Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062812

RESUMEN

Dietary intake of omega-3 polyunsaturated fatty acids (eicosapentaenoic acid, EPA) exerts antiarrhythmic effects, although the mechanisms are poorly understood. Here, we investigated the possible beneficial actions of EPA on saturated fatty acid-induced changes in the L-type Ca2+ channel in cardiomyocytes. Cardiomyocytes were cultured with an oleic acid/palmitic acid mixture (OAPA) in the presence or absence of EPA. Beating rate reduction in cardiomyocytes caused by OAPA were reversed by EPA. EPA also retrieved a reduction in Cav1.2 L-type Ca2+ current, mRNA, and protein caused by OAPA. Immunocytochemical analysis revealed a distinct downregulation of the Cav1.2 channel caused by OAPA with a concomitant decrease in the phosphorylated component of a transcription factor adenosine-3',5'-cyclic monophosphate (cAMP) response element binding protein (CREB) in the nucleus, which were rescued by EPA. A free fatty acid receptor 4 (FFAR4) agonist TUG-891 reversed expression of Cav1.2 and CREB mRNA caused by OAPA, whereas an FFAR4 antagonist AH-7614 abolished the effects of EPA. Excessive reactive oxygen species (ROS) accumulation caused by OAPA decreased Cav1.2 and CREB mRNA expressions, which was reversed by an ROS scavenger. Our data suggest that EPA rescues cellular Cav1.2-Ca2+ channel decline caused by OAPA lipotoxicity and oxidative stresses via both free fatty acid receptor 4-dependent and -independent pathways.


Asunto(s)
Canales de Calcio Tipo L , Ácido Eicosapentaenoico , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ácido Eicosapentaenoico/farmacología , Animales , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Ratas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ácidos Grasos/metabolismo , Transducción de Señal/efectos de los fármacos , Células Cultivadas
2.
Biol Pharm Bull ; 46(1): 133-137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36596522

RESUMEN

The negative inotropic effects of nine Vaughan Williams class I antiarrhythmic drugs were examined in guinea pig ventricular tissue preparations. The drugs decreased the contractile force of papillary muscles with different potencies: the potency order was propafenone > aprindine > cibenzoline > flecainide > ranolazine > disopyramide > pilsicainide > mexiletine > GS-458967. The potency of drugs correlated with the reported IC50 values to block the L-type Ca2+ channel rather than the Na+ channel. The effects of drugs were roughly the same when examined under a high extracellular K+ solution, which inactivates the Na+ channel. Furthermore, the attenuation of the extracellular Ca2+-induced positive inotropy was strong with propafenone, moderate with cibenzoline, and weak with pilsicainide. These results indicate that the negative inotropic effects of class I antiarrhythmic drugs can be largely explained by their blockade of the L-type Ca2+ channel.


Asunto(s)
Antiarrítmicos , Propafenona , Cobayas , Animales , Antiarrítmicos/farmacología , Propafenona/farmacología , Miocardio , Lidocaína/farmacología , Músculos Papilares
3.
Biol Pharm Bull ; 46(8): 1120-1127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37532563

RESUMEN

To clarify the pharmacological properties of the Na+/Ca2+ exchanger (NCX) inhibitor SEA0400 as an antiarrhythmic agent, we assessed its effects on rapid component of delayed rectifier K+ current (IKr) blocker-induced torsade de pointes (TdP) in isoflurane-anesthetized rabbits. Atrioventricular block was induced in rabbits using a catheter ablation technique, and the monophasic action potential (MAP) of the right ventricle was measured under electrical pacing at 60 beats/min. In non-treated control animals, intravenous administration of low-dose (0.3 mg/kg) or high-dose nifekalant (3 mg/kg) prolonged the MAP duration (MAP90) by 113 ± 11 ms (n = 5) and 237 ± 39 ms (n = 5), respectively, where TdP was induced in 1/5 animals treated with a low dose and in 3/5 animals treated with a high dose of nifekalant. In SEA0400-treated animals, low- and high-dose nifekalant prolonged the MAP90 by 65 ± 13 ms (n = 5) and 230 ± 20 ms (n = 5), respectively. No TdP was induced by the low dose but 1/5 animals treated with a high dose of nifekalant developed TdP. In verapamil-treated animals, low-dose and high-dose nifekalant prolonged MAP90 by 50 ± 12 ms (n = 5) and 147 ± 30 ms (n = 5), respectively, without inducing TdP. These results suggest that SEA0400 has the potential to inhibit low-dose nifekalant-induced TdP by suppressing the MAP-prolonging action of nifekalant, whereas the drug inhibited high-dose nifekalant-induced TdP without affecting the MAP-prolonging action of nifekalant. This may reveal that, in contrast to verapamil, the antiarrhythmic effects of SEA0400 on IKr blocker-induced TdP may be multifaceted, depending on the severity of the proarrhythmogenic conditions present.


Asunto(s)
Bloqueo Atrioventricular , Síndrome de QT Prolongado , Torsades de Pointes , Animales , Conejos , Bloqueo Atrioventricular/inducido químicamente , Bloqueo Atrioventricular/tratamiento farmacológico , Intercambiador de Sodio-Calcio , Antiarrítmicos/efectos adversos , Síndrome de QT Prolongado/inducido químicamente , Torsades de Pointes/inducido químicamente , Torsades de Pointes/tratamiento farmacológico , Verapamilo/efectos adversos , Potenciales de Acción
4.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835338

RESUMEN

Mechanisms for the α-adrenoceptor-mediated positive inotropy in neonatal mouse ventricular myocardium were studied with isolated myocardial preparations. The phenylephrine-induced positive inotropy was suppressed by prazosin, nifedipine, and chelerythrine, a protein kinase C inhibitor, but not by SEA0400, a selective Na+/Ca2+ exchanger inhibitor. Phenylephrine increased the L-type Ca2+ channel current and prolonged the action potential duration, while the voltage-dependent K+ channel current was not influenced. In the presence of cromakalim, an ATP-sensitive K+ channel opener, the phenylephrine-induced prolongation of action potential duration, as well as the positive inotropy, were smaller than in the absence of cromakalim. These results suggest that the α-adrenoceptor-mediated positive inotropy is mediated by an increase in Ca2+ influx through the L-type Ca2+ channel, and the concomitant increase in action potential duration acts as an enhancing factor.


Asunto(s)
Contracción Miocárdica , Miocardio , Ratones , Animales , Potenciales de Acción , Cromakalim/farmacología , Contracción Miocárdica/fisiología , Fenilefrina/farmacología , Receptores Adrenérgicos
5.
J Neurophysiol ; 128(6): 1555-1564, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36350063

RESUMEN

Neuronal L-type Ca2+ channels of the CaV1.3 subclass are transmembrane protein complexes that contribute to the pacemaker activity in the adult substantia nigra dopaminergic neurons. The altered function of these channels may play a role in the development and progress of neurodegenerative mechanisms implicated in Parkinson's disease (PD). Although L-type channel expression is precisely regulated, an increased functional expression has been observed in PD. Previously, we showed that Parkin, an E3 enzyme of the ubiquitin-proteasome system (UPS) interacts with neuronal CaV2.2 channels promoting their ubiquitin-mediated degradation. In addition, previous studies show an increase in CaV1.3 channel activity in dopaminergic neurons of the SNc and that Parkin expression is reduced in PD. These findings suggest that the decrease in Parkin may affect the proteasomal degradation of CaV1.3, which helps explain the increase in channel activity. Therefore, the present report aims to gain insight into the degradation mechanisms of the neuronal CaV1.3 channel by the UPS. Immunoprecipitation assays showed the interaction between Parkin and the CaV1.3 channels expressed in HEK-293 cells and neural tissues. Likewise, Parkin overexpression reduced the total and membrane channel levels and decreased the current density. Consistent with this, patch-clamp recordings in the presence of an inhibitor of the UPS, MG132, prevented the effects of Parkin, suggesting enhanced channel proteasomal degradation. In addition, the half-life of the pore-forming CaV1.3α1 protein was significantly reduced by Parkin overexpression. Finally, electrophysiological recordings using a PRKN knockout HEK-293 cell line generated by CRISPR/Cas9 showed increased current density. These results suggest that Parkin promotes the proteasomal degradation of CaV1.3, which may be a relevant aspect for the pathophysiology of PD.NEW & NOTEWORTHY The increased expression of CaV1.3 calcium channels is a crucial feature of Parkinson's disease (PD) pathophysiology. However, the mechanisms that determine this increase are not yet defined. Parkin, an enzyme of the ubiquitin-proteasome system, is known to interact with neuronal channels promoting their ubiquitin-mediated degradation. Interestingly, Parkin mutations also play a role in PD. Here, the degradation mechanisms of CaV1.3 channels and their relationship with the pathophysiology of PD are studied in detail.


Asunto(s)
Canales de Calcio Tipo L , Enfermedad de Parkinson , Ubiquitina-Proteína Ligasas , Humanos , Neuronas Dopaminérgicas/metabolismo , Células HEK293 , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo
6.
Biol Pharm Bull ; 45(9): 1354-1363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36047205

RESUMEN

An increase in intracellular Ca2+ concentration ([Ca2+]i) activates Ca2+-sensitive enzymes such as Ca2+/calmodulin-dependent kinases (CaMK) and induces gene transcription in various types of cells. This signaling pathway is called excitation-transcription (E-T) coupling. Recently, we have revealed that a L-type Ca2+ channel/CaMK kinase (CaMKK) 2/CaMK1α complex located within caveolae in vascular smooth muscle cells (SMCs) can convert [Ca2+]i changes to gene transcription profiles that are related to chemotaxis. Although CaMK1α is expected to be the key molecular identity that can transport Ca2+ signals originated within caveolae to the nucleus, data sets directly proving this scheme are lacking. In this study, multicolor fluorescence imaging methods were utilized to address this question. Live cell imaging using mouse primary aortic SMCs revealed that CaMK1α can translocate from the cytosol to the nucleus; and that this movement was blocked by nifedipine or a CaMKK inhibitor, STO609. Experiments using two types of Ca2+ chelators, ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), combined with caveolin-1 knockout (cav1-KO) mice showed that local Ca2+ events within caveolae are required to trigger this CaMK1α nuclear translocation. Importantly, overexpression of cav1 in isolated cav1-KO myocytes recovered the CaMK1α translocation. In SMCs freshly isolated from mesenteric arteries, CaMK1α was localized mainly within caveolae in the resting state. Membrane depolarization induced both nuclear translocation and phosphorylation of CaMK1α. These responses were inhibited by nifedipine, STO609, cav1-KO, or BAPTA. These new findings strongly suggest that CaMK1α can transduce Ca2+ signaling generated within or very near caveolae to the nucleus and thus, promote E-T coupling.


Asunto(s)
Caveolas , Músculo Liso Vascular , Animales , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Ratones , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/metabolismo , Nifedipino
7.
Proc Natl Acad Sci U S A ; 116(27): 13611-13620, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31209051

RESUMEN

Patterns of postsynaptic activity that induce long-term potentiation of fast excitatory transmission at glutamatergic synapses between hippocampal neurons cause enlargement of the dendritic spine and promote growth in spine endoplasmic reticulum (ER) content. Such postsynaptic activity patterns also impact Ca2+ signaling in the adjoining dendritic shaft, in a zone centered on the spine-shaft junction and extending ∼10-20 µm in either direction along the shaft. Comparing this specialized zone in the shaft with the dendrite in general, plasticity-inducing stimulation of a single spine causes more profound depletion of Ca2+ stores in the ER, a greater degree of interaction between stromal interaction molecule 1 (STIM1) and L-type Ca2+ channels, and thus stronger STIM1 inhibition of these channels. Here we show that the length of this zone along the dendritic axis can be approximately doubled through the neuromodulatory action of ß-adrenergic receptors (ßARs). The mechanism of ßAR enlargement of the zone arises from protein kinase A-mediated enhancement of L-type Ca2+ current, which in turn lowers [Ca2+]ER through ryanodine receptor-dependent Ca2+-induced Ca2+ release and activates STIM1 feedback inhibition of L-type Ca2+ channels. An important function of this dendritic zone is to support crosstalk between spines along its length such that spines neighboring a strongly stimulated spine are enabled to undergo structural plasticity in response to stimulation that would otherwise be subthreshold for spine structural plasticity. This form of crosstalk requires L-type Ca2+ channel current to activate STIM1, and ßAR activity extends the range along the shaft over which such spine-to-spine communication can occur.


Asunto(s)
Calcio/metabolismo , Dendritas/fisiología , Espinas Dendríticas/fisiología , Receptor Cross-Talk/fisiología , Transducción de Señal , Sinapsis/fisiología , Animales , Canales de Calcio Tipo L/fisiología , Retículo Endoplásmico/metabolismo , Femenino , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal/fisiología , Molécula de Interacción Estromal 1/metabolismo , Potenciales Sinápticos/fisiología
8.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681928

RESUMEN

Ca2+ entry through Cav1.3 Ca2+ channels plays essential roles in diverse physiological events. We employed yeast-two-hybrid (Y2H) assays to mine novel proteins interacting with Cav1.3 and found Snapin2, a synaptic protein, as a partner interacting with the long carboxyl terminus (CTL) of rat Cav1.3L variant. Co-expression of Snapin with Cav1.3L/Cavß3/α2δ2 subunits increased the peak current density or amplitude by about 2-fold in HEK-293 cells and Xenopus oocytes, without affecting voltage-dependent gating properties and calcium-dependent inactivation. However, the Snapin up-regulation effect was not found for rat Cav1.3S containing a short CT (CTS) in which a Snapin interaction site in the CTL was deficient. Luminometry and electrophysiology studies uncovered that Snapin co-expression did not alter the membrane expression of HA tagged Cav1.3L but increased the slope of tail current amplitudes plotted against ON-gating currents, indicating that Snapin increases the opening probability of Cav1.3L. Taken together, our results strongly suggest that Snapin directly interacts with the CTL of Cav1.3L, leading to up-regulation of Cav1.3L channel activity via facilitating channel opening probability.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Regulación hacia Arriba , Proteínas de Transporte Vesicular/metabolismo , Animales , Sitios de Unión , Femenino , Células HEK293 , Humanos , Dominios Proteicos , Ratas , Técnicas del Sistema de Dos Híbridos , Xenopus
9.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360954

RESUMEN

Ca2+-dependent gene regulation controls several functions to determine the fate of the cells. Proteins of the nuclear factor of activated T-cells (NFAT) family are Ca2+ sensitive transcription factors that control the cell growth, proliferation and insulin secretion in ß-cells. Translocation of NFAT proteins to the nucleus occurs in a sequence of events that starts with activating calmodulin-dependent phosphatase calcineurin in a Ca2+-dependent manner, which dephosphorylates the NFAT proteins and leads to their translocation to the nucleus. Here, we examined the role of IP3-generating agonists and near-UV light in the induction of NFATc3 migration to the nucleus in the pancreatic ß-cell line INS-1. Our results show that IP3 generation yields cytosolic Ca2+ rise and NFATc3 translocation. Moreover, near-UV light exposure generates reactive oxygen species (ROS), resulting in cytosolic Ca2+ spiking via the L-type Ca2+ channel and triggers NFATc3 translocation to the nucleus. Using the mitochondria as a Ca2+ buffering tool, we showed that ROS-induced cytosolic Ca2+ spiking, not the ROS themselves, was the triggering mechanism of nuclear import of NFATc3. Collectively, this study reveals the mechanism of near-UV light induced NFATc3 migration.


Asunto(s)
Señalización del Calcio , Factores de Transcripción NFATC/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rayos Ultravioleta , Animales , Canales de Calcio Tipo L/metabolismo , Línea Celular Tumoral , Inositol 1,4,5-Trifosfato/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de la radiación , Ratas
10.
Pflugers Arch ; 472(1): 3-25, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31848688

RESUMEN

Cav1.3 L-type Ca2+ channels (LTCCs) in cochlear inner hair cells (IHCs) are essential for hearing as they convert sound-induced graded receptor potentials into tonic postsynaptic glutamate release. To enable fast and indefatigable presynaptic Ca2+ signaling, IHC Cav1.3 channels exhibit a negative activation voltage range and uniquely slow inactivation kinetics. Interaction with CaM-like Ca2+-binding proteins inhibits Ca2+-dependent inactivation, while the mechanisms underlying slow voltage-dependent inactivation (VDI) are not completely understood. Here we studied if the complex formation of Cav1.3 LTCCs with the presynaptic active zone proteins RIM2α and RIM-binding protein 2 (RBP2) can stabilize slow VDI. We detected both RIM2α and RBP isoforms in adult mouse IHCs, where they co-localized with Cav1.3 and synaptic ribbons. Using whole-cell patch-clamp recordings (tsA-201 cells), we assessed their effect on the VDI of the C-terminal full-length Cav1.3 (Cav1.3L) and a short splice variant (Cav1.342A) that lacks the C-terminal RBP2 interaction site. When co-expressed with the auxiliary ß3 subunit, RIM2α alone (Cav1.342A) or RIM2α/RBP2 (Cav1.3L) reduced Cav1.3 VDI to a similar extent as observed in IHCs. Membrane-anchored ß2 variants (ß2a, ß2e) that inhibit inactivation on their own allowed no further modulation of inactivation kinetics by RIM2α/RBP2. Moreover, association with RIM2α and/or RBP2 consolidated the negative Cav1.3 voltage operating range by shifting the channel's activation threshold toward more hyperpolarized potentials. Taken together, the association with "slow" ß subunits (ß2a, ß2e) or presynaptic scaffolding proteins such as RIM2α and RBP2 stabilizes physiological gating properties of IHC Cav1.3 LTCCs in a splice variant-dependent manner ensuring proper IHC function.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Potenciales de Acción , Animales , Sitios de Unión , Canales de Calcio Tipo L/química , Femenino , Células HEK293 , Células Ciliadas Auditivas Internas/fisiología , Humanos , Activación del Canal Iónico , Masculino , Ratones , Unión Proteica
11.
Am J Physiol Heart Circ Physiol ; 318(4): H820-H829, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32083972

RESUMEN

Estrogen deficiency is considered to be an important factor leading to cardiovascular diseases (CVDs). Indeed, the prevalence of CVDs in postmenopausal women exceeds that of premenopausal women and men of the same age. Recent research findings provide evidence that estrogen plays a pivotal role in the regulation of calcium homeostasis and therefore fine-tunes normal cardiomyocyte contraction and relaxation processes. Disruption of calcium homeostasis is closely associated with the pathological mechanism of CVDs. Thus, this paper maps out and summarizes the effects and mechanisms of estrogen on calcium handling proteins in cardiac myocytes, including L-type Ca2+ channel, the sarcoplasmic reticulum Ca2+ release channel named ryanodine receptor, sarco(endo)plasmic reticulum Ca2+-ATPase, and sodium-calcium exchanger. In so doing, we provide theoretical and experimental evidence for the successful design of estrogen-based prevention and treatment therapies for CVDs.


Asunto(s)
Calcio/metabolismo , Enfermedades Cardiovasculares/metabolismo , Estrógenos/metabolismo , Potenciales de Acción , Animales , Canales de Calcio/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Humanos , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Receptores de Estrógenos/metabolismo
12.
Int J Mol Sci ; 21(13)2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-32635638

RESUMEN

Aspirin (acetylsalicylic acid) and its metabolite salicylate, have an anti-melanoma effect by evoking mitochondrial dysfunction through poorly understood mechanisms. Depolarization of the plasma membrane potential leads to voltage-gated Ca2+ entry (VGCE) and caspase-3 activation. In the present study, we investigated the role of depolarization and VGCE in aspirin's anti-melanoma effect. Aspirin and to a lesser extent, salicylate (≥2.5 mM) induced a rapid (within seconds) depolarization, while they caused comparable levels of depolarization with a lag of 2~4 h. Reactive oxygen species (ROS) generation also occurred in the two-time points, and antioxidants abolished the early ROS generation and depolarization. At the same concentrations, the two drugs induced apoptotic and necrotic cell death in a caspase-independent manner, and antioxidants and Ca2+ channel blockers prevented cell death. Besides ROS generation, reduced mitochondrial Ca2+ (Ca2+m) and mitochondrial membrane potential preceded cell death. Moreover, the cells expressed the Cav1.2 isoform of l-type Ca2+ channel, and knockdown of Cav1.2 abolished the decrease in Ca2+m. Our findings suggest that aspirin and salicylate induce Ca2+m remodeling, mitochondrial dysfunction, and cell death via ROS-dependent depolarization and VGCE activation.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Canales de Calcio Tipo L/metabolismo , Melanoma/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Antiinflamatorios no Esteroideos/uso terapéutico , Aspirina/uso terapéutico , Calcio/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos
13.
J Neurosci ; 38(8): 2069-2080, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29358363

RESUMEN

Neuromodulators, such as serotonin (5-HT), alter neuronal excitability and synaptic strengths, and define different behavioral states. Neuromodulator-dependent changes in neuronal activity patterns are frequently measured using calcium reporters because calcium imaging can easily be performed on intact functioning nervous systems. With only 302 neurons, the nematode Caenorhabditis elegans provides a relatively simple, yet powerful, system to understand neuromodulation at the level of individual neurons. C. elegans hermaphrodites are repelled by 1-octanol, and the initiation of these aversive responses is potentiated by 5-HT. 5-HT acts on the ASH polymodal nociceptors that sense the 1-octanol stimulus. Surprisingly, 5-HT suppresses ASH Ca2+ transients while simultaneously potentiating 1-octanol-dependent ASH depolarization. Here we further explore this seemingly inverse relationship. Our results show the following (1) 5-HT acts downstream of depolarization, through Gαq-mediated signaling and calcineurin, to inhibit L-type voltage-gated Ca2+ channels; (2) the 1-octanol-evoked Ca2+ transients in ASHs inhibit depolarization; and (3) the Ca2+-activated K+ channel, SLO-1, acts downstream of 5-HT and is a critical regulator of ASH response dynamics. These findings define a Ca2+-dependent inhibitory feedback loop that can be modulated by 5-HT to increase neuronal excitability and regulate behavior, and highlight the possibility that neuromodulator-induced changes in the amplitudes of Ca2+ transients do not necessarily predict corresponding changes in depolarization.SIGNIFICANCE STATEMENT Neuromodulators, such as 5-HT, modify behavior by regulating excitability and synaptic efficiency in neurons. Neuromodulation is often studied using Ca2+ imaging, whereby neuromodulator-dependent changes in neuronal activity levels can be detected in intact, functioning circuits. Here we show that 5-HT reduces the amplitude of depolarization-dependent Ca2+ transients in a C. elegans nociceptive neuron, through Gαq signaling and calcineurin but that Ca2+ itself inhibits depolarization, likely through Ca2+-activated K+ channels. The net effect of 5-HT, therefore, is to increase neuronal excitability through disinhibition. These results establish a novel 5-HT signal transduction pathway, and demonstrate that neuromodulators can change Ca2+ signals and depolarization amplitudes in opposite directions, simultaneously, within a single neuron.


Asunto(s)
Señalización del Calcio/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Células Receptoras Sensoriales/metabolismo , Serotonina/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Retroalimentación Fisiológica/fisiología
14.
Arch Biochem Biophys ; 671: 62-68, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31158332

RESUMEN

Imidazoline receptor of the first type (I1R) in addition to the established inhibition of sympathetic neurons may mediate the direct control of myocellular functions. Earlier, we revealed that I1-mediated signaling in the normotensive rat cardiomyocytes suppresses the nitric oxide production by endothelial NO synthase, impairs sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity, and elevates intracellular calcium in the cytosol. Also, I1-agonists counteract ß-adrenoceptor stimulation effects in respect to voltage-gated calcium currents. This study ascertains the I1R signal transduction in the normotensive Wistar and SHR cardiomyocytes. Reduction of Ca2+-currents by rilmenidine, a specific agonist of I1R, ensued from the phosphatidylcholine-specific phospholipase C-mediated activation of protein kinase C. There is a stimulation of serine/threonine phosphatase activity. In SHR cardiomyocytes, both the rilmenidine, and putative endogenous ligand, agmatine, almost twofold less effectively reduced L-type of Ca2+-currents. Average mRNA level of Nischarin, established functional component of I1R, is slightly decreased in SHR, as well as the intracellular Nischarin pool immunolabeled in the cytosol of SHR cardiomyocytes. Disturbance of I1R signal transduction in SHR may aggravate the development of this cardiovascular pathology.


Asunto(s)
Receptores de Imidazolina/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Canales de Calcio Tipo L/metabolismo , Relación Dosis-Respuesta a Droga , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Toxinas Marinas , Oxazoles/farmacología , ARN Mensajero/metabolismo , Ratas Endogámicas SHR , Ratas Wistar , Rilmenidina/farmacología
15.
Cell Commun Signal ; 17(1): 34, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30987657

RESUMEN

BACKGROUNDS/AIM: Male and female hearts have many structural and functional differences. Here, we investigated the role of estrogen (E2) in the mechanisms of sex differences in contraction through the cAMP-L-type Ca2+channel pathway in adult mice left ventricular (LV) apical myocytes at basal and stress state. METHODS: Isolated LV apical myocytes from male, female (Sham) and ovariectomised mice (OVX) were used to investigate contractility, Ca2+ transients and L-type Ca2+ channel (LTCC) function. The levels of ß2AR, intracellular cAMP, phosphodiesterase (PDE 3 and PDE 4), RyR2, PLB, SLN, and SERCA2a were compared among the experimental groups. RESULTS: We found that (1) intracellular cAMP, ICaL density, contraction and Ca2+ transient amplitudes were larger in Sham and OVX + E2 myocytes compared to male and OVX. (2) The mRNA expression of PDE 3 and 4 were lower in Sham and OVX + E2 groups compared with male and OVX groups. Treatment of myocytes with IBMX (100 µM) increased contraction and Ca2+ transient amplitude in both sexes and canceled differences between them. (3) ß2AR-mediated stress decreased cAMP concentration and peak contraction and Ca2+ transient amplitude only in male and OVX groups but not in Sham or OVX + E2 groups suggesting a cardioprotective role of E2 in female mice. (4) Pretreatment of OVX myocytes with GPR30 antagonist G15 (100 nM) abolished the effects of E2, but ERα and ERß antagonist ICI 182,780 (1 µM) did not. Moreover, activation of GPR30 with G1 (100 nM) replicated the effects of E2 on cAMP, contraction and Ca2+ transient amplitudes suggesting that the acute effects of E2 were mediated by GPR30 via non-genomic signaling. (5) mRNA expression of RyR2 was higher in myocytes from Sham than those of male while PLB and SLN were higher in male than Sham but no sex differences were observed in the mRNA of SERCA2a. CONCLUSION: Collectively, these results demonstrate that E2 modulates the expression of genes related to the cAMP-LTCC pathway and contributes to sex differences in cardiac contraction and responses to stress. We also show that estrogen confers cardioprotection against cardiac stress by non-genomic acute signaling via GPR30.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , AMP Cíclico/metabolismo , Estradiol/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Receptores Adrenérgicos beta 2/metabolismo , Caracteres Sexuales , Función Ventricular Izquierda/fisiología , Animales , Canales de Calcio Tipo T/metabolismo , Señalización del Calcio , Cardiotónicos/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Estradiol/farmacología , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Receptores Adrenérgicos beta 1/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Función Ventricular Izquierda/efectos de los fármacos
16.
Clin Exp Pharmacol Physiol ; 46(1): 56-64, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30203559

RESUMEN

Inflammation elevates intracellular calcium concentrations ([Ca2+ ]i ) in airway smooth muscle (ASM). The L-type Ca2+ channel (L-VDCC) plays an important role in regulating Ca2+ influx in ASM. However, the role of L-VDCC in the inflammatory cytokine-induced pathology of ASM remains unclear. In the present study, we used calcium imaging and isometric tension measurements to assess the role of L-VDCC in agonist-induced [Ca2+ ]i rise and the associated contractions in mouse ASM, and we used immunoblotting to identify L-VDCC protein expression levels in mouse ASM after exposure to tumour necrosis factor alpha (TNF-α) or interleukin-8 (IL-8). Our results showed that high-K+ - or carbachol-induced contractions of mouse ASM were significantly greater after pretreatment with TNF-α or IL-8 for 24 hours. Both verapamil and nifedipine, L-VDCC inhibitors, abolished this increased contraction induced by TNF-α or IL-8 pretreatment. Moreover, TNF-α treatment enhanced carbachol-induced Ca2+ influx in ASM cells, and this effect was abrogated by verapamil. Additionally, immunoblotting results showed that preincubation of mouse ASM with TNF-α or IL-8 also enhanced L-VDCC protein expression. On the basis of these findings, we concluded that proinflammatory cytokines, such as TNF-α and IL-8, increase the expression level of L-VDCC, which in turn contributes to augmented agonist-induced ASM contractions. This effect of inflammation on L-VDCC expression in ASM may be associated with airway hyper-responsiveness and involved in the development of asthma.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-8/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Tráquea/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Calcio/metabolismo , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Inflamación/metabolismo , Masculino , Ratones , Músculo Liso/citología , Músculo Liso/fisiología , Nifedipino/farmacología , Potasio/farmacología , Tráquea/citología , Tráquea/efectos de los fármacos , Verapamilo/farmacología
17.
J Mol Cell Cardiol ; 114: 58-71, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29032102

RESUMEN

Ischemic heart disease is an arrhythmogenic condition, accompanied by hypoxia, acidosis, and impaired Ca2+ signaling. Here we report on effects of acute hypoxia and acidification in rat neonatal cardiomyocytes cultures. RESULTS: Two populations of neonatal cardiomyocyte were identified based on inactivation kinetics of L-type ICa: rapidly-inactivating ICa (τ~20ms) myocytes (prevalent in 3-4-day cultures), and slow-inactivating ICa (τ≥40ms) myocytes (dominant in 7-day cultures). Acute hypoxia (pO2<5mmHg for 50-100s) suppressed ICa reversibly in both cell-types to different extent and with different kinetics. This disparity disappeared when Ba2+ was the channel charge carrier, or when the intracellular Ca2+ buffering capacity was increased by dialysis of high concentrations of EGTA and BAPTA, suggesting critical role for calcium-dependent inactivation. Suppressive effect of acute acidosis on ICa (~40%, pH6.7), on the other hand, was not cell-type dependent. Isoproterenol enhanced ICa in both cell-types, but protected only against suppressive effects of acidosis and not hypoxia. Hypoxia and acidosis suppressed global Ca2+ transients by ~20%, but suppression was larger, ~35%, at the RyR2 microdomains, using GCaMP6-FKBP targeted probe. Hypoxia and acidosis also suppressed mitochondrial Ca2+ uptake by 40% and 10%, respectively, using mitochondrial targeted Ca2+ biosensor (mito-GCaMP6). CONCLUSION: Our studies suggest that acute hypoxia suppresses ICa in rapidly inactivating cell population by a mechanism involving Ca2+-dependent inactivation, while compromised mitochondrial Ca2+ uptake seems also to contribute to ICa suppression in slowly inactivating cell population. Proximity of cellular Ca2+ pools to sarcolemmal Ca2+ channels may contribute to the variability of inactivation kinetics of ICa in the two cell populations, while acidosis suppression of ICa appears mediated by proton-induced block of the calcium channel.


Asunto(s)
Acidosis/patología , Señalización del Calcio , Hipoxia/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Acidosis/metabolismo , Enfermedad Aguda , Animales , Animales Recién Nacidos , Bario/metabolismo , Transporte Biológico/efectos de los fármacos , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Concentración de Iones de Hidrógeno , Hipoxia/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Isoproterenol/farmacología , Cinética , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Factores de Tiempo
18.
J Mol Cell Cardiol ; 114: 199-210, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29174767

RESUMEN

Sorcin, a penta-EF hand Ca2+-binding protein expressed in cardiomyocytes, is known to interact with ryanodine receptors and other Ca2+ regulatory proteins. To investigate sorcin's influence on cardiac excitation-contraction coupling and its role in the development of cardiac malfunctions, we generated a sorcin knockout (KO) mouse model. Sorcin KO mice presented ventricular arrhythmia and sudden death when challenged by acute stress induced by isoproterenol plus caffeine. Chronic stress, which was induced by transverse aortic constriction, significantly decreased the survival rate of sorcin KO mice. Under isoproterenol stimulation, spontaneous Ca2+ release events were frequently observed in sorcin KO cardiomyocytes. Sorcin KO hearts of adult, but not young mice developed overexpression of L-type Ca2+ channel and Na+-Ca2+ exchanger, which enhanced ICa and INCX. Consequently, spontaneous Ca2+ release events in sorcin KO cardiomyocytes were more likely to induce arrhythmogenic delayed afterdepolarizations. Our study demonstrates sorcin deficiency may trigger cardiac ventricular arrhythmias due to Ca2+ disturbances, and evidences the critical role of sorcin in maintaining Ca2+ homeostasis, especially during the adrenergic response of the heart.


Asunto(s)
Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Proteínas de Unión al Calcio/metabolismo , Eliminación de Gen , Ventrículos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/diagnóstico por imagen , Arritmias Cardíacas/fisiopatología , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Proteínas de Unión al Calcio/deficiencia , Muerte Súbita Cardíaca , Electrocardiografía , Ventrículos Cardíacos/efectos de los fármacos , Isoproterenol/farmacología , Ratones Noqueados , Miocitos Cardíacos/patología , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Estrés Fisiológico/efectos de los fármacos
19.
Biochem Biophys Res Commun ; 499(4): 954-959, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29626474

RESUMEN

Excessive increase of cytosolic Ca2+ through the activation of L-type Ca2+ channels (LTCCs) via ß adrenergic receptor induces apoptosis of cardiomyocytes. Canstatin, a cleaved fragment of collagen type IV α2 chain, is abundantly expressed in normal heart tissue. We previously reported that canstatin inhibits ß adrenergic receptor-stimulated apoptosis in cardiomyoblasts. Here, we tested the hypothesis that canstatin regulates LTCCs activity in ventricular cardiomyocytes. Collagen type IV α2 chain (COL4A2) small interfering (si) RNA (for canstatin suppression) or control siRNA was injected via jugular vein in Wistar rats. Two days after the injection, electrocardiogram (ECG) was recorded and the left ventricular tissue was isolated using Langendorff apparatus. Immunofluorescence staining was performed to clarify the distribution of canstatin in cardiomyocytes. The knockdown efficiency was confirmed by Western blotting. The L-type Ca2+ channel current (ICaL) of ventricular cardiomyocyte was measured by a whole-cell patch clamp technique. In immunofluorescence staining, colocalization of canstatin and αv integrin was observed in the isolated ventricular cardiomyocytes. The ICaL of ventricular cardiomyocyte isolated from COL4A2 siRNA-injected rats was significantly enhanced compared with control siRNA-injected rats. Recombinant canstatin (250 ng/ml) significantly reversed it. ECG analysis showed that QT interval tended to be shortened and amplitude of T wave was significantly increased in the COL4A2 siRNA-injected rats. In summary, we for the first time clarified that suppressing canstatin expression increases the basal ICaL in ventricular cardiomyocytes. It is proposed that canstatin might play a role in the stabilization of cardiac function through the modulation of LTCC activity in cardiomyocytes.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Colágeno Tipo IV/metabolismo , Ventrículos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Animales , Separación Celular , Colágeno Tipo IV/genética , Colágeno Tipo IV/fisiología , Electrocardiografía , Activación del Canal Iónico/efectos de los fármacos , Ratones , Miocitos Cardíacos/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Ratas Wistar , Proteínas Recombinantes/farmacología
20.
Proc Natl Acad Sci U S A ; 112(2): 602-6, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548159

RESUMEN

Excitation-contraction (EC) coupling in skeletal muscle depends upon trafficking of CaV1.1, the principal subunit of the dihydropyridine receptor (DHPR) (L-type Ca(2+) channel), to plasma membrane regions at which the DHPRs interact with type 1 ryanodine receptors (RyR1) in the sarcoplasmic reticulum. A distinctive feature of this trafficking is that CaV1.1 expresses poorly or not at all in mammalian cells that are not of muscle origin (e.g., tsA201 cells), in which all of the other nine CaV isoforms have been successfully expressed. Here, we tested whether plasma membrane trafficking of CaV1.1 in tsA201 cells is promoted by the adapter protein Stac3, because recent work has shown that genetic deletion of Stac3 in skeletal muscle causes the loss of EC coupling. Using fluorescently tagged constructs, we found that Stac3 and CaV1.1 traffic together to the tsA201 plasma membrane, whereas CaV1.1 is retained intracellularly when Stac3 is absent. Moreover, L-type Ca(2+) channel function in tsA201 cells coexpressing Stac3 and CaV1.1 is quantitatively similar to that in myotubes, despite the absence of RyR1. Although Stac3 is not required for surface expression of CaV1.2, the principle subunit of the cardiac/brain L-type Ca(2+) channel, Stac3 does bind to CaV1.2 and, as a result, greatly slows the rate of current inactivation, with Stac2 acting similarly. Overall, these results indicate that Stac3 is an essential chaperone of CaV1.1 in skeletal muscle and that in the brain, Stac2 and Stac3 may significantly modulate CaV1.2 function.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Fibras Musculares Esqueléticas/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Canales de Calcio Tipo L/deficiencia , Canales de Calcio Tipo L/genética , Línea Celular , Células Cultivadas , Acoplamiento Excitación-Contracción/fisiología , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/deficiencia , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA