Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 187(9): 2095-2116, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670067

RESUMEN

Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Inmunidad de la Planta , Plantas , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Plantas/inmunología , Plantas/genética , Resistencia a la Enfermedad/genética , Humanos
2.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34880135

RESUMEN

Three types of variable lymphocyte receptor (VLR) genes, VLRA, VLRB, and VLRC, encode antigen recognition receptors in the extant jawless vertebrates, lampreys and hagfish. The somatically diversified repertoires of these VLRs are generated by serial stepwise copying of leucine-rich repeat (LRR) sequences into an incomplete germline VLR gene. Lymphocytes that express VLRA or VLRC are T cell-like, while VLRB-expressing cells are B cell-like. Here, we analyze the composition of the VLRB locus in different jawless vertebrates to elucidate its configuration and evolutionary modification. The incomplete germline VLRB genes of two hagfish species contain short noncoding intervening sequences, whereas germline VLRB genes in six representative lamprey species have much longer intervening sequences that exhibit notable genomic variation. Genomic clusters of potential LRR cassette donors, fragments of which are copied to complete VLRB gene assembly, are identified in Japanese lamprey and sea lamprey. In the sea lamprey, 428 LRR cassettes are located in five clusters spread over a total of 1.7 Mbp of chromosomal DNA. Preferential usage of the different donor cassettes for VLRB assemblage is characterized in our analysis, which reveals evolutionary modifications of the lamprey VLRB genes, elucidates the organization of the complex VLRB locus, and provides a comprehensive catalog of donor VLRB cassettes in sea lamprey and Japanese lamprey.


Asunto(s)
Anticuerpos/metabolismo , Anguila Babosa/genética , Lampreas/genética , Proteínas Repetidas Ricas en Leucina/metabolismo , Linfocitos/metabolismo , Filogenia , Animales , Variación Genética , Proteínas Repetidas Ricas en Leucina/genética , Especificidad de la Especie
3.
Immunogenetics ; 74(1): 111-128, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34981186

RESUMEN

For over half a century, deciphering the origins of the genomic loci that form the jawed vertebrate adaptive immune response has been a major topic in comparative immunogenetics. Vertebrate adaptive immunity relies on an extensive and highly diverse repertoire of tandem arrays of variable (V), diversity (D), and joining (J) gene segments that recombine to produce different immunoglobulin (Ig) and T cell receptor (TCR) genes. The current consensus is that a recombination-activating gene (RAG)-like transposon invaded an exon of an ancient innate immune VJ-bearing receptor, giving rise to the extant diversity of Ig and TCR loci across jawed vertebrates. However, a model for the evolutionary relationships between extant non-recombining innate immune receptors and the V(D)J receptors of the jawed vertebrate adaptive immune system has only recently begun to come into focus. In this review, we provide an overview of non-recombining VJ genes, including CD8ß, CD79b, natural cytotoxicity receptor 3 (NCR3/NKp30), putative remnants of an antigen receptor precursor (PRARPs), and the multigene family of signal-regulatory proteins (SIRPs), that play a wide range of roles in immune function. We then focus in detail on the VJ-containing novel immune-type receptors (NITRs) from ray-finned fishes, as recent work has indicated that these genes are at least 50 million years older than originally thought. We conclude by providing a conceptual model of the evolutionary origins and phylogenetic distribution of known VJ-containing innate immune receptors, highlighting opportunities for future comparative research that are empowered by this emerging evolutionary perspective.


Asunto(s)
Evolución Molecular , Vertebrados , Inmunidad Adaptativa/genética , Animales , Inmunidad Innata/genética , Inmunoglobulinas/genética , Filogenia , Receptores de Antígenos de Linfocitos T , Receptores Inmunológicos/genética , Vertebrados/genética
4.
Immunogenetics ; 73(1): 5-16, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33159554

RESUMEN

Jawless vertebrates diverged from an ancestor of jawed vertebrates approximately 550 million years ago. They mount adaptive immune responses to repetitive antigenic challenges, despite lacking major histocompatibility complex molecules, immunoglobulins, T cell receptors, and recombination-activating genes. Instead of B cell and T cell receptors, agnathan lymphocytes express unique antigen receptors named variable lymphocyte receptors (VLRs), which generate diversity through a gene conversion-like mechanism. Although gnathostome antigen receptors and VLRs are structurally unrelated, jawed and jawless vertebrates share essential features of lymphocyte-based adaptive immunity, including the expression of a single type of receptor on each lymphocyte, clonal expansion of antigen-stimulated lymphocytes, and the dichotomy of cellular and humoral immunity, indicating that the backbone of the adaptive immune system was established in a common ancestor of all vertebrates. Furthermore, recent evidence indicates that, unlike previously thought, agnathans have a unique classical pathway of complement activation where VLRB molecules act as antibodies instead of immunoglobulins. It seems likely that the last common ancestor of all vertebrates had an adaptive immune system resembling that of jawless vertebrates, suggesting that, as opposed to jawed vertebrates, agnathans have retained the prototype of vertebrate adaptive immunity.


Asunto(s)
Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , Vertebrados/inmunología , Animales , Anticuerpos/genética , Anticuerpos/inmunología , Evolución Biológica , Vía Clásica del Complemento , Citidina Desaminasa/genética , Citidina Desaminasa/inmunología , Citocinas/genética , Citocinas/inmunología , Inmunidad Innata , Linfocitos/citología , Linfocitos/inmunología , Receptores de Antígenos/genética , Receptores de Antígenos/inmunología , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Vertebrados/genética
5.
Mol Ecol ; 27(17): 3515-3524, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30040159

RESUMEN

Spatial variation in pathogen-mediated selection is predicted to influence the evolutionary trajectory of host populations and lead to spatial variation in their immunogenetic composition. However, to date few studies have been able to directly link small-scale spatial variation in infection risk to host immune gene evolution in natural, nonhuman populations. Here, we use a natural rodent-Borrelia system to test for associations between landscape-level spatial variation in Borrelia infection risk along replicated elevational gradients in the Swiss Alps and Toll-like receptor 2 (TLR2) evolution, a candidate gene for Borrelia resistance, across bank vole (Myodes glareolus) populations. We found that Borrelia infection risk (i.e., the product of Borrelia prevalence in questing ticks and the average tick load of voles at a sampling site) was spatially variable and significantly negatively associated with elevation. Across sampling sites, Borrelia prevalence in bank voles was significantly positively associated with Borrelia infection risk along the elevational clines. We observed a significant association between naturally occurring TLR2 polymorphisms in hosts and their Borrelia infection status. The TLR2 variant associated with a reduced likelihood of Borrelia infection was most common in rodent populations at lower elevations that face a high Borrelia infection risk, and its frequency changed in accordance with the change in Borrelia infection risk along the elevational clines. These results suggest that small-scale spatial variation in parasite-mediated selection affects the immunogenetic composition of natural host populations, providing a striking example that the microbial environment shapes the evolution of the host's immune system in the wild.


Asunto(s)
Arvicolinae/genética , Infecciones por Borrelia/veterinaria , Resistencia a la Enfermedad/genética , Receptor Toll-Like 2/genética , Altitud , Animales , Arvicolinae/microbiología , Borrelia , Ambiente , Genotipo , Ixodes , Análisis Espacial , Suiza
6.
iScience ; 27(4): 109590, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38632986

RESUMEN

A quarter of marine mammals are at risk of extinction, with disease and poor habitat quality contributing to population decline. Investigation of the Major Histocompatibility Complex (MHC) provides insight into species' capacity to respond to immune and environmental challenges. The eighteen available cetacean chromosome level genomes were used to annotate MHC Class I loci, and to reconstruct the phylogenetic relationship of the described loci. The highest number of loci was observed in the striped dolphin (Stenella coeruleoalba), while the least was observed in the pygmy sperm whale (Kogia breviceps) and rough toothed dolphin (Steno bredanensis). Of the species studied, Mysticetes had the most pseudogenes. Evolutionarily, MHC Class I diverged before the speciation of cetaceans. Yet, locus one was genomically and phylogenetically similar in many species, persisting over evolutionary time. This characterisation of MHC Class I in cetaceans lays the groundwork for future population genetics and MHC expression studies.

7.
iScience ; 27(4): 109411, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38510150

RESUMEN

To investigate the impact of paracrine IL-2 signals on memory precursor (MP) cell differentiation, we activated CD8 T cell in vitro in the presence or absence of exogenous IL-2 (ex-IL-2). We assessed memory differentiation by transferring these cells into virus-infected mice. Both conditions generated CD8 T cells that participate in the ongoing response and gave rise to similar memory cells. Nevertheless, when transferred into a naive host, T cells activated with ex-IL-2 generated a higher frequency of memory cells displaying increased functional memory traits. Single-cell RNA-seq analysis indicated that without ex-IL-2, cells rapidly acquire an MP signature, while in its presence they adopted an effector signature. This was confirmed at the protein level and in a functional assay. Overall, ex-IL-2 delays the transition into MP cells, allowing the acquisition of effector functions that become imprinted in their progeny. These findings may help to optimize the generation of therapeutic T cells.

8.
Cell Rep ; 42(8): 112933, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37542721

RESUMEN

Jawless vertebrates possess an alternative adaptive immune system in which antigens are recognized by variable lymphocyte receptors (VLRs) generated by combinatorial assembly of leucine-rich repeat (LRR) cassettes. Three types of receptors, VLRA, VLRB, and VLRC, have been previously identified. VLRA- and VLRC-expressing cells are T cell-like, whereas VLRB-expressing cells are B cell-like. Here, we report two types of VLRs in lampreys, VLRD and VLRE, phylogenetically related to VLRA and VLRC. The germline VLRD and VLRE genes are flanked by 39 LRR cassettes used in the assembly of mature VLRD and VLRE, with cassettes from chromosomes containing the VLRA and VLRC genes also contributing to VLRD and VLRE assemblies. VLRD and VLRE transcription is highest in the triple-negative (VLRA-/VLRB-/VLRC-) population of lymphocytes, albeit also detectable in VLRA+ and VLRC+ populations. Tissue distribution studies suggest that lamprey VLRD+ and VLRE+ lymphocytes comprise T-like sublineages of cells.


Asunto(s)
Lampreas , Linfocitos , Animales , Linfocitos T , Antígenos , Linfocitos B , Receptores de Antígenos/genética
9.
Evol Med Public Health ; 10(1): 256-265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712085

RESUMEN

Immune system evolution is shaped by the fitness costs and trade-offs associated with mounting an immune response. Costs that arise mainly as a function of the magnitude of investment, including energetic and immunopathological costs, are well-represented in studies of immune system evolution. Less well considered, however, are the costs of immune cell plasticity and specialization. Hosts in nature encounter a large diversity of microbes and parasites that require different and sometimes conflicting immune mechanisms for defense, but it takes precious time to recognize and correctly integrate signals for an effective polarized response. In this perspective, we propose that bet-hedging can be a viable alternative to plasticity in immune cell effector function, discuss conditions under which bet-hedging is likely to be an advantageous strategy for different arms of the immune system, and present cases from both innate and adaptive immune systems that suggest bet-hedging at play.

10.
iScience ; 24(8): 102861, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34401660

RESUMEN

Highly mutable viruses evolve to evade host immunity that exerts selective pressure and adapts to viral dynamics. Here, we provide a framework for identifying key determinants of the mode and fate of viral-immune coevolution by linking molecular recognition and eco-evolutionary dynamics. We find that conservation level and initial diversity of antigen jointly determine the timing and efficacy of narrow and broad antibody responses, which in turn control the transition between viral persistence, clearance, and rebound. In particular, clearance of structurally complex antigens relies on antibody evolution in a larger antigenic space than where selection directly acts; viral rebound manifests binding-mediated feedback between ecology and rapid evolution. Finally, immune compartmentalization can slow viral escape but also delay clearance. This work suggests that flexible molecular binding allows a plastic phenotype that exploits potentiating neutral variations outside direct contact, opening new and shorter paths toward highly adaptable states.

11.
Front Immunol ; 12: 635521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017326

RESUMEN

Highly polymorphic loci evolved many times over the history of species. These polymorphic loci are involved in three types of functions: kind recognition, self-incompatibility, and the jawed vertebrate adaptive immune system (AIS). In the first part of this perspective, we reanalyzed and described some cases of polymorphic loci reported in the literature. There is a convergent evolution within each functional category and between functional categories, suggesting that the emergence of these self/non-self recognition loci has occurred multiple times throughout the evolutionary history. Most of the highly polymorphic loci are coding for proteins that have a homophilic interaction or heterophilic interaction between linked loci, leading to self or non-self-recognition. The highly polymorphic MHCs, which are involved in the AIS have a different functional mechanism, as they interact through presented self or non-self-peptides with T cell receptors, whose diversity is generated by somatic recombination. Here we propose a mechanism called "the capacity of recognition competition mechanism" that might contribute to the evolution of MHC polymorphism. We propose that the published cases corresponding to these three biological categories represent a small part of what can be found throughout the tree of life, and that similar mechanisms will be found many times, including the one where polymorphic loci interact with somatically generated loci.


Asunto(s)
Inmunidad Adaptativa/genética , Evolución Molecular , Genes Codificadores de los Receptores de Linfocitos T/genética , Tolerancia Inmunológica/genética , Complejo Mayor de Histocompatibilidad/genética , Animales , Sitios Genéticos , Humanos , Plantas/genética , Plantas/inmunología , Polimorfismo Genético , Autotolerancia/genética , Especificidad de la Especie
12.
Front Immunol ; 12: 709165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394111

RESUMEN

The appearance of adaptive immunity in jawed vertebrates is termed the immunological 'Big Bang' because of the short evolutionary time over which it developed. Underlying it is the recombination activating gene (RAG)-based V(D)J recombination system, which initiates the sequence diversification of the immunoglobulins and lymphocyte antigen receptors. It was convincingly argued that the RAG1 and RAG2 genes originated from a single transposon. The current dogma postulates that the V(D)J recombination system was established by the split of a primordial vertebrate immune receptor gene into V and J segments by a RAG1/2 transposon, in parallel with the domestication of the same transposable element in a separate genomic locus as the RAG recombinase. Here, based on a new interpretation of previously published data, we propose an alternative evolutionary hypothesis suggesting that two different elements, a RAG1/2 transposase and a Transib transposon invader with RSS-like terminal inverted repeats, co-evolved to work together, resulting in a functional recombination process. This hypothesis offers an alternative understanding of the acquisition of recombinase function by RAGs and the origin of the V(D)J system.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Unión al ADN/genética , Evolución Molecular , Genes RAG-1/fisiología , Recombinación V(D)J , Animales , Humanos
13.
iScience ; 23(7): 101277, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32619702

RESUMEN

Neoplastic transformation causing cancer is a key problem in tumor biology and can be triggered by exposure to environmental substances. We investigated whether the cellular composition of a tissue contributes to its predisposition to cancer upon a specific carcinogen. Neutrophils are important immune components involved in cancer progression, but their contribution to generation of transformed cells is elusive. Yet, neutrophil-released reactive oxygen species (ROS) can cause tissue damage, which potentially favors tumorigenesis. Here, we show that neutrophils contribute directly to neoplastic transformation by amplifying the genotoxicity of urethane in lung cells via ROS. Neutrophil-driven ROS-dependent DNA damage is timely restricted to urethane exposure and notably uncoupled from broad tissue damage or inflammation. Neutropenic granulocyte colony-stimulating factor (Gcsf)-knockout mice show reduced lung tumorigenesis, and forcing neutrophil recruitment only during urethane exposure rescues cancer incidence months later. This study shows that the time-restricted neutrophil response to carcinogens can impact the long-term tissue susceptibility to cancer.

14.
Philos Trans R Soc Lond B Biol Sci ; 374(1783): 20190066, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31438817

RESUMEN

Insect metamorphosis promotes the exploration of different ecological niches, as well as exposure to different parasites, across life stages. Adaptation should favour immune responses that are tailored to specific microbial threats, with the potential for metamorphosis to decouple the underlying genetic or physiological basis of immune responses in each stage. However, we do not have a good understanding of how early-life exposure to parasites influences immune responses in subsequent life stages. Is there a developmental legacy of larval infection in holometabolous insect hosts? To address this question, we exposed flour beetle (Tribolium castaneum) larvae to a protozoan parasite that inhabits the midgut of larvae and adults despite clearance during metamorphosis. We quantified the expression of relevant immune genes in the gut and whole body of exposed and unexposed individuals during the larval, pupal and adult stages. Our results suggest that parasite exposure induces the differential expression of several immune genes in the larval stage that persist into subsequent stages. We also demonstrate that immune gene expression covariance is partially decoupled among tissues and life stages. These results suggest that larval infection can leave a lasting imprint on immune phenotypes, with implications for the evolution of metamorphosis and immune systems. This article is part of the theme issue 'The evolution of complete metamorphosis'.


Asunto(s)
Larva/parasitología , Metamorfosis Biológica/inmunología , Tribolium/parasitología , Animales , Larva/crecimiento & desarrollo , Larva/inmunología , Tribolium/crecimiento & desarrollo , Tribolium/inmunología
15.
Front Immunol ; 10: 1298, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244844

RESUMEN

The adaptive immune response in jawed vertebrates is marked by the ability to diversify somatically specific immune receptor genes. Somatic recombination and hypermutation of gene segments are used to generate extensive repertoires of T and B cell receptors. In contrast, jawless vertebrates utilize a distinct diversification system based on copy choice to assemble their variable lymphocyte receptors. To date, very little evidence for somatic immune gene diversification has been reported in invertebrate species. Here we show that the SpTransformer (SpTrf ; formerly Sp185/333) immune effector gene family members from individual coelomocytes from purple sea urchins undergo somatic diversification by means of gene deletions, duplications, and acquisitions of single nucleotide polymorphisms. While sperm cells from an individual sea urchin have identical SpTrf gene repertoires, single cells from two distinct coelomocyte subpopulations from the same sea urchin exhibit significant variation in the SpTrf gene repertoires. Moreover, the highly diverse gene sequences derived from single coelomocytes are all in-frame, suggesting that an unknown mechanism(s) driving these somatic changes involve stringent selection or correction processes for expression of productive SpTrf transcripts. Together, our findings infer somatic immune gene diversification strategy in an invertebrate.


Asunto(s)
Inmunidad Adaptativa/genética , Evolución Biológica , Coelomomyces/genética , Coelomomyces/inmunología , Variación Genética , Erizos de Mar/microbiología , Animales , Genes Fúngicos , Genoma Fúngico , Genómica/métodos , Genotipo , Familia de Multigenes , Sistemas de Lectura Abierta , Filogenia , Selección Genética
16.
Dev Comp Immunol ; 82: 7-30, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29278680

RESUMEN

The extension of comparative immunology to non-model systems, such as mollusks and annelids, has revealed an unexpected diversity in the complement of immune receptors and effectors among evolutionary lineages. However, several lophotrochozoan phyla remain unexplored mainly due to the lack of genomic resources. The increasing accessibility of high-throughput sequencing technologies offers unique opportunities for extending genome-wide studies to non-model systems. As a result, the genome-based study of the immune system in brachiopods allows a better understanding of the alternative survival strategies developed by these immunologically neglected phyla. Here we present a detailed overview of the molecular components of the immune system identified in the genome of the brachiopod Lingula anatina. Our findings reveal conserved intracellular signaling pathways as well as unique strategies for pathogen detection and killing in brachiopods.


Asunto(s)
Interacciones Huésped-Patógeno , Sistema Inmunológico/fisiología , Invertebrados/genética , Animales , Citotoxicidad Inmunológica , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Invertebrados/inmunología , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal/genética , Especificidad de la Especie
17.
Infect Genet Evol ; 44: 341-350, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27393659

RESUMEN

Infections with viral pathogens impose considerable selective pressure on host defensive genes. Those genes at the forefront, responsible for identifying and binding exogenous molecular viral components, will carry the hallmarks of this struggle. Oligoadenylate synthetase (OAS) enzymes play a major role in the innate defense against a large number of viruses by acting as sensors of viral infections. Following their up-regulation by the interferon pathway, OASs bind viral dsRNA and then signal ribonuclease L (RNase L) to degrade RNA, shutting down viral and host protein synthesis. We have investigated the evolution of OAS1 in twenty-two Old World monkey species. We identified a total of 35 codons with the earmarks of positive selection and we performed a comprehensive analysis of their functional significance using in silico modeling of the OAS1 protein. Subdividing OAS1 into functional domains revealed intense purifying selection in the active domain but significant positive directional selection in the RNA-binding domain (RBD), the region where OAS1 binds viral dsRNA. The modeling analysis revealed a concentration of rapidly evolving residues in one region of the RBD suggestive of the sub-functionalization of different regions of the RBD. This analysis also identified several positively selected residues circumscribing the entry to the active site suggesting adaptive evasion of viral antagonism and/or selection for production of oligoadenylate of different length.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo , Evolución Biológica , Interacciones Huésped-Patógeno , Virosis/genética , Virosis/metabolismo , 2',5'-Oligoadenilato Sintetasa/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Dominio Catalítico , Cercopithecidae , Resistencia a la Enfermedad/genética , Evolución Molecular , Variación Genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Modelos Moleculares , Filogenia , Conformación Proteica , ARN Bicatenario/metabolismo , Motivos de Unión al ARN , Selección Genética , Análisis de Secuencia de ADN , Virosis/virología
18.
Adv Immunol ; 122: 59-90, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24507155

RESUMEN

Unlike jawed vertebrates that use T-cell and B-cell receptors for antigen recognition, jawless vertebrates represented by lampreys and hagfish use variable lymphocyte receptors (VLRs) as antigen receptors. VLRs generate diversity comparable to that of gnathostome antigen receptors by assembling variable leucine-rich repeat modules. The discovery of VLR has revolutionized our understanding of how adaptive immunity emerged and highlighted the differences between the adaptive immune systems (AISs) of jawed and jawless vertebrates. However, emerging evidence also indicates that their AISs have much in common. Particularly striking is the conservation of lymphocyte lineages. The basic architecture of the AIS including the dichotomy of lymphocytes appears to have been established in a common ancestor of jawed and jawless vertebrates. We review here the current knowledge on the AIS of jawless vertebrates, emphasizing both the similarities to and differences from the AIS of jawed vertebrates.


Asunto(s)
Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , Anguila Babosa/genética , Anguila Babosa/inmunología , Lampreas/genética , Lampreas/inmunología , Animales , Anguila Babosa/química , Lampreas/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Receptores de Antígenos/química , Receptores de Antígenos/genética , Receptores de Antígenos/inmunología , Vertebrados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA