Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nutrients ; 16(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542713

RESUMEN

This work represents an overview of the current investigations involving organosulfur compounds and colorectal cancer. The molecules discussed in this review have been investigated regarding their impact on colorectal cancer directly, at the in vitro, in vivo, and clinical stages. Organosulfur compounds may have indirect effects on colorectal cancer, such as due to their modulating effects on the intestinal microbiota or their positive effects on intestinal mucosal health. Here, we focus on their direct effects via the repression of multidrug resistance proteins, triggering of apoptosis (via the inhibition of histone deacetylases, increases in reactive oxygen species, p53 activation, ß-catenin inhibition, damage in the mitochondrial membrane, etc.), activation of TGF-ß, binding to tubulin, inhibition of angiogenesis and metastasis mechanisms, and inhibition of cancer stem cells, among others. In general, the interesting positive effects of these nutraceuticals in in vitro tests must be further analyzed with more in vivo models before conducting clinical trials.


Asunto(s)
Neoplasias Colorrectales , Compuestos de Azufre , Humanos , Apoptosis , Suplementos Dietéticos , Neoplasias Colorrectales/patología , Línea Celular Tumoral
2.
Front Immunol ; 14: 1156493, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287978

RESUMEN

Introduction: The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates a broad range of target genes involved in the xenobiotic response, cell cycle control and circadian rhythm. AhR is constitutively expressed in macrophages (Mϕ), acting as key regulator of cytokine production. While proinflammatory cytokines, i.e., IL-1ß, IL-6, IL-12, are suppressed through AhR activation, anti-inflammatory IL-10 is induced. However, the underlying mechanisms of those effects and the importance of the specific ligand structure are not yet completely understood. Methods: Therefore, we have compared the global gene expression pattern in activated murine bone marrow-derived macrophages (BMMs) subsequently to exposure with either benzo[a]pyrene (BaP) or indole-3-carbinol (I3C), representing high-affinity vs. low-affinity AhR ligands, respectively, by means of mRNA sequencing. AhR dependency of observed effects was proved using BMMs from AhR-knockout (Ahr-/-) mice. Results and discussion: In total, more than 1,000 differentially expressed genes (DEGs) could be mapped, covering a plethora of AhR-modulated effects on basal cellular processes, i.e., transcription and translation, but also immune functions, i.e., antigen presentation, cytokine production, and phagocytosis. Among DEGs were genes that are already known to be regulated by AhR, i.e., Irf1, Ido2, and Cd84. However, we identified DEGs not yet described to be AhR-regulated in Mϕ so far, i.e., Slpi, Il12rb1, and Il21r. All six genes likely contribute to shifting the Mϕ phenotype from proinflammatory to anti-inflammatory. The majority of DEGs induced through BaP were not affected through I3C exposure, probably due to higher AhR affinity of BaP in comparison to I3C. Mapping of known aryl hydrocarbon response element (AHRE) sequence motifs in identified DEGs revealed more than 200 genes not possessing any AHRE, and therefore being not eligible for canonical regulation. Bioinformatic approaches modeled a central role of type I and type II interferons in the regulation of those genes. Additionally, RT-qPCR and ELISA confirmed a AhR-dependent expressional induction and AhR-dependent secretion of IFN-γ in response to BaP exposure, suggesting an auto- or paracrine activation pathway of Mϕ.


Asunto(s)
Interferón gamma , Transcriptoma , Animales , Ratones , Antiinflamatorios/farmacología , Citocinas/metabolismo , Interferón gamma/metabolismo , Ligandos , Macrófagos , Receptores de Hidrocarburo de Aril/metabolismo
3.
Nat Prod Res ; 36(10): 2610-2614, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33858276

RESUMEN

The vegetative chemical constituent, indol-3-carbinol (I-3-C) studied for its cardioprotective potential in male Sprague dawley rats. The I-3-C at 20 mg/Kg b.w, p.o significantly (p < 0.001) attenuated the high salt induced hypertrophy and produced antihypertensive effect (p < 0.001) as similar to losartan. Further, it significantly reduced the levels of C-reactive protein (p < 0.05), creatinine kinases isoenzyme (p < 0.01), serum lactate dehydrogenase (p < 0.05), myeloperoxidase (p < 0.01) and hydroxyproline (p < 0.01), subsequently increased the nitric oxide level (p < 0.05). The carotid ligation for vascular reactivity against vasopressors revealed a lesser magnitude of change (p < 0.05) in invasive blood pressure for I-3-C, compared to high salt treated animals (p < 0.001). In histology of heart tissue also supported the cardioprotective effect of I-3-C. In silico molecular docking of I-3-C on muscarinic receptor-2 showed the amino acid interaction as similar to acetylcholine.


Asunto(s)
Metanol , Receptores Muscarínicos , Animales , Presión Sanguínea , Hipertrofia , Masculino , Simulación del Acoplamiento Molecular , Ratas , Ratas Sprague-Dawley
4.
Artículo en Inglés | MEDLINE | ID: mdl-33668818

RESUMEN

Inflammatory bowel diseases (IBD), such as Crohn's disease and ulcerative colitis, are multifactorial inflammatory disorders of the gastrointestinal tract, characterised by abdominal cramps, bloody diarrhoea, and anaemia. Standard therapies, including corticosteroids or biologicals, often induce severe side effects, or patients may develop resistance to those therapies. Thus, new therapeutic options for IBD are urgently needed. This study investigates the therapeutic efficacy and safety of two plant-derived ligands of the aryl hydrocarbon receptor (AhR), quercetin (Q), and indol-3-carbinol (I3C), using a translationally relevant mouse model of IBD. Q and I3C are administered by gavage to C57BL/6 wild-type or C57BL/6 Ahr-/- mice suffering from chronic colitis, induced by dextran sulphate sodium (DSS). The course of the disease, intestinal histopathological changes, and in-situ immunological phenotype are scored over 25 days. Our results show that both Q and I3C improved significantly clinical symptoms in moderate DSS colitis, which coincides with a significantly reduced histopathological score. Even in severe DSS colitis I3C, neither Q nor the therapy control 6-thioguanine (6-TG) can prevent a fatal outcome. Moreover, treatment with Q or I3C restored in part DSS-induced loss of epithelial integrity by induction of tight-junction proteins and reduced significantly gut inflammation, as demonstrated by colonoscopy, as well as by immunohistochemistry revealing lower numbers of neutrophils and macrophages. Moreover, the number of Th17 cells is significantly reduced, while the number of Treg cells is significantly increased by treatment with Q or I3C, as well as 6-TG. Q- or I3C-induced amelioration of colitis is not observed in Ahr-/- mice suggesting the requirement of AhR ligation and signalling. Based on the results of this study, plant-derived non-toxic AhR agonists can be considered promising therapeutics in IBD therapy in humans. However, they may differ in terms of efficacy; therefore, it is indispensable to study the dose-response relationship of each individual AhR agonist also with regard to potential adverse effects, since they may also exert AhR-independent effects.


Asunto(s)
Colitis , Receptores de Hidrocarburo de Aril , Animales , Antiinflamatorios/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Sulfato de Dextran/uso terapéutico , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Humanos , Metanol , Ratones , Ratones Endogámicos C57BL , Quercetina/uso terapéutico , Receptores de Hidrocarburo de Aril/genética
5.
Plant Physiol Biochem ; 115: 343-353, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28419960

RESUMEN

Broccoli (Brassica oleracea L. var. italica) sprouts contain glucosinolates (GLs) that when hydrolysed yield health promoting isothiocyanates such as sulforaphane (SF). SF content can be increased by salt (NaCl) stress, although high salt concentrations negatively impact plant growth. Salicylic acid (SA) treatments can attenuate the negative effects of salt on growth. To test whether sprout isothiocyanate content could be elevated without sprout growth being compromised, broccoli seed were germinated and grown for seven days in salt (0, 80 and 160 mM) alone and in combination with 100 µM SA. Increasing concentrations of salt lowered transcript accumulation of GL biosynthetic genes which was reflected in lowered content of Gluconapin, 4-methoxyglucobrassicin and neoglucobrassicin glucosinolates. Other glucosinolates such as glucoraphanin did not alter significantly. Salt (160 mM) increased transcript abundance of the GL hydrolytic gene MYROSINASE (BoMYO) and its cofactor EPITHIOSPECIFIER MODIFIER1 (BoESM1) whose encoded product directs MYROSINASE to produce isothiocyanate rather than nitrile forms. SF content was increased 6-fold by the 160 mM salt treatment, but the salt treatment reduced percentage seed germination, slowed seed germination, and reduced sprout hypocotyl elongation. This growth inhibition was prevented if 100 µM SA was included with the salt treatment. These findings suggest that the increase in SF production by salt occurs in part because of increased transcript abundance of genes in the hydrolytic pathway, which occurs independently of the negative impact of salt on sprout growth.


Asunto(s)
Brassica/efectos de los fármacos , Brassica/metabolismo , Glucosinolatos/metabolismo , Isotiocianatos/metabolismo , Ácido Salicílico/farmacología , Cloruro de Sodio/farmacología , Germinación/efectos de los fármacos , Hipocótilo/efectos de los fármacos , Hipocótilo/metabolismo , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA