Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70.542
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 57(9): 2030-2042.e8, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39116878

RESUMEN

Hypertension is usually accompanied by elevated sympathetic tonicity, but how sympathetic hyperactivity is triggered is not clear. Recent advances revealed that microglia-centered neuroinflammation contributes to sympathetic excitation in hypertension. In this study, we performed a temporospatial analysis of microglia at both morphological and transcriptomic levels and found that microglia in the hypothalamic paraventricular nucleus (PVN), a sympathetic center, were early responders to hypertensive challenges. Vasculature analyses revealed that the PVN was characterized by high capillary density, thin vessel diameter, and complex vascular topology relative to other brain regions. As such, the PVN was susceptible to the penetration of ATP released from the vasculature in response to hemodynamic disturbance after blood pressure increase. Mechanistically, ATP ligation to microglial P2Y12 receptor was responsible for microglial inflammatory activation and the eventual sympathetic overflow. Together, these findings identified a distinct vasculature pattern rendering vulnerability of PVN pre-sympathetic neurons to hypertension-associated microglia-mediated inflammatory insults.


Asunto(s)
Hemodinámica , Hipertensión , Microglía , Núcleo Hipotalámico Paraventricular , Sistema Nervioso Simpático , Núcleo Hipotalámico Paraventricular/metabolismo , Animales , Microglía/metabolismo , Hipertensión/fisiopatología , Ratones , Sistema Nervioso Simpático/fisiopatología , Masculino , Ratones Endogámicos C57BL , Adenosina Trifosfato/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Inflamación/inmunología , Presión Sanguínea , Neuronas/metabolismo
2.
Cell ; 170(3): 522-533.e15, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753427

RESUMEN

Genome-wide association studies (GWASs) implicate the PHACTR1 locus (6p24) in risk for five vascular diseases, including coronary artery disease, migraine headache, cervical artery dissection, fibromuscular dysplasia, and hypertension. Through genetic fine mapping, we prioritized rs9349379, a common SNP in the third intron of the PHACTR1 gene, as the putative causal variant. Epigenomic data from human tissue revealed an enhancer signature at rs9349379 exclusively in aorta, suggesting a regulatory function for this SNP in the vasculature. CRISPR-edited stem cell-derived endothelial cells demonstrate rs9349379 regulates expression of endothelin 1 (EDN1), a gene located 600 kb upstream of PHACTR1. The known physiologic effects of EDN1 on the vasculature may explain the pattern of risk for the five associated diseases. Overall, these data illustrate the integration of genetic, phenotypic, and epigenetic analysis to identify the biologic mechanism by which a common, non-coding variant can distally regulate a gene and contribute to the pathogenesis of multiple vascular diseases.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Endotelina-1/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Enfermedades Vasculares/genética , Acetilación , Células Cultivadas , Cromatina/metabolismo , Mapeo Cromosómico , Cromosomas Humanos Par 6 , Células Endoteliales/citología , Endotelina-1/sangre , Epigenómica , Edición Génica , Expresión Génica , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Humanos , Músculo Liso Vascular/citología
3.
Physiol Rev ; 104(1): 199-251, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37477622

RESUMEN

The teleology of sex differences has been argued since at least as early as Aristotle's controversial Generation of Animals more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question "why are the sexes different" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question "how are the sexes different" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.


Asunto(s)
Hipertensión , Caracteres Sexuales , Animales , Femenino , Humanos , Masculino , Presión Sanguínea/fisiología , Riñón , Hemodinámica , Sodio
4.
Immunity ; 55(8): 1466-1482.e9, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35863346

RESUMEN

Although many studies have addressed the regulatory circuits affecting neuronal activities, local non-synaptic mechanisms that determine neuronal excitability remain unclear. Here, we found that microglia prevented overactivation of pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) at steady state. Microglia constitutively released platelet-derived growth factor (PDGF) B, which signaled via PDGFRα on neuronal cells and promoted their expression of Kv4.3, a key subunit that conducts potassium currents. Ablation of microglia, conditional deletion of microglial PDGFB, or suppression of neuronal PDGFRα expression in the PVN elevated the excitability of pre-sympathetic neurons and sympathetic outflow, resulting in a profound autonomic dysfunction. Disruption of the PDGFBMG-Kv4.3Neuron pathway predisposed mice to develop hypertension, whereas central supplementation of exogenous PDGFB suppressed pressor response when mice were under hypertensive insult. Our results point to a non-immune action of resident microglia in maintaining the balance of sympathetic outflow, which is important in preventing cardiovascular diseases.


Asunto(s)
Hipertensión , Microglía , Animales , Hipertensión/metabolismo , Ratones , Neuronas/fisiología , Potasio/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
5.
Physiol Rev ; 103(3): 1827-1897, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36422993

RESUMEN

The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Arterial Pulmonar/patología , Canales Iónicos , Pulmón , Vasoconstricción/fisiología , Señalización del Calcio/fisiología , Miocitos del Músculo Liso
6.
Immunity ; 54(9): 2057-2071.e6, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34363749

RESUMEN

Hypertension affects one-third of the world's population, leading to cardiac dysfunction that is modulated by resident and recruited immune cells. Cardiomyocyte growth and increased cardiac mass are essential to withstand hypertensive stress; however, whether immune cells are involved in this compensatory cardioprotective process is unclear. In normotensive animals, single-cell transcriptomics of fate-mapped self-renewing cardiac resident macrophages (RMs) revealed transcriptionally diverse cell states with a core repertoire of reparative gene programs, including high expression of insulin-like growth factor-1 (Igf1). Hypertension drove selective in situ proliferation and transcriptional activation of some cardiac RM states, directly correlating with increased cardiomyocyte growth. During hypertension, inducible ablation of RMs or selective deletion of RM-derived Igf1 prevented adaptive cardiomyocyte growth, and cardiac mass failed to increase, which led to cardiac dysfunction. Single-cell transcriptomics identified a conserved IGF1-expressing macrophage subpopulation in human cardiomyopathy. Here we defined the absolute requirement of RM-produced IGF-1 in cardiac adaptation to hypertension.


Asunto(s)
Adaptación Fisiológica/fisiología , Hipertensión/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Macrófagos/metabolismo , Remodelación Ventricular/fisiología , Animales , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Hipertensión/complicaciones , Hipertensión/inmunología , Lactante , Masculino , Ratones , Persona de Mediana Edad , Miocardio/inmunología , Miocardio/metabolismo , Miocardio/patología
7.
Physiol Rev ; 101(4): 1487-1559, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33769101

RESUMEN

Brain function critically depends on a close matching between metabolic demands, appropriate delivery of oxygen and nutrients, and removal of cellular waste. This matching requires continuous regulation of cerebral blood flow (CBF), which can be categorized into four broad topics: 1) autoregulation, which describes the response of the cerebrovasculature to changes in perfusion pressure; 2) vascular reactivity to vasoactive stimuli [including carbon dioxide (CO2)]; 3) neurovascular coupling (NVC), i.e., the CBF response to local changes in neural activity (often standardized cognitive stimuli in humans); and 4) endothelium-dependent responses. This review focuses primarily on autoregulation and its clinical implications. To place autoregulation in a more precise context, and to better understand integrated approaches in the cerebral circulation, we also briefly address reactivity to CO2 and NVC. In addition to our focus on effects of perfusion pressure (or blood pressure), we describe the impact of select stimuli on regulation of CBF (i.e., arterial blood gases, cerebral metabolism, neural mechanisms, and specific vascular cells), the interrelationships between these stimuli, and implications for regulation of CBF at the level of large arteries and the microcirculation. We review clinical implications of autoregulation in aging, hypertension, stroke, mild cognitive impairment, anesthesia, and dementias. Finally, we discuss autoregulation in the context of common daily physiological challenges, including changes in posture (e.g., orthostatic hypotension, syncope) and physical activity.


Asunto(s)
Circulación Cerebrovascular/fisiología , Trastornos Cerebrovasculares/fisiopatología , Homeostasis/fisiología , Animales , Humanos , Enfermedades del Sistema Nervioso/fisiopatología , Acoplamiento Neurovascular
8.
Physiol Rev ; 100(1): 321-356, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31793845

RESUMEN

Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC's role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.


Asunto(s)
Riñón/metabolismo , Potasio/metabolismo , Cloruro de Sodio/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Homeostasis , Humanos , Hipertensión , Riñón/fisiología , Natriuresis , Insuficiencia Renal Crónica
9.
Proc Natl Acad Sci U S A ; 121(16): e2315123121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38602915

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.


Asunto(s)
Hipertensión Pulmonar , Interleucina-6 , Animales , Ratones , Ratas , Linfocitos T CD4-Positivos/patología , Receptor gp130 de Citocinas/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipoxia/patología , Interleucina-6/genética , Arteria Pulmonar/patología
10.
Pharmacol Rev ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866562

RESUMEN

Nitric oxide (NO) from endothelial NO synthase (eNOS) importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NOS system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species which can transfer between proteins, partition into a hydrophobic phase, and directly activate the sGC-cGMP-PKG pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and non-classical pathways for NO generation in the cardiovascular system, and how these can be modulated for therapeutic purposes. Significance Statement After four decades of intensive research, questions persist about the transduction and control of NO synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Non-classical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.

11.
Physiol Rev ; 99(4): 1701-1763, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31339053

RESUMEN

Obesity is increasingly prevalent and is associated with substantial cardiovascular risk. Adipose tissue distribution and morphology play a key role in determining the degree of adverse effects, and a key factor in the disease process appears to be the inflammatory cell population in adipose tissue. Healthy adipose tissue secretes a number of vasoactive adipokines and anti-inflammatory cytokines, and changes to this secretory profile will contribute to pathogenesis in obesity. In this review, we discuss the links between adipokine dysregulation and the development of hypertension and diabetes and explore the potential for manipulating adipose tissue morphology and its immune cell population to improve cardiovascular health in obesity.


Asunto(s)
Tejido Adiposo/fisiopatología , Presión Sanguínea , Diabetes Mellitus/fisiopatología , Hipertensión/fisiopatología , Obesidad/fisiopatología , Adipoquinas/metabolismo , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Adiposidad , Animales , Diabetes Mellitus/epidemiología , Diabetes Mellitus/inmunología , Diabetes Mellitus/metabolismo , Humanos , Hipertensión/epidemiología , Hipertensión/inmunología , Hipertensión/metabolismo , Mediadores de Inflamación/metabolismo , Obesidad/epidemiología , Obesidad/inmunología , Obesidad/metabolismo , Fenotipo , Medición de Riesgo , Factores de Riesgo , Transducción de Señal , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología
12.
Hum Mol Genet ; 33(17): 1495-1505, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-38776952

RESUMEN

Pulmonary arterial hypertension (PAH) is a disorder with a large genetic component. Biallelic mutations of EIF2AK4, which encodes the kinase GCN2, are causal in two ultra-rare subtypes of PAH, pulmonary veno-occlusive disease and pulmonary capillary haemangiomatosis. EIF2AK4 variants of unknown significance have also been identified in patients with classical PAH, though their relationship to disease remains unclear. To provide patients with diagnostic information and enable family testing, the functional consequences of such rare variants must be determined, but existing computational methods are imperfect. We applied a suite of bioinformatic and experimental approaches to sixteen EIF2AK4 variants that had been identified in patients. By experimentally testing the functional integrity of the integrated stress response (ISR) downstream of GCN2, we determined that existing computational tools have insufficient sensitivity to reliably predict impaired kinase function. We determined experimentally that several EIF2AK4 variants identified in patients with classical PAH had preserved function and are therefore likely to be non-pathogenic. The dysfunctional variants of GCN2 that we identified could be subclassified into three groups: misfolded, kinase-dead, and hypomorphic. Intriguingly, members of the hypomorphic group were amenable to paradoxical activation by a type-1½ GCN2 kinase inhibitor. This experiment approach may aid in the clinical stratification of EIF2AK4 variants and potentially identify hypomorophic alleles receptive to pharmacological activation.


Asunto(s)
Mutación Missense , Proteínas Serina-Treonina Quinasas , Hipertensión Arterial Pulmonar , Humanos , Proteínas Serina-Treonina Quinasas/genética , Mutación Missense/genética , Hipertensión Arterial Pulmonar/genética , Predisposición Genética a la Enfermedad , Hipertensión Pulmonar/genética , Biología Computacional/métodos
13.
Trends Immunol ; 44(2): 93-100, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586780

RESUMEN

Cytokine release syndrome (CRS) is a severe clinical syndrome marked by drastic elevation of inflammatory cytokines such as interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF). Despite the current empirical therapeutic strategies, prediction of CRS onset and identification of high-risk individuals are not satisfactory due to poor understanding of the mechanisms underlying CRS-related immune dysfunction and risk factors for CRS. Recent studies have suggested that conditions such as stress, obesity, diabetes, and hypertension may contribute to the development of CRS. Here, we discuss potential connections between these conditions and CRS pathogenesis, with a focus on stress hormone catecholamine-mediated effects, hoping that the design of CRS therapeutic approaches ensues from a renewed perspective.


Asunto(s)
Catecolaminas , Síndrome de Liberación de Citoquinas , Humanos , Catecolaminas/uso terapéutico , Citocinas , Factores de Riesgo
14.
Circ Res ; 135(1): 93-109, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770649

RESUMEN

BACKGROUND: Hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs) and consequent pulmonary vascular remodeling are the crucial pathological features of pulmonary hypertension (PH). Protein methylation has been shown to be critically involved in PASMC proliferation and PH, but the underlying mechanism remains largely unknown. METHODS: PH animal models were generated by treating mice/rats with chronic hypoxia for 4 weeks. SMYD2-vTg mice (vascular smooth muscle cell-specific suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 (deformed epidural auto-regulatory factor-1) domain-containing protein 2 transgenic) or wild-type rats and mice treated with LLY-507 (3-cyano-5-{2-[4-[2-(3-methylindol-1-yl)ethyl]piperazin-1-yl]-phenyl}-N-[(3-pyrrolidin-1-yl)propyl]benzamide) were used to investigate the function of SMYD2 (suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 domain-containing protein 2) on PH development in vivo. Primary cultured rat PASMCs with SMYD2 knockdown or overexpression were used to explore the effects of SMYD2 on proliferation and to decipher the underlying mechanism. RESULTS: We demonstrated that the expression of the lysine methyltransferase SMYD2 was upregulated in the smooth muscle cells of pulmonary arteries from patients with PH and hypoxia-exposed rats/mice and in the cytoplasm of hypoxia-induced rat PASMCs. More importantly, targeted inhibition of SMYD2 by LLY-507 significantly attenuated hypoxia-induced pulmonary vascular remodeling and PH development in both male and female rats in vivo and reduced rat PASMC hyperproliferation in vitro. In contrast, SMYD2-vTg mice exhibited more severe PH phenotypes and related pathological changes than nontransgenic mice after 4 weeks of chronic hypoxia treatment. Furthermore, SMYD2 overexpression promoted, while SMYD2 knockdown suppressed, the proliferation of rat PASMCs by affecting the cell cycle checkpoint between S and G2 phases. Mechanistically, we revealed that SMYD2 directly interacted with and monomethylated PPARγ (peroxisome proliferator-activated receptor gamma) to inhibit the nuclear translocation and transcriptional activity of PPARγ, which further promoted mitophagy to facilitate PASMC proliferation and PH development. Furthermore, rosiglitazone, a PPARγ agonist, largely abolished the detrimental effects of SMYD2 overexpression on PASMC proliferation and PH. CONCLUSIONS: Our results demonstrated that SMYD2 monomethylates nonhistone PPARγ and inhibits its nuclear translocation and activation to accelerate PASMC proliferation and PH by triggering mitophagy, indicating that targeting SMYD2 or activating PPARγ are potential strategies for the prevention of PH.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Hipertensión Pulmonar , Hipoxia , Mitofagia , Músculo Liso Vascular , Miocitos del Músculo Liso , PPAR gamma , Arteria Pulmonar , Ratas Sprague-Dawley , Animales , Humanos , Masculino , Ratones , Ratas , Proliferación Celular , Células Cultivadas , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/genética , Hipoxia/complicaciones , Hipoxia/metabolismo , Metilación , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , PPAR gamma/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Remodelación Vascular
15.
Circ Res ; 135(9): 933-950, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39234670

RESUMEN

BACKGROUND: Hypertension incidence increases with age and represents one of the most prevalent risk factors for cardiovascular disease. Clonal events in the hematopoietic system resulting from somatic mutations in driver genes are prevalent in elderly individuals who lack overt hematologic disorders. This condition is referred to as age-related clonal hematopoiesis (CH), and it is a newly recognized risk factor for cardiovascular disease. It is not known whether CH and hypertension in the elderly are causally related and, if so, what are the mechanistic features. METHODS: A murine model of adoptive bone marrow transplantation was employed to examine the interplay between Tet2 (ten-eleven translocation methylcytosine dioxygenase 2) clonal hematopoiesis and hypertension. RESULTS: In this model, a subpressor dose of Ang II (angiotensin II) resulted in elevated systolic and diastolic blood pressure as early as 1 day after challenge. These conditions led to the expansion of Tet2-deficient proinflammatory monocytes and bone marrow progenitor populations. Tet2 deficiency promoted renal CCL5 (C-C motif ligand 5) chemokine expression and macrophage infiltration into the kidney. Consistent with macrophage involvement, Tet2 deficiency in myeloid cells promoted hypertension when mice were treated with a subpressor dose of Ang II. The hematopoietic Tet2-/- condition led to sodium retention, renal inflammasome activation, and elevated levels of IL (interleukin)-1ß and IL-18. Analysis of the sodium transporters indicated NCC (sodium-chloride symporter) and NKCC2 (Na+-K+-Cl- cotransporter 2) activation at residues Thr53 and Ser105, respectively. Administration of the NLRP3 (NLR family pyrin domain containing 3) inflammasome inhibitor MCC950 reversed the hypertensive state, sodium retention, and renal transporter activation. CONCLUSIONS: Tet2-mediated CH sensitizes mice to a hypertensive stimulus. Mechanistically, the expansion of hematopoietic Tet2-deficient cells promotes hypertension due to elevated renal immune cell infiltration and activation of the NLRP3 inflammasome, with consequences on sodium retention. These data indicate that carriers of TET2 CH could be at elevated risk for the development of hypertension and that immune modulators could be useful in treating hypertension in this patient population.


Asunto(s)
Angiotensina II , Hematopoyesis Clonal , Proteínas de Unión al ADN , Dioxigenasas , Hipertensión , Inflamasomas , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas , Animales , Dioxigenasas/metabolismo , Dioxigenasas/genética , Inflamasomas/metabolismo , Inflamasomas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Hipertensión/metabolismo , Hipertensión/genética , Hipertensión/fisiopatología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ratones , Hematopoyesis Clonal/genética , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Masculino , Trasplante de Médula Ósea
16.
Circ Res ; 134(12): 1663-1680, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843286

RESUMEN

Over the past 30 years, the field of cardioimmunology has moved from being dismissed as a field that was chasing an epiphenomenon of little biological consequence to a scientific discipline that is providing important new insights into the immunologic basis for hypertension, atherosclerosis, myocarditis, pericarditis, autoimmune heart disease, and heart failure. In this article, we will review the conceptual insights and technical breakthroughs that have allowed the field to move forward, as well as the clinical trials in the cardioimmunology space, to provide a historical context for the articles that will appear in the compendium that is focused on the interface between cardioimmunology, myocardial function, and disease.


Asunto(s)
Cardiopatías , Humanos , Animales , Cardiopatías/inmunología , Cardiopatías/terapia , Alergia e Inmunología/tendencias , Alergia e Inmunología/historia , Enfermedades Cardiovasculares/inmunología , Historia del Siglo XXI , Historia del Siglo XX
17.
Circ Res ; 135(5): 614-628, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011638

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is an emerging major unmet need and one of the most significant clinic challenges in cardiology. The pathogenesis of HFpEF is associated with multiple risk factors. Hypertension and metabolic disorders associated with obesity are the 2 most prominent comorbidities observed in patients with HFpEF. Although hypertension-induced mechanical overload has long been recognized as a potent contributor to heart failure with reduced ejection fraction, the synergistic interaction between mechanical overload and metabolic disorders in the pathogenesis of HFpEF remains poorly characterized. METHOD: We investigated the functional outcome and the underlying mechanisms from concurrent mechanic and metabolic stresses in the heart by applying transverse aortic constriction in lean C57Bl/6J or obese/diabetic B6.Cg-Lepob/J (ob/ob) mice, followed by single-nuclei RNA-seq and targeted manipulation of a top-ranked signaling pathway differentially affected in the 2 experimental cohorts. RESULTS: In contrast to the post-transverse aortic constriction C57Bl/6J lean mice, which developed pathological features of heart failure with reduced ejection fraction over time, the post-transverse aortic constriction ob/ob mice showed no significant changes in ejection fraction but developed characteristic pathological features of HFpEF, including diastolic dysfunction, worsened cardiac hypertrophy, and pathological remodeling, along with further deterioration of exercise intolerance. Single-nuclei RNA-seq analysis revealed significant transcriptome reprogramming in the cardiomyocytes stressed by both pressure overload and obesity/diabetes, markedly distinct from the cardiomyocytes singularly stressed by pressure overload or obesity/diabetes. Furthermore, glucagon signaling was identified as the top-ranked signaling pathway affected in the cardiomyocytes associated with HFpEF. Treatment with a glucagon receptor antagonist significantly ameliorated the progression of HFpEF-related pathological features in 2 independent preclinical models. Importantly, cardiomyocyte-specific genetic deletion of the glucagon receptor also significantly improved cardiac function in response to pressure overload and metabolic stress. CONCLUSIONS: These findings identify glucagon receptor signaling in cardiomyocytes as a critical determinant of HFpEF progression and provide proof-of-concept support for glucagon receptor antagonism as a potential therapy for the disease.


Asunto(s)
Insuficiencia Cardíaca , Ratones Endogámicos C57BL , Volumen Sistólico , Animales , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Volumen Sistólico/efectos de los fármacos , Ratones , Masculino , Receptores de Glucagón/antagonistas & inhibidores , Receptores de Glucagón/metabolismo , Receptores de Glucagón/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratones Obesos , Función Ventricular Izquierda/efectos de los fármacos , Obesidad/metabolismo , Obesidad/fisiopatología , Obesidad/complicaciones , Modelos Animales de Enfermedad , Transducción de Señal
18.
Circ Res ; 134(10): 1276-1291, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38623763

RESUMEN

BACKGROUND: Hypertension is characterized by CD8+ (cluster differentiation 8) T cell activation and infiltration into peripheral tissues. CD8+ T cell activation requires proteasomal processing of antigenic proteins. It has become clear that isoLG (isolevuglandin)-adduced peptides are antigenic in hypertension; however, IsoLGs inhibit the constitutive proteasome. We hypothesized that immunoproteasomal processing of isoLG-adducts is essential for CD8+ T cell activation and inflammation in hypertension. METHODS: IsoLG adduct processing was studied in murine dendritic cells (DCs), endothelial cells (ECs), and B8 fibroblasts. The role of the proteasome and the immunoproteasome in Ang II (angiotensin II)-induced hypertension was studied in C57BL/6 mice treated with bortezomib or the immunoproteasome inhibitor PR-957 and by studying mice lacking 3 critical immunoproteasome subunits (triple knockout mouse). We also examined hypertension in mice lacking the critical immunoproteasome subunit LMP7 (large multifunctional peptidase 7) specifically in either DCs or ECs. RESULTS: We found that oxidant stress increases the presence of isoLG adducts within MHC-I (class I major histocompatibility complex), and immunoproteasome overexpression augments this. Pharmacological or genetic inhibition of the immunoproteasome attenuated hypertension and tissue inflammation. Conditional deletion of LMP7 in either DCs or ECs attenuated hypertension and vascular inflammation. Finally, we defined the role of the innate immune receptors STING (stimulator of interferon genes) and TLR7/8 (toll-like receptor 7/8) as drivers of LMP7 expression in ECs. CONCLUSIONS: These studies define a previously unknown role of the immunoproteasome in DCs and ECs in CD8+ T cell activation. The immunoproteasome in DCs and ECs is critical for isoLG-adduct presentation to CD8+ T cells, and in the endothelium, this guides homing and infiltration of T cells to specific tissues.


Asunto(s)
Bortezomib , Linfocitos T CD8-positivos , Células Dendríticas , Hipertensión , Complejo de la Endopetidasa Proteasomal , Animales , Masculino , Ratones , Angiotensina II , Bortezomib/farmacología , Linfocitos T CD8-positivos/inmunología , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/inmunología , Fibroblastos/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Hipertensión/metabolismo , Hipertensión/inmunología , Activación de Linfocitos , Ratones Endogámicos C57BL , Ratones Noqueados , Oligopéptidos , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología
19.
Circ Res ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39355906

RESUMEN

BACKGROUND: Genome-wide association studies implicate common genetic variations in the LRP1 (low-density lipoprotein receptor-related protein 1) locus at risk for multiple vascular diseases and traits. However, the underlying biological mechanisms are unknown. METHODS: Fine mapping analyses included Bayesian colocalization to identify the most likely causal variant. Human induced pluripotent stem cells were genome-edited using CRISPR-Cas9 to delete or modify candidate enhancer regions and generate LRP1 knockout cell lines. Cells were differentiated into smooth muscle cells through a mesodermal lineage. Transcription regulation was assessed using luciferase reporter assay, transcription factor knockdown, and chromatin immunoprecipitation. Phenotype changes in cells were conducted using cellular assays, bulk RNA sequencing, and mass spectrometry. RESULTS: Multitrait colocalization analyses pointed at rs11172113 as the most likely causal variant in LRP1 for fibromuscular dysplasia, migraine, pulse pressure, and pulmonary function trait. We found the rs11172113-T allele to associate with higher LRP1 expression. Genomic deletion in induced pluripotent stem cell-derived smooth muscle cells supported rs11172113 to locate in an enhancer region regulating LRP1 expression. We found transcription factors MECP2 (methyl CpG binding protein 2) and SNAIL to repress LRP1 expression through an allele-specific mechanism, involving SNAIL interaction with disease risk allele. LRP1 knockout decreased induced pluripotent stem cell-derived smooth muscle cell proliferation and migration. Differentially expressed genes were enriched for collagen-containing extracellular matrix, connective tissue development, and lung development. LRP1 knockout and deletion of rs11172113 enhancer showed potentiated canonical TGF-ß (transforming growth factor beta) signaling through enhanced phosphorylation of SMAD2/3. Analyses of the protein content of decellularized extracts indicated partial extracellular matrix remodeling involving enhanced secretion of CYR61, a known LRP1 ligand involved in vascular integrity and TIMP3, implicated in extracellular matrix maintenance and also known to interact with LRP1. CONCLUSIONS: Our findings support allele-specific LRP1 gene repression by the endothelial-to-mesenchymal transition regulator SNAIL. We propose decreased LRP1 expression in smooth muscle cells to remodel the extracellular matrix enhanced by TGF-ß as a potential mechanism of this pleiotropic locus for vascular diseases.

20.
Circ Res ; 135(3): e76-e93, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38841840

RESUMEN

BACKGROUND: Despite advances in understanding hypertension's genetic structure, how noncoding genetic variants influence it remains unclear. Studying their interaction with DNA methylation is crucial to deciphering this complex disease's genetic mechanisms. METHODS: We investigated the genetic and epigenetic interplay in hypertension using whole-genome bisulfite sequencing. Methylation profiling in 918 males revealed allele-specific methylation and methylation quantitative trait loci. We engineered rs1275988T/C mutant mice using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9), bred them for homozygosity, and subjected them to a high-salt diet. Telemetry captured their cardiovascular metrics. Protein-DNA interactions were elucidated using DNA pull-downs, mass spectrometry, and Western blots. A wire myograph assessed vascular function, and analysis of the Kcnk3 gene methylation highlighted the mutation's role in hypertension. RESULTS: We discovered that DNA methylation-associated genetic effects, especially in non-cytosine-phosphate-guanine (non-CpG) island and noncoding distal regulatory regions, significantly contribute to hypertension predisposition. We identified distinct methylation quantitative trait locus patterns in the hypertensive population and observed that the onset of hypertension is influenced by the transmission of genetic effects through the demethylation process. By evidence-driven prioritization and in vivo experiments, we unearthed rs1275988 in a cell type-specific enhancer as a notable hypertension causal variant, intensifying hypertension through the modulation of local DNA methylation and consequential alterations in Kcnk3 gene expression and vascular remodeling. When exposed to a high-salt diet, mice with the rs1275988C/C genotype exhibited exacerbated hypertension and significant vascular remodeling, underscored by increased aortic wall thickness. The C allele of rs1275988 was associated with elevated DNA methylation levels, driving down the expression of the Kcnk3 gene by attenuating Nr2f2 (nuclear receptor subfamily 2 group F member 2) binding at the enhancer locus. CONCLUSIONS: Our research reveals new insights into the complex interplay between genetic variations and DNA methylation in hypertension. We underscore hypomethylation's potential in hypertension onset and identify rs1275988 as a causal variant in vascular remodeling. This work advances our understanding of hypertension's molecular mechanisms and encourages personalized health care strategies.


Asunto(s)
Metilación de ADN , Hipertensión , Sitios de Carácter Cuantitativo , Animales , Humanos , Masculino , Ratones , Presión Sanguínea/genética , Epigénesis Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Ratones Endogámicos C57BL , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Cloruro de Sodio Dietético/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA