoting neurons to exacerbate DIO and fatty liver.


Asunto(s)
Hígado Graso , Obesidad , Ratones , Ratas , Masculino , Femenino , Animales , Obesidad/genética , Melaninas/genética , Hipotálamo , Inflamación , Dieta Alta en Grasa/efectos adversos , Neuronas , Mediadores de Inflamación , Prostaglandinas
15.
Genes Dev ; 32(21-22): 1359-1360, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385518

RESUMEN

Mammalian physiology resonates with the daily changes in the external environment, allowing processes such as rest-activity cycles, metabolism, and body temperature to synchronize with daily changes in the surroundings. Studies have identified the molecular underpinnings of robust oscillations in gene expression occurring over the 24-h day, but how acute or chronic perturbations modulate gene expression rhythms, physiology, and behavior is still relatively unknown. In this issue of Genes & Development, Hong and colleagues (pp. 1367-1379) studied how acute and chronic inflammation interacts with the circadian clock. They found that NF-κB signaling can modify chromatin states and modulate expression of genes in the core clock network as well as circadian locomotor behavior. Interestingly, a high-fat diet (HFD) fed to mice also triggers this inflammation pathway, suggesting that cross-regulatory circuits link inflammation, HFD, and the circadian clock.


Asunto(s)
Relojes Circadianos , Animales , Ritmo Circadiano , Dieta Alta en Grasa , Inflamación , Ratones , FN-kappa B
16.
Genes Dev ; 32(21-22): 1367-1379, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366905

RESUMEN

The mammalian circadian clock is encoded by an autoregulatory transcription feedback loop that drives rhythmic behavior and gene expression in the brain and peripheral tissues. Transcriptomic analyses indicate cell type-specific effects of circadian cycles on rhythmic physiology, although how clock cycles respond to environmental stimuli remains incompletely understood. Here, we show that activation of the inducible transcription factor NF-κB in response to inflammatory stimuli leads to marked inhibition of clock repressors, including the Period, Cryptochrome, and Rev-erb genes, within the negative limb. Furthermore, activation of NF-κB relocalizes the clock components CLOCK/BMAL1 genome-wide to sites convergent with those bound by NF-κB, marked by acetylated H3K27, and enriched in RNA polymerase II. Abrogation of NF-κB during adulthood alters the expression of clock repressors, disrupts clock-controlled gene cycles, and impairs rhythmic activity behavior, revealing a role for NF-κB in both unstimulated and activated conditions. Together, these data highlight NF-κB-mediated transcriptional repression of the clock feedback limb as a cause of circadian disruption in response to inflammation.


Asunto(s)
Ritmo Circadiano/genética , FN-kappa B/fisiología , Factores de Transcripción ARNTL/metabolismo , Animales , Conducta Animal , Proteínas CLOCK/metabolismo , Línea Celular , Cromatina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética
17.
J Neurosci ; 44(28)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38744532

RESUMEN

Obesity is associated with hypogonadism in males, characterized by low testosterone and sperm number. Previous studies determined that these stem from dysregulation of hypothalamic circuitry that regulates reproduction, by unknown mechanisms. Herein, we used mice fed chronic high-fat diet, which mimics human obesity, to determine mechanisms of impairment at the level of the hypothalamus, in particular gonadotropin-releasing hormone (GnRH) neurons that regulate luteinizing hormone (LH), which then regulates testosterone. Consistent with obese humans, we demonstrated lower LH, and lower pulse frequency of LH secretion, but unchanged pituitary responsiveness to GnRH. LH pulse frequency is regulated by pulsatile GnRH secretion, which is controlled by kisspeptin. Peripheral and central kisspeptin injections, and DREADD-mediated activation of kisspeptin neurons, demonstrated that kisspeptin neurons were suppressed in obese mice. Thus, we investigated regulators of kisspeptin secretion. We determined that the LH response to NMDA was lower in obese mice, corresponding to fewer glutamate receptors in kisspeptin neurons, which may be critical for kisspeptin synchronization. Given that kisspeptin neurons also interact with anorexigenic POMC neurons, which are affected by obesity, we examined their cross talk, and determined that the LH response to either DREADD-mediated activation of POMC neurons or central injection of αMSH, a product of POMC, is abolished in obese mice. This was accompanied by diminished levels of αMSH receptor, MC4R, in kisspeptin neurons. Together, our studies determined that obesity leads to the downregulation of receptors that regulate kisspeptin neurons, which is associated with lower LH pulse frequency, leading to lower LH and hypogonadism.


Asunto(s)
Hormona Liberadora de Gonadotropina , Kisspeptinas , Hormona Luteinizante , Ratones Endogámicos C57BL , Neuronas , Obesidad , Proopiomelanocortina , Animales , Masculino , Kisspeptinas/metabolismo , Obesidad/metabolismo , Hormona Luteinizante/metabolismo , Hormona Luteinizante/sangre , Ratones , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Dieta Alta en Grasa/efectos adversos
18.
Eur J Immunol ; 54(4): e2350800, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38282083

RESUMEN

Obesity-induced adipose tissue inflammation plays a critical role in the development of metabolic diseases. For example, NK1.1+ group 1 innate lymphoid cells (G1-ILCs) in adipose tissues are activated in the early stages of inflammation in response to a high-fat diet (HFD). In this study, we examined whether the composition of fatty acids affected adipose inflammatory responses induced by an HFD. Mice were fed a stearic acid (C18:0)-rich HFD (HFD-S) or a linoleic acid (C18:2)-rich HFD (HFD-L). HFD-L-fed mice showed significant obesity compared with HFD-S-fed mice. Visceral and subcutaneous fat pads were enlarged and contained more NK1.1+KLRG1+ cells, indicating that G1-ILCs were activated in HFD-L-fed mice. We examined early changes in adipose tissues during the first week of HFD intake, and found that mice fed HFD-L showed increased levels of NK1.1+CD11b+KLRG1+ cells in adipose tissues. In adipose tissue culture, addition of 4-hydroxynonenal, the most frequent product of lipid peroxidation derived from unsaturated fatty acids, induced NK1.1+CD11b+CD27- cells. We found that calreticulin, a ligand for the NK activating receptor, was induced on the surface of adipocytes after exposure to 4-hydroxynonenal or a 1-week feeding with HFD-L. Thus, excess fatty acid intake and the activation of G1-ILCs initiate and/or modify adipose inflammation.


Asunto(s)
Aldehídos , Dieta Alta en Grasa , Ácidos Grasos , Animales , Ratones , Adipocitos , Tejido Adiposo , Calreticulina/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Inmunidad Innata , Inflamación/metabolismo , Linfocitos/metabolismo , Obesidad
19.
RNA ; 29(7): 977-1006, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37015806

RESUMEN

LncRNAs comprise a heterogeneous class of RNA-encoding genes typified by low expression, nuclear enrichment, high tissue-specificity, and functional diversity, but the vast majority remain uncharacterized. Here, we assembled the mouse liver noncoding transcriptome from >2000 bulk RNA-seq samples and discovered 48,261 liver-expressed lncRNAs, a majority novel. Using these lncRNAs as a single-cell transcriptomic reference set, we elucidated lncRNA dysregulation in mouse models of high fat diet-induced nonalcoholic steatohepatitis and carbon tetrachloride-induced liver fibrosis. Trajectory inference analysis revealed lncRNA zonation patterns across the liver lobule in each major liver cell population. Perturbations in lncRNA expression and zonation were common in several disease-associated liver cell types, including nonalcoholic steatohepatitis-associated macrophages, a hallmark of fatty liver disease progression, and collagen-producing myofibroblasts, a central feature of liver fibrosis. Single-cell-based gene regulatory network analysis using bigSCale2 linked individual lncRNAs to specific biological pathways, and network-essential regulatory lncRNAs with disease-associated functions were identified by their high network centrality metrics. For a subset of these lncRNAs, promoter sequences of the network-defined lncRNA target genes were significantly enriched for lncRNA triplex formation, providing independent mechanistic support for the lncRNA-target gene linkages predicted by the gene regulatory networks. These findings elucidate liver lncRNA cell-type specificities, spatial zonation patterns, associated regulatory networks, and temporal patterns of dysregulation during hepatic disease progression. A subset of the liver disease-associated regulatory lncRNAs identified have human orthologs and are promising candidates for biomarkers and therapeutic targets.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , ARN Largo no Codificante , Humanos , Ratones , Animales , Transcriptoma , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Redes Reguladoras de Genes , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Perfilación de la Expresión Génica , Progresión de la Enfermedad
20.
FASEB J ; 38(11): e23717, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38837270

RESUMEN

Selenoprotein I (Selenoi) is highly expressed in liver and plays a key role in lipid metabolism as a phosphatidylethanolamine (PE) synthase. However, the precise function of Selenoi in the liver remains elusive. In the study, we generated hepatocyte-specific Selenoi conditional knockout (cKO) mice on a high-fat diet to identify the physiological function of Selenoi. The cKO group exhibited a significant increase in body weight, with a 15.6% and 13.7% increase in fat accumulation in white adipose tissue (WAT) and the liver, respectively. Downregulation of the lipolysis-related protein (p-Hsl) and upregulation of the adipogenesis-related protein (Fasn) were observed in the liver of cKO mice. The cKO group also showed decreased oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure (p < .05). Moreover, various metabolites of the steroid hormone synthesis pathway were affected in the liver of cKO mice. A potential cascade of Selenoi-phosphatidylethanolamine-steroid hormone synthesis might serve as a core mechanism that links hepatocyte-specific Selenoi cKO to biochemical and molecular reactions. In conclusion, we revealed that Selenoi inhibits body fat accumulation and hepatic steatosis and elevates energy consumption; this protein could also be considered a therapeutic target for such related diseases.


Asunto(s)
Hígado Graso , Hepatocitos , Ratones Noqueados , Obesidad , Animales , Ratones , Obesidad/metabolismo , Obesidad/genética , Obesidad/etiología , Hepatocitos/metabolismo , Hígado Graso/metabolismo , Hígado Graso/etiología , Hígado Graso/genética , Hígado Graso/patología , Selenoproteínas/metabolismo , Selenoproteínas/genética , Dieta Alta en Grasa/efectos adversos , Masculino , Hígado/metabolismo , Metabolismo Energético , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA