Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.434
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38490196

RESUMEN

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Asunto(s)
Encéfalo , Interferón Tipo I , Microglía , Animales , Ratones , Interferón Tipo I/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Pez Cebra , Encéfalo/citología , Encéfalo/crecimiento & desarrollo
2.
Immunity ; 54(3): 468-483.e5, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33484643

RESUMEN

Tissue resident mast cells (MCs) rapidly initiate neutrophil infiltration upon inflammatory insult, yet the molecular mechanism is still unknown. Here, we demonstrated that MC-derived tumor necrosis factor (TNF) was crucial for neutrophil extravasation to sites of contact hypersensitivity-induced skin inflammation by promoting intraluminal crawling. MC-derived TNF directly primed circulating neutrophils via TNF receptor-1 (TNFR1) while being dispensable for endothelial cell activation. The MC-derived TNF was infused into the bloodstream by directional degranulation of perivascular MCs that were part of the vascular unit with access to the vessel lumen. Consistently, intravenous administration of MC granules boosted neutrophil extravasation. Pronounced and rapid intravascular MC degranulation was also observed upon IgE crosslinking or LPs challenge indicating a universal MC potential. Consequently, the directional MC degranulation of pro-inflammatory mediators into the bloodstream may represent an important target for therapeutic approaches aimed at dampening cytokine storm syndromes or shock symptoms, or intentionally pushing immune defense.


Asunto(s)
Vasos Sanguíneos/inmunología , Dermatitis por Contacto/inmunología , Inflamación/inmunología , Mastocitos/inmunología , Neutrófilos/inmunología , Piel/patología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Circulación Sanguínea , Degranulación de la Célula , Células Cultivadas , Enfermedades del Sistema Inmune , Trastornos Leucocíticos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Neutrófila , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Vesículas Secretoras/metabolismo , Factor de Necrosis Tumoral alfa/genética
3.
Immunol Rev ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037230

RESUMEN

Irritable bowel syndrome (IBS) is a chronic gastrointestinal condition associated with altered bowel habits and recurrent abdominal pain, often triggered by food intake. Current treatments focus on improving stool pattern, but effective treatments for pain in IBS are still lacking due to our limited understanding of pathophysiological mechanisms. Visceral hypersensitivity (VHS), or abnormal visceral pain perception, underlies abdominal pain development in IBS, and mast cell activation has been shown to play an important role in the development of VHS. Our work recently revealed that abdominal pain in response to food intake is induced by the sensitization of colonic pain-sensing neurons by histamine produced by activated mast cells following a local IgE response to food. In this review, we summarize the current knowledge on abdominal pain and VHS pathophysiology in IBS, we outline the work leading to the discovery of the role of histamine in abdominal pain, and we introduce antihistamines as a novel treatment option to manage chronic abdominal pain in patients with IBS.

4.
Proc Natl Acad Sci U S A ; 120(44): e2303836120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871213

RESUMEN

Transcriptional divergence of duplicated genes after whole genome duplication (WGD) has been described in many plant lineages and is often associated with subgenome dominance, a genome-wide mechanism. However, it is unknown what underlies the transcriptional divergence of duplicated genes in polyploid species that lack subgenome dominance. Soybean is a paleotetraploid with a WGD that occurred 5 to 13 Mya. Approximately 50% of the duplicated genes retained from this WGD exhibit transcriptional divergence. We developed accessible chromatin region (ACR) datasets from leaf, flower, and seed tissues using MNase-hypersensitivity sequencing. We validated enhancer function of several ACRs associated with known genes using CRISPR/Cas9-mediated genome editing. The ACR datasets were used to examine and correlate the transcriptional patterns of 17,111 pairs of duplicated genes in different tissues. We demonstrate that ACR dynamics are correlated with divergence of both expression level and tissue specificity of individual gene pairs. Gain or loss of flanking ACRs and mutation of cis-regulatory elements (CREs) within the ACRs can change the balance of the expression level and/or tissue specificity of the duplicated genes. Analysis of DNA sequences associated with ACRs revealed that the extensive sequence rearrangement after the WGD reshaped the CRE landscape, which appears to play a key role in the transcriptional divergence of duplicated genes in soybean. This may represent a general mechanism for transcriptional divergence of duplicated genes in polyploids that lack subgenome dominance.


Asunto(s)
Evolución Molecular , Glycine max , Glycine max/genética , Glycine max/metabolismo , Genoma , Genes Duplicados/genética , Secuencia de Bases , Duplicación de Gen , Genoma de Planta/genética
5.
Annu Rev Pharmacol Toxicol ; 62: 509-529, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34516290

RESUMEN

Human leukocyte antigen (HLA) is a hallmark genetic marker for the prediction of certain immune-mediated adverse drug reactions (ADRs). Numerous basic and clinical research studies have provided the evidence base to push forward the clinical implementation of HLA testing for the prevention of such ADRs in susceptible patients. This review explores current translational progress in using HLA as a key susceptibility factor for immune ADRs and highlights gaps in our knowledge. Furthermore, relevant findings of HLA-mediated drug-specific T cell activation are covered, focusing on cellular approaches to link genetic associations to drug-HLA binding as a complementary approach to understand disease pathogenesis.


Asunto(s)
Hipersensibilidad a las Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Alelos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Antígenos HLA/genética , Humanos , Farmacogenética
6.
Immunity ; 44(3): 527-541, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26982363

RESUMEN

Lymphopoiesis requires the activation of lineage-specific genes embedded in naive, inaccessible chromatin or in primed, accessible chromatin. The mechanisms responsible for de novo gain of chromatin accessibility, known as "pioneer" function, remain poorly defined. Here, we showed that the EBF1 C-terminal domain (CTD) is required for the regulation of a specific gene set involved in B cell fate decision and differentiation, independently of activation and repression functions. Using genome-wide analysis of DNaseI hypersensitivity and DNA methylation in multipotent Ebf1(-/-) progenitors and derivative EBF1wt- or EBF1ΔC-expressing cells, we found that the CTD promoted chromatin accessibility and DNA demethylation in previously naive chromatin. The CTD allowed EBF1 to bind at inaccessible genomic regions that offer limited co-occupancy by other transcription factors, whereas the CTD was dispensable for EBF1 binding at regions that are occupied by multiple transcription factors. Thus, the CTD enables EBF1 to confer permissive lineage-specific changes in progenitor chromatin landscape.


Asunto(s)
Linfocitos B/fisiología , Cromatina/metabolismo , Células Progenitoras Linfoides/fisiología , Transactivadores/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Metilación de ADN/genética , Redes Reguladoras de Genes/genética , Linfopoyesis , Ratones , Ratones Noqueados , Ratones Transgénicos , Estructura Terciaria de Proteína/genética , Transactivadores/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-38924775

RESUMEN

Rationale: Fibrotic hypersensitivity pneumonitis is a debilitating interstitial lung disease driven by incompletely understood immune mechanisms. Objectives: To elucidate immune aberrations in fibrotic hypersensitivity pneumonitis in single-cell resolution. Methods: Single-cell 5' RNA sequencing was conducted on peripheral blood mononuclear cells and bronchoalveolar lavage cells obtained from 45 patients with fibrotic hypersensitivity pneumonitis, 63 idiopathic pulmonary fibrosis, 4 non-fibrotic hypersensitivity pneumonitis, and 36 healthy controls in the United States and Mexico. Analyses included differential gene expression (Seurat), transcription factor activity imputation (DoRothEA-VIPER), and trajectory analyses (Monocle3/Velocyto-scVelo-CellRank). Measurements and Main Results: Overall, 501,534 peripheral blood mononuclear cells from 110 patients and controls and 88,336 bronchoalveolar lavage cells from 19 patients were profiled. Compared to controls, fibrotic hypersensitivity pneumonitis has elevated classical monocytes (adjusted-p=2.5e-3) and are enriched in CCL3hi/CCL4hi and S100Ahi classical monocytes (adjusted-p<2.2e-16). Trajectory analyses demonstrate that S100Ahi classical monocytes differentiate into SPP1hi lung macrophages associated with fibrosis. Compared to both controls and idiopathic pulmonary fibrosis, fibrotic hypersensitivity pneumonitis patient cells are significantly enriched in GZMhi cytotoxic T cells. These cells exhibit transcription factor activities indicative of TGFß and TNFα/NFκB pathways. These results are publicly available at https://ildimmunecellatlas.org. Conclusions: Single-cell transcriptomics of fibrotic hypersensitivity pneumonitis patients uncovered novel immune perturbations, including previously undescribed increases in GZMhi cytotoxic CD4+ and CD8+ T cells - reflecting this disease's unique inflammatory T-cell driven nature - as well as increased S100Ahi and CCL3hi/CCL4hi classical monocytes also observed in idiopathic pulmonary fibrosis. Both cell populations may guide the development of new biomarkers and therapeutic interventions.

8.
Proc Natl Acad Sci U S A ; 119(45): e2121989119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322717

RESUMEN

Persistent mechanical pain hypersensitivity associated with peripheral inflammation, surgery, trauma, and nerve injury impairs patients' quality of life and daily activity. However, the molecular mechanism and treatment are not yet fully understood. Herein, we show that chemical ablation of isolectin B4-binding (IB4+) afferents by IB4-saporin injection into sciatic nerves completely and selectively inhibited inflammation- and tissue injury-induced mechanical pain hypersensitivity while thermal and mechanical pain hypersensitivities were normal following nerve injury. To determine the molecular mechanism involving the specific types of mechanical pain hypersensitivity, we compared gene expression profiles between IB4+ neuron-ablated and control dorsal root ganglion (DRG) neurons. We identified Tmem45b as one of 12 candidate genes that were specific to somatosensory ganglia and down-regulated by IB4+ neuronal ablation. Indeed, Tmem45b was expressed predominantly in IB4+ DRG neurons, where it was selectively localized in the trans Golgi apparatus of DRG neurons but not detectable in the peripheral and central branches of DRG axons. Tmem45b expression was barely detected in the spinal cord and brain. Although Tmem45b-knockout mice showed normal responses to noxious heat and noxious mechanical stimuli under normal conditions, mechanical pain hypersensitivity was selectively impaired after inflammation and tissue incision, reproducing the pain phenotype of IB4+ sensory neuron-ablated mice. Furthermore, acute knockdown by intrathecal injection of Tmem45b small interfering RNA, either before or after inflammation induction, successfully reduced mechanical pain hypersensitivity. Thus, our study demonstrates that Tmem45b is essential for inflammation- and tissue injury-induced mechanical pain hypersensitivity and highlights Tmem45b as a therapeutic target for future treatment.


Asunto(s)
Hipersensibilidad , Calidad de Vida , Animales , Ratones , Ganglios Espinales/metabolismo , Hipersensibilidad/metabolismo , Inflamación/metabolismo , Ratones Noqueados , Dolor/genética , Dolor/complicaciones , Células Receptoras Sensoriales/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(12): e2113645119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35294287

RESUMEN

Acute nociception is essential for survival by warning organisms against potential dangers, whereas tissue injury results in a nociceptive hypersensitivity state that is closely associated with debilitating disease conditions, such as chronic pain. Transient receptor potential (Trp) ion channels expressed in nociceptors detect noxious thermal and chemical stimuli to initiate acute nociception. The existing hypersensitivity model suggests that under tissue injury and inflammation, the same Trp channels in nociceptors are sensitized through transcriptional and posttranslational modulation, leading to nociceptive hypersensitivity. Unexpectedly and different from this model, we find that in Drosophila larvae, acute heat nociception and tissue injury-induced hypersensitivity involve distinct cellular and molecular mechanisms. Specifically, TrpA1-D in peripheral sensory neurons mediates acute heat nociception, whereas TrpA1-C in a cluster of larval brain neurons transduces the heat stimulus under the allodynia state. As a result, interfering with synaptic transmission of these brain neurons or genetic targeting of TrpA1-C blocks heat allodynia but not acute heat nociception. TrpA1-C and TrpA1-D are two splicing variants of TrpA1 channels and are coexpressed in these brain neurons. We further show that Gq-phospholipase C signaling, downstream of the proalgesic neuropeptide Tachykinin, differentially modulates these two TrpA1 isoforms in the brain neurons by selectively sensitizing heat responses of TrpA1-C but not TrpA1-D. Together, our studies provide evidence that nociception and noncaptive sensitization could be mediated by distinct sensory neurons and molecular sensors.


Asunto(s)
Nocicepción , Canales de Potencial de Receptor Transitorio , Animales , Drosophila/fisiología , Neuronas , Nocicepción/fisiología , Nociceptores/fisiología , Transductores , Canales de Potencial de Receptor Transitorio/genética
10.
Eur Heart J ; 45(19): 1716-1726, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38666370

RESUMEN

Aspirin has been known for a long time and currently stays as a cornerstone of antithrombotic therapy in cardiovascular disease. In patients with either acute or chronic coronary syndromes undergoing percutaneous coronary intervention aspirin is mandatory in a dual antiplatelet therapy regimen for prevention of stent thrombosis and/or new ischaemic events. Aspirin is also currently a first-option antithrombotic therapy after an aortic prosthetic valve replacement and is occasionally required in addition to oral anticoagulants after implantation of a mechanical valve. Presumed or demonstrated aspirin hypersensitivity is a main clinical problem, limiting the use of a life-saving medication. In the general population, aspirin hypersensitivity has a prevalence of 0.6%-2.5% and has a plethora of clinical presentations, ranging from aspirin-exacerbated respiratory disease to anaphylaxis. Although infrequent, when encountered in clinical practice aspirin hypersensitivity poses for cardiologists a clinical dilemma, which should never be trivialized, avoiding-as much as possible-omission of the drug. We here review the epidemiology of aspirin hypersensitivity, provide an outline of pathophysiological mechanisms and clinical presentations, and review management options, starting from a characterization of true aspirin allergy-in contrast to intolerance-to suggestion of desensitization protocols.


Asunto(s)
Aspirina , Hipersensibilidad a las Drogas , Humanos , Aspirina/efectos adversos , Hipersensibilidad a las Drogas/epidemiología , Inhibidores de Agregación Plaquetaria/efectos adversos , Desensibilización Inmunológica/métodos , Intervención Coronaria Percutánea/efectos adversos , Cardiólogos
11.
J Allergy Clin Immunol ; 153(1): 193-202, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678574

RESUMEN

BACKGROUND: Diagnosing drug-induced allergy, especially nonimmediate phenotypes, is challenging. Incorrect classifications have unwanted consequences. OBJECTIVE: We sought to evaluate the diagnostic utility of IFN-γ ELISpot and clinical parameters in predicting drug-induced nonimmediate hypersensitivity using machine learning. METHODS: The study recruited 393 patients. A positive patch test or drug provocation test (DPT) was used to define positive drug hypersensitivity. Various clinical factors were considered in developing random forest (RF) and logistic regression (LR) models. Performances were compared against the IFN-γ ELISpot-only model. RESULTS: Among the 102 patients who had 164 DPTs, most patients had severe cutaneous adverse reactions (35/102, 34.3%) and maculopapular exanthems (33/102, 32.4%). Common suspected drugs were antituberculosis drugs (46/164, 28.1%) and ß-lactams (42/164, 25.6%). Mean (SD) age of patients with DPT was 52.7 (20.8) years. IFN-γ ELISpot, fixed drug eruption, Naranjo categories, and nonsteroidal anti-inflammatory drugs were the most important features in all developed models. The RF and LR models had higher discriminating abilities. An IFN-γ ELISpot cutoff value of 16.0 spot-forming cells/106 PBMCs achieved 94.8% specificity and 57.1% sensitivity. Depending on clinical needs, optimal cutoff values for RF and LR models can be chosen to achieve either high specificity (0.41 for 96.1% specificity and 0.52 for 97.4% specificity, respectively) or high sensitivity (0.26 for 78.6% sensitivity and 0.37 for 71.4% sensitivity, respectively). CONCLUSIONS: IFN-γ ELISpot assay was valuable in identifying culprit drugs, whether used individually or incorporated in a prediction model. Performances of RF and LR models were comparable. Additional test datasets with DPT would be helpful to validate the model further.


Asunto(s)
Hipersensibilidad a las Drogas , Humanos , Persona de Mediana Edad , Hipersensibilidad a las Drogas/diagnóstico , beta-Lactamas/efectos adversos , Pruebas Inmunológicas , Ensayo de Immunospot Ligado a Enzimas , Pruebas del Parche
12.
J Allergy Clin Immunol ; 153(4): 939-953, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373476

RESUMEN

Mast cells (MCs) are tissue-resident immune cells, well-positioned at the host-environment interface for detecting external antigens and playing a critical role in mobilizing innate and adaptive immune responses. Sensory neurons are afferent neurons innervating most areas of the body but especially in the periphery, where they sense external and internal signals and relay information to the brain. The significance of MC-sensory neuron communication is now increasingly becoming recognized, especially because both cell types are in close physical proximity at the host-environment interface and around major organs of the body and produce specific mediators that can activate each other. In this review, we explore the roles of MC-sensory neuron crosstalk in allergic diseases, shedding light on how activated MCs trigger sensory neurons to initiate signaling in pruritus, shock, and potentially abdominal pain in allergy, and how activated sensory neurons regulate MCs in homeostasis and atopic dermatitis associated with contact hypersensitivity and type 2 inflammation. Throughout the review, we also discuss how these 2 sentinel cell types signal each other, potentially resulting in a positive feedback loop that can sustain inflammation. Unraveling the mysteries of MC-sensory neuron crosstalk is likely to unveil their critical roles in various disease conditions and enable the development of new therapeutic approaches to combat these maladies.


Asunto(s)
Dermatitis Atópica , Hipersensibilidad , Humanos , Mastocitos , Inflamación , Células Receptoras Sensoriales
13.
J Allergy Clin Immunol ; 154(1): 222-228.e4, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38521096

RESUMEN

BACKGROUND: Acute infusion reactions to oxaliplatin, a chemotherapeutic used to treat gastrointestinal cancers, are observed in about 20% of patients. Rapid drug desensitization (RDD) protocols often allow the continuation of oxaliplatin in patients with no alternative options. Breakthrough symptoms, including anaphylaxis, can still occur during RDD. OBJECTIVE: Our aim was to evaluate whether pretreatment with acalabrutinib, a Bruton tyrosine kinase inhibitor, can prevent anaphylaxis during RDD in a patient sensitized to oxaliplatin. METHODS: A 52-year-old male with locally advanced gastric carcinoma developed anaphylaxis during his fifth cycle of oxaliplatin. As he required 6 additional cycles to complete his curative-intent treatment regimen, he underwent RDD to oxaliplatin but still developed severe acute reactions. The risks and benefits of adding acalabrutinib before and during RDD were reviewed, and the patient elected to proceed. RESULTS: With acalabrutinib taken before and during the RDD, the patient was able to tolerate oxaliplatin RDD without complication. Consistent with its mechanism of action, acalabrutinib completely blocked the patient's positive skin prick response to oxaliplatin. Acalabrutinib did not alter the percentage of circulating basophils (1.24% vs 0.98%) before the RDD but did protect against basopenia (0.74% vs 0.09%) after the RDD. Acalabrutinib was associated with a drastic reduction in the ability of basophils to upregulate CD63 in vitro following incubation with oxaliplatin (0.11% vs 2.38%) or polyclonal anti-human IgE antibody (0.08% vs 44.2%). CONCLUSIONS: Five doses of acalabrutinib, 100 mg, orally twice daily starting during the evening 2 days before and continuing through RDD allowed a sensitized patient to receive oxaliplatin successfully and safely.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Antineoplásicos , Benzamidas , Desensibilización Inmunológica , Hipersensibilidad a las Drogas , Oxaliplatino , Pirazinas , Humanos , Oxaliplatino/efectos adversos , Persona de Mediana Edad , Masculino , Hipersensibilidad a las Drogas/inmunología , Hipersensibilidad a las Drogas/prevención & control , Desensibilización Inmunológica/métodos , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Pirazinas/efectos adversos , Pirazinas/administración & dosificación , Pirazinas/uso terapéutico , Benzamidas/uso terapéutico , Benzamidas/administración & dosificación , Antineoplásicos/efectos adversos , Anafilaxia/prevención & control , Anafilaxia/inducido químicamente , Anafilaxia/inmunología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/inmunología
14.
J Allergy Clin Immunol ; 153(3): 772-779.e4, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38040042

RESUMEN

BACKGROUND: Current guidelines recommend a stepwise approach to postpartum pain management, beginning with acetaminophen and nonsteroidal anti-inflammatory drugs (NSAIDs), with opioids added only if needed. Report of a prior NSAID-induced adverse drug reaction (ADR) may preclude use of first-line analgesics, despite evidence that many patients with this allergy label may safely tolerate NSAIDs. OBJECTIVE: We assessed the association between reported NSAID ADRs and postpartum opioid utilization. METHODS: We performed a retrospective cohort study of birthing people who delivered within an integrated health system (January 1, 2017, to December 31, 2020). Study outcomes were postpartum inpatient opioid administrations and opioid prescriptions at discharge. Statistical analysis was performed on a propensity score-matched sample, which was generated with the goal of matching to the covariate distributions from individuals with NSAID ADRs. RESULTS: Of 38,927 eligible participants, there were 883 (2.3%) with an NSAID ADR. Among individuals with reported NSAID ADRs, 49.5% received inpatient opioids in the postpartum period, compared to 34.5% of those with no NSAID ADRs (difference = 15.0%, 95% confidence interval 11.4-18.6%). For patients who received postpartum inpatient opioids, those with NSAID ADRs received a higher total cumulative dose between delivery and hospital discharge (median 30.0 vs 22.5 morphine milligram equivalents [MME] for vaginal deliveries; median 104.4 vs 75.0 MME for cesarean deliveries). The overall proportion of patients receiving an opioid prescription at the time of hospital discharge was higher for patients with NSAID ADRs compared to patients with no NSAID ADRs (39.3% vs 27.2%; difference = 12.1%, 95% confidence interval 8.6-15.6%). CONCLUSION: Patients with reported NSAID ADRs had higher postpartum inpatient opioid utilization and more frequently received opioid prescriptions at hospital discharge compared to those without NSAID ADRs, regardless of mode of delivery.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Endrín/análogos & derivados , Hipersensibilidad , Embarazo , Femenino , Humanos , Analgésicos Opioides/efectos adversos , Estudios Retrospectivos , Antiinflamatorios no Esteroideos/efectos adversos , Periodo Posparto
15.
Gut ; 73(3): 459-469, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38191268

RESUMEN

OBJECTIVE: We evaluated the histamine 1 receptor antagonist ebastine as a potential treatment for patients with non-constipated irritable bowel syndrome (IBS) in a randomised, placebo-controlled phase 2 study. METHODS: Non-constipated patients with IBS fulfilling the Rome III criteria were randomly assigned to 20 mg ebastine or placebo for 12 weeks. Subjects scored global relief of symptoms (GRS) and abdominal pain intensity (API). A subject was considered a weekly responder for GRS if total or obvious relief was reported and a responder for API if the weekly average pain score was reduced by at least 30% vs baseline. The primary endpoints were the proportion of subjects who were weekly responders for at least 6 out of the 12 treatment weeks for both GRS and API ('GRS+API', composite endpoint) and for GRS and API separately. RESULTS: 202 participants (32±11 years, 68% female) were randomly allocated to receive ebastine (n=101) or placebo (n=101). Treatment with ebastine resulted in significantly more responders (12%, 12/92) for GRS+API compared with placebo (4%, 4/87, p=0.047) while the proportion of responders for GRS and API separately was higher for ebastine compared with placebo, although not statistically significant (placebo vs ebastine, GRS: 7% (6/87) vs 15% (14/91), p=0.072; API: 25% (20/85) vs 37% (34/92), p=0.081). CONCLUSIONS: Our study shows that ebastine is superior to placebo and should be further evaluated as novel treatment for patients with non-constipated IBS. TRIAL REGISTRATION NUMBER: The study protocol was approved by the local ethics committee of each study site (EudraCT number: 2013-001199-39; ClinicalTrials.gov identifier: NCT01908465).


Asunto(s)
Síndrome del Colon Irritable , Piperidinas , Humanos , Femenino , Masculino , Síndrome del Colon Irritable/terapia , Histamina/uso terapéutico , Resultado del Tratamiento , Butirofenonas/efectos adversos , Método Doble Ciego , Dolor Abdominal/tratamiento farmacológico
16.
J Neurosci ; 43(43): 7158-7174, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37669860

RESUMEN

Social touch, an important aspect of social interaction and communication, is essential to kinship across animal species. How animals experience and respond to social touch has not been thoroughly investigated, in part because of the lack of appropriate assays. Previous studies that examined social touch in freely moving rodents lacked the necessary temporal and spatial control over individual touch interactions. We designed a novel head-fixed assay for social touch in mice, in which the experimenter has complete control to elicit highly stereotyped bouts of social touch between two animals. The user determines the number, duration, context, and type of social touch interactions, while monitoring an array of complex behavioral responses with high resolution cameras. We focused on social touch to the face because of its high translational relevance to humans. We validated this assay in two different models of autism spectrum disorder (ASD), the Fmr1 knock-out (KO) model of Fragile X syndrome (FXS) and maternal immune activation (MIA) mice. We observed higher rates of avoidance running, hyperarousal, and aversive facial expressions (AFEs) to social touch than to object touch, in both ASD models compared with controls. Fmr1 KO mice showed more AFEs to mice of the same sex but whether they were stranger or familiar mice mattered less. Because this new social touch assay for head-fixed mice can be used to record neural activity during repeated bouts of social touch it could be used to uncover underlying circuit differences.SIGNIFICANCE STATEMENT Social touch is important for communication in animals and humans. However, it has not been extensively studied and current assays to measure animals' responses to social touch have limitations. We present a novel head-fixed assay to quantify how mice respond to social facial touch with another mouse. We validated this assay in autism mouse models since autistic individuals exhibit differences in social interaction and touch sensitivity. We find that mouse models of autism exhibit more avoidance, hyperarousal, and aversive facial expressions (AFEs) to social touch compared with controls. Thus, this novel assay can be used to investigate behavioral responses to social touch and the underlying brain mechanisms in rodent models of neurodevelopmental conditions, and to evaluate therapeutic responses in preclinical studies.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Síndrome del Cromosoma X Frágil , Humanos , Ratones , Animales , Trastorno Autístico/genética , Tacto , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad
17.
Glia ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132860

RESUMEN

Acute gastrointestinal (GI) inflammation induces neuroplasticity that produces long-lasting changes in gut motor function and pain. The endocannabinoid system is an attractive target to correct pain and dysmotility, but how inflammation changes endocannabinoid control over cellular communication in enteric neurocircuits is not understood. Enteric glia modulate gut neurons that control motility and pain and express monoacylglycerol lipase (MAGL) which controls endocannabinoid availability. We used a combination of in situ calcium imaging, chemogenetics, and selective drugs to study how endocannabinoid mechanisms affect glial responses and subsequent enteric neuron activity in health and following colitis in Wnt1Cre;GCaMP5g-tdT;GFAP::hM3Dq mice. Trpv1Cre;GCaMP5gtdT mice were used to study nociceptor sensitivity and Sox10CreERT2;Mgllf/f mice were used to test the role of glial MAGL in visceral pain. The data show that endocannabinoid signaling regulates neuro-glial signaling in gut neurocircuits in a sexually dimorphic manner. Inhibiting MAGL in healthy samples decreased glial responsiveness but this effect was lost in females following colitis and converted to an excitatory effect in males. Manipulating CB1 and CB2 receptors revealed further sex differences amongst neuro-glia signaling that were impacted following inflammation. Inflammation increased gut nociceptor sensitivity in both sexes but only females exhibited visceral hypersensitivity in vivo. Blocking MAGL normalized nociceptor responses in vitro and deleting glial Mgll in vivo rescued visceral hypersensitivity in females. These results show that sex and inflammation impact endocannabinoid mechanisms that regulate intercellular enteric glia-neuron communication. Further, targeting glial MAGL could provide therapeutic benefits for visceral nociception in a sex-dependent manner.

18.
Stroke ; 55(8): 2193-2197, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38939926

RESUMEN

Angioedema without concomitant urticaria is a well-known complication of treatment with the recombinant tissue-type plasminogen activator (r-tPA) alteplase and its genetically modified variant tenecteplase. It is potentially lethal when causing airway obstruction and can require intubation. The latest guideline for the early management of patients with acute ischemic stroke from the American Heart Association/American Stroke Association advises to treat this complication initially by interfering with the histamine pathway. This article aims to clarify the pathophysiological mechanism of r-tPA-induced angioedema and provides several arguments that this condition is primarily bradykinin-mediated and hence should be treated initially by intervening with the bradykinin pathway. Second, other-less frequently reported-adverse symptoms after r-tPA therapy and their proposed pathophysiological mechanisms leading to specific treatment are described. This manuscript describes the need for an update of the section "3.5 IV alteplase" from the American Heart Association/American Stroke Association guideline to treat this r-tPA-induced angioedema adequately and prevent potentially fatal outcomes.


Asunto(s)
Angioedema , Fibrinolíticos , Accidente Cerebrovascular , Activador de Tejido Plasminógeno , Humanos , Angioedema/inducido químicamente , Activador de Tejido Plasminógeno/efectos adversos , Activador de Tejido Plasminógeno/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Fibrinolíticos/efectos adversos , Fibrinolíticos/uso terapéutico , Bradiquinina/uso terapéutico , Proteínas Recombinantes/uso terapéutico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico
19.
J Neurochem ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877776

RESUMEN

Irritable bowel syndrome (IBS), which is characterized by chronic abdominal pain, has a high global prevalence. The anterior cingulate cortex (ACC), which is a pivotal region involved in pain processing, should be further investigated regarding its role in the regulation of visceral sensitivity and mental disorders. A C57BL/6J mouse model for IBS was established using chronic acute combining stress (CACS). IBS-like symptoms were assessed using behavioral tests, intestinal motility measurements, and abdominal withdrawal reflex scores. Fluoro-Gold retrograde tracing and immunohistochemistry techniques were employed to investigate the projection of ACC gamma-aminobutyric acid-producing (GABAergic) neurons to the lateral hypothalamus area (LHA). Chemogenetic approaches enabled the selective activation or inhibition of the ACC-LHA GABAergic pathway. Enzyme-linked immunosorbent assay (ELISA) and western blot analyses were conducted to determine the expression of histamine, 5-hydroxytryptamine (5-HT), and transient receptor potential vanilloid 4 (TRPV4). Our findings suggest that CACS induced IBS-like symptoms in mice. The GABA type A receptors (GABAAR) within LHA played a regulatory role in modulating IBS-like symptoms. The chemogenetic activation of ACC-LHA GABAergic neurons elicited anxiety-like behaviors, intestinal dysfunction, and visceral hypersensitivity in normal mice; however, these effects were effectively reversed by the administration of the GABAAR antagonist Bicuculline. Conversely, the chemogenetic inhibition of ACC-LHA GABAergic neurons alleviated anxiety-like behaviors, intestinal dysfunction, and visceral hypersensitivity in the mouse model for IBS. These results highlight the crucial involvement of the ACC-LHA GABAergic pathway in modulating anxiety-like behaviors, intestinal motility alterations, and visceral hypersensitivity, suggesting a potential therapeutic strategy for alleviating IBS-like symptoms.

20.
Neurobiol Dis ; 195: 106496, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582333

RESUMEN

Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability with symptoms that include increased anxiety and social and sensory processing deficits. Recent electroencephalographic (EEG) studies in humans with FXS have identified neural oscillation deficits that include increased resting state gamma power, increased amplitude of auditory evoked potentials, and reduced phase locking of sound-evoked gamma oscillations. Similar EEG phenotypes are present in mouse models of FXS, but very little is known about the development of such abnormal responses. In the current study, we employed a 30-channel mouse multielectrode array (MEA) system to record and analyze resting and stimulus-evoked EEG signals in male P21 and P91 WT and Fmr1 KO mice. This led to several novel findings. First, P91, but not P21, Fmr1 KO mice have significantly increased resting EEG power in the low- and high-gamma frequency bands. Second, both P21 and P91 Fmr1 KO mice have markedly attenuated inter-trial phase coherence (ITPC) to spectrotemporally dynamic auditory stimuli as well as to 40 Hz and 80 Hz auditory steady-state response (ASSR) stimuli. This suggests abnormal temporal processing from early development that may lead to abnormal speech and language function in FXS. Third, we found hemispheric asymmetry of fast temporal processing in the mouse auditory cortex in WT but not Fmr1 KO mice. Together, these findings define a set of EEG phenotypes in young and adult mice that can serve as translational targets for genetic and pharmacological manipulation in phenotypic rescue studies.


Asunto(s)
Electroencefalografía , Potenciales Evocados Auditivos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Animales , Masculino , Ratones , Estimulación Acústica , Biomarcadores , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Potenciales Evocados Auditivos/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA