Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Cell Sci ; 134(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33674448

RESUMEN

Hearing loss affects ∼10% of adults worldwide. Most sensorineural hearing loss is caused by the progressive loss of mechanosensitive hair cells (HCs) in the cochlea. The molecular mechanisms underlying HC maintenance and loss remain poorly understood. LBH, a transcription co-factor implicated in development, is abundantly expressed in outer hair cells (OHCs). We used Lbh-null mice to identify its role in HCs. Surprisingly, Lbh deletion did not affect differentiation and the early development of HCs, as nascent HCs in Lbh knockout mice had normal looking stereocilia. The stereocilia bundle was mechanosensitive and OHCs exhibited the characteristic electromotility. However, Lbh-null mice displayed progressive hearing loss, with stereocilia bundle degeneration and OHC loss as early as postnatal day 12. RNA-seq analysis showed significant gene enrichment of biological processes related to transcriptional regulation, cell cycle, DNA damage/repair and autophagy in Lbh-null OHCs. In addition, Wnt and Notch pathway-related genes were found to be dysregulated in Lbh-deficient OHCs. Our study implicates, for the first time, loss of LBH function in progressive hearing loss, and demonstrates a critical requirement of LBH in promoting HC survival in adult mice.


Asunto(s)
Pérdida Auditiva , Factores de Transcripción , Animales , Cóclea , Células Ciliadas Auditivas Externas , Ratones , Estereocilios
2.
Dev Biol ; 470: 74-83, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33159936

RESUMEN

We previously identified the protein Lbh as necessary for cranial neural crest (CNC) cell migration in Xenopus through the use of morpholinos. However, Lbh is a maternally deposited protein and morpholinos achieve knockdowns through prevention of translation. In order to investigate the role of Lbh in earlier embryonic events, we employed the new technique "Trim-Away" to degrade this maternally deposited protein. Trim-Away utilizes the E3 ubiquitin ligase trim21 to degrade proteins targeted with an antibody and was developed in mammalian systems. Our results show that Xenopus is amenable to the Trim-Away technique. We also show that early knockdown of Lbh in Xenopus results in defects in gastrulation that present with a decrease in fibronectin matrix assembly, an increased in mesodermal cell migration and decrease in endodermal cell cohesion. We further show that the technique is also effective on a second abundant maternal protein PACSIN2. We discuss potential advantages and limit of the technique in Xenopus embryos as well as the mechanism of gastrulation inhibition.


Asunto(s)
Gastrulación , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Movimiento Celular , Ectodermo/citología , Ectodermo/embriología , Ectodermo/patología , Inducción Embrionaria , Endodermo/citología , Endodermo/embriología , Endodermo/fisiología , Fibronectinas/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/fisiología , Morfolinos , Cresta Neural/citología , Cresta Neural/embriología , Proteolisis , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/inmunología , Proteínas de Xenopus/metabolismo
3.
Clin Exp Immunol ; 209(2): 127-139, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35867577

RESUMEN

Sarcoma is a rare and heterogeneous class of mesenchymal malignancies with poor prognosis. Panobinostat (LBH589) as one of histone deacetylase (HDAC) inhibitors has demonstrated anti-tumor activity in patients with sarcoma, but its mechanisms remains unclear. Here, we found that LBH589 alone inhibited the proliferation and colony formation of soft tissue sarcoma (STS) cell lines. Transcriptome analysis showed that treatment with LBH589 augmented the NK cell-mediated cytotoxicity. Quantitative real-time PCR and flow cytometric analysis (FACS) further confirmed that LBH589 increased the expression of NKG2D ligands MICA/MICB. Mechanistically, LBH589 activated the Wnt/ß-catenin pathway by upregulating the histone acetylation in ß-catenin promoter. In vitro co-culture experiments and in vivo animal experiments showed that LBH589 increased the cytotoxicity of natural killer (NK) cells while Wnt/ß-catenin inhibitor decreased the effects. Our findings suggest that LBH589 facilitates the anti-tumor effect of NK cells, highlights LBH589 an effective assistance drug in NK cell-based immunotherapies.


Asunto(s)
Antineoplásicos , Sarcoma , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Células Asesinas Naturales , Panobinostat/farmacología , Panobinostat/uso terapéutico , Sarcoma/tratamiento farmacológico , beta Catenina/farmacología , beta Catenina/uso terapéutico
4.
Mol Cell Biochem ; 476(7): 2685-2701, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33666830

RESUMEN

Cardiac fibrosis is an important pathological change after myocardial infarction (MI). Its progression is essential for post-MI infarct healing, during which transforming growth factor beta1 (TGF-ß1) plays a critical role. Limb-bud and Heart (LBH), a newly discovered target gene of TGF-ß1, was shown to promote normal cardiogenesis. αB-crystallin (CRYAB), an LBH-interacting protein, was demonstrated to be involved in TGF-ß1-induced fibrosis. The roles and molecular mechanisms of LBH and CRYAB during cardiac fibrosis remain largely unexplored. In this study, we investigated the alterations of LBH and CRYAB expression in mouse cardiac tissue after MI. LBH and CRYAB were upregulated in activated cardiac fibroblasts (CFs), while in vitro TGF-ß1 stimulation induced the upregulation of LBH, CRYAB, and fibrogenic genes in primary CFs of neonatal rats. The results of the ectopic expression of LBH proved that LBH accelerated CF proliferation under hypoxia, mediated the expression of CRYAB and fibrogenic genes, and promoted epithelial-mesenchymal transition (EMT)-like processes in rat CFs, while subsequent CRYAB silencing reversed the effects induced by elevated LBH expression. We also verified the protein-protein interaction (PPI) between LBH and CRYAB in fibroblasts. In summary, our work demonstrated that LBH promotes the proliferation of CFs, mediates TGF-ß1-induced fibroblast-to-myofibroblast transition and EMT-like processes through CRYAB upregulation, jointly functioning in post-MI infarct healing. These findings suggest that LBH could be a promising potential target for the study of cardiac repair and cardiac fibrosis.


Asunto(s)
Transición Epitelial-Mesenquimal , Regulación de la Expresión Génica , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miofibroblastos/metabolismo , Factores de Transcripción/metabolismo , Animales , Fibrosis , Infarto del Miocardio/patología , Miofibroblastos/patología , Ratas , Ratas Sprague-Dawley
5.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34445087

RESUMEN

The miR-31 host gene (MIR31HG) encodes a long non-coding RNA (LncRNA) that harbors miR-31 in its intron 2; miR-31 promotes malignant neoplastic progression. Overexpression of MIR31HG and of miR-31 occurs during oral squamous cell carcinoma (OSCC). However, the downstream effectors modulated by MIR31HG during OSCC pathogenesis remain unclear. The present study identifies up-regulation of MIR31HG expression during the potentially premalignant disorder stage of oral carcinogenesis. The potential of MIR31HG to enhance oncogenicity and to activate Wnt and FAK was identified when there was exogenous MIR31HG expression in OSCC cells. Furthermore, OSCC cell subclones with MIR31HG deleted were established using a Crispr/Cas9 strategy. RNA sequencing data obtained from cells expressing MIR31HG, cells with MIR31HG deleted and cells with miR-31 deleted identified 17 candidate genes that seem to be modulated by MIR31HG in OSCC cells. A TCGA database algorithm pinpointed MMP1, BMP2 and Limb-Bud and Heart development (LBH) as effector genes controlled by MIR31HG during OSCC. Exogenous LBH expression decreases tumor cell invasiveness, while knockdown of LBH reverses the oncogenic suppression present in MIR31HG deletion subclones. The study provides novel insights demonstrating the contribution of the MIR31HG-LBH cascade to oral carcinogenesis.


Asunto(s)
Carcinoma de Células Escamosas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Boca/genética , ARN Largo no Codificante/genética , Factores de Transcripción/genética , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma de Células Escamosas/patología , Progresión de la Enfermedad , Humanos , Neoplasias de la Boca/patología , Regulación hacia Arriba
6.
J Neurochem ; 153(2): 264-275, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31811660

RESUMEN

Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss of function mutations in the Survival Motor Neuron 1 (SMN1) gene and reduced expression of the SMN protein, leading to spinal motor neuron death, muscle weakness and atrophy. Although humans harbour the highly homologous SMN2 gene, its defective splicing regulation yields a truncated and unstable SMN protein. The first therapy for SMA was recently approved by the Food and Drug Administration and consists of an antisense oligonucleotide (Nusinersen) rendering SMN2 functional and thus improving patients' motor activity and quality of life. Nevertheless, not all patients equally respond to this therapy and the long-term tolerability and safety of Nusinersen are still unknown. Herein, in vivo splicing assays indicated that the HDAC inhibitor LBH589 is particularly efficient in rescuing the SMN2 splicing defect in SMA fibroblasts and SMA type-I mice-derived neural stem cells. Western blot analyses showed that LBH589 also causes a significant increase in SMN protein expression in SMA cells. Moreover chromatin immunoprecipitation analyses revealed that LBH589 treatment induces widespread H4 acetylation of the entire SMN2 locus and selectively favors the inclusion of the disease-linked exon 7 in SMN2 mature mRNA. The combined treatment of SMA cells with sub-optimal doses of LBH589 and of an antisense oligonucleotide that mimic Nusinersen (ASO_ISSN1) elicits additive effects on SMN2 splicing and SMN protein expression. These findings suggest that HDAC inhibitors can potentiate the activity of Nusinersen and support the notion that 'SMN-plus' combinatorial therapeutic approaches might represent an enhanced opportunity in the scenario of SMA therapy.


Asunto(s)
Atrofia Muscular Espinal , Oligonucleótidos/farmacología , Panobinostat/farmacología , Empalme del ARN/efectos de los fármacos , Proteína 2 para la Supervivencia de la Neurona Motora/biosíntesis , Animales , Quimioterapia Combinada , Femenino , Fibroblastos/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Ratones , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Células-Madre Neurales/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Empalme del ARN/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
7.
Cancer ; 126(9): 2024-2033, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31999837

RESUMEN

BACKGROUND: The major clinical obstacle that limits the long-term benefits of treatment with osimertinib (AZD9291) in patients with epidermal growth factor receptor-mutant non-small cell lung cancer is the development of acquired resistance. Therefore, effective strategies that can overcome acquired resistance to osimertinib are urgently needed. The authors' current efforts in this direction have identified LBH589 (panobinostat), a clinically used histone deacetylase inhibitor, as a potential agent in overcoming osimertinib resistance. METHODS: Cell growth and apoptosis in vitro were evaluated by measuring cell numbers and colony formation and by detecting annexin V-positive cells and protein cleavage, respectively. Drug effects on tumor growth in vivo were assessed with xenografts in nude mice. Alterations of tested proteins in cells were monitored with Western blot analysis. Gene knockout was achieved using the CRISPR/Cas9 technique. RESULTS: The combination of LBH589 and osimertinib synergistically decreased the survival of different osimertinib-resistant cell lines, including those harboring C797S mutations, with greater inhibition of cell colony formation and growth. The combination enhanced the induction of apoptosis in osimertinib-resistant cells. Importantly, the combination effectively inhibited the growth of osimertinib-resistant xenograft tumors in nude mice. Mechanistically, the combination of LBH589 and osimertinib enhanced the elevation of Bim in osimertinib-resistant cells. Knockout of Bim in osimertinib-resistant cells substantially attenuated or abolished apoptosis enhanced by the LBH589 and osimertinib combination. These results collectively support a critical role of Bim elevation in the induction of apoptosis of osimertinib-resistant cells for this combination. CONCLUSIONS: The current findings provide strong preclinical evidence in support of the potential for LBH589 to overcome osimertinib resistance in the clinic.


Asunto(s)
Acrilamidas/uso terapéutico , Compuestos de Anilina/uso terapéutico , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores de Histona Desacetilasas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Panobinostat/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Acrilamidas/administración & dosificación , Compuestos de Anilina/administración & dosificación , Antineoplásicos/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Quimioterapia Combinada , Receptores ErbB/genética , Inhibidores de Histona Desacetilasas/administración & dosificación , Humanos , Neoplasias Pulmonares/metabolismo , Panobinostat/administración & dosificación , Inhibidores de Proteínas Quinasas/administración & dosificación
8.
Int J Cancer ; 142(9): 1926-1937, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29210065

RESUMEN

Mutations in BRAF activate oncogenic MAPK signalling in almost half of cutaneous melanomas. Inhibitors of BRAF (BRAFi) and its target MEK are widely used to treat melanoma patients with BRAF mutations but unfortunately acquired resistance occurs in the majority of patients. Resistance results from mutations or non-genomic changes that either reactivate MAPK signalling or activate other pathways that provide alternate survival and growth signalling. Here, we show the histone deacetylase inhibitor (HDACi) panobinostat overcomes BRAFi resistance in melanoma, but this is dependent on the resistant cells showing a partial response to BRAFi treatment. Using patient- and in vivo-derived melanoma cell lines with acquired BRAFi resistance, we show that combined treatment with the BRAFi encorafenib and HDACi panobinostat in 2D and 3D culture systems synergistically induced caspase-dependent apoptotic cell death. Key changes induced by HDAC inhibition included decreased PI3K pathway activity associated with a reduction in the protein level of a number of receptor tyrosine kinases, and cell line dependent upregulation of pro-apoptotic BIM or NOXA together with reduced expression of anti-apoptotic proteins. Independent of these changes, panobinostat reduced c-Myc and pre-treatment of cells with siRNA against c-Myc reduced BRAFi/HDACi drug-induced cell death. These results suggest that a combination of HDAC and MAPK inhibitors may play a role in treatment of melanoma where the resistance mechanisms are due to activation of MAPK-independent pathways.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Melanoma/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Sinergismo Farmacológico , Xenoinjertos , Inhibidores de Histona Desacetilasas/administración & dosificación , Humanos , Melanoma/enzimología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Inhibidores de Proteínas Quinasas/administración & dosificación , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos
9.
Cancer Sci ; 109(10): 3272-3284, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30039622

RESUMEN

Acetylation plays an important role in regulating the chaperone activity of heat shock protein 90 (Hsp90) during malignant transformation through the stabilization and conformational maturation of oncogenic proteins. However, the functional acetylation sites, potential anticancer drug targets, are still emerging. We found that acetylation at K292 in Hsp90α is critical for the development and treatment of breast cancer. Acetylation at K292 not only augments the affinity of Hsp90 to ATP, cochaperones, and client proteins but it also promotes cancer cell colony formation, migration, and invasion in vitro as well as tumor growth in vivo. Importantly, K292-acetylated Hsp90 has been validated as an exciting anticancer drug target by interfering with the complex formation between K292-acetylated Hsp90 and cochaperone Cdc37, leading to diminishment of kinase client maturation and proteasome-dependent degradation of kinase substrates. Furthermore, we showed that simvastatin prevented, whereas LBH589 promoted, the progression of Hsp90 chaperone cycling and client maturation, resulting in an increment of cell apoptosis by the combination of simvastatin and LBH589 in a mouse xenograft model. These data suggest that simvastatin is a novel Hsp90 inhibitor to disrupt the formation of the K292-acetylated Hsp90/Cdc37 complex in triple-negative breast cancer cells. The combination of simvastatin with LBH589 could be used as a novel therapeutic strategy for triple-negative breast cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Simvastatina/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Acetilación/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Indoles/farmacología , Indoles/uso terapéutico , Lisina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Panobinostat , Unión Proteica/efectos de los fármacos , Simvastatina/uso terapéutico , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Cell Physiol Biochem ; 47(1): 223-234, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29788015

RESUMEN

BACKGROUND/AIMS: The transcription cofactor limb-bud and heart (LBH) is involved in embryonic development. However, its role in human lung cancer, especially lung adenocarcinoma (LUAD), remains unclear. METHODS: A public database and tissue microarray (TMA) were used to compare differences in LBH expression and its relationship with clinical characteristics. Tissue from an additional 70 LUAD patients with follow-up records was used to explore the correlation of LBH expression with prognosis. Cellular and molecular studies validated the role of LBH in LUAD growth and invasion. RESULTS: LBH was significantly down-regulated in lung cancer tissue samples and was correlated with the prognosis and clinical characteristics of lung cancer patients based on a public database and TMA. Survival analysis revealed that LBH-negative expression was associated with poor overall survival of LUAD patients (P = 0.021). Cox regression analysis showed that LBH expression status was a favorable independent prognostic factor (hazard ratio = 0.120, 95% confidence interval = 0.016-0.894, P = 0.039). LBH knockdown accelerated LUAD cell proliferation, migration, and invasion. Furthermore, bioinformatics analysis indicated that LBH was significantly related to the cell adhesion pathway. Western blot analysis confirmed that LBH could regulate the expression of integrin family members (integrin-α1, integrin-α2, integrin-α4, integrin-αv, and integrin-ß4). CONCLUSION: Our data suggest that LBH plays an important role in lung cancer. Importantly, LBH is an independent prognostic factor in LUAD and can attenuate cell growth and invasion. LBH may be a potential prognostic biomarker in LUAD patients.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Invasividad Neoplásica/genética , Transactivadores/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma del Pulmón , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Femenino , Humanos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/diagnóstico , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/patología , Pronóstico , Análisis de Supervivencia , Transactivadores/análisis , Factores de Transcripción
11.
Pharmacol Res ; 129: 337-356, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29133216

RESUMEN

Alterations of the epigenetic machinery, affecting multiple biological functions, represent a major hallmark enabling the development of tumors. Among epigenetic regulatory proteins, histone deacetylase (HDAC)6 has emerged as an interesting potential therapeutic target towards a variety of diseases including cancer. Accordingly, this isoenzyme regulates many vital cellular regulatory processes and pathways essential to physiological homeostasis, as well as tumor multistep transformation involving initiation, promotion, progression and metastasis. In this review, we will consequently discuss the critical implications of HDAC6 in distinct mechanisms relevant to physiological and cancerous conditions, as well as the anticancer properties of synthetic, natural and natural-derived compounds through the modulation of HDAC6-related pathways.


Asunto(s)
Antineoplásicos/uso terapéutico , Histona Desacetilasa 6/metabolismo , Neoplasias/tratamiento farmacológico , Humanos , Neoplasias/metabolismo , Transducción de Señal
12.
Exp Cell Res ; 350(1): 218-225, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27914787

RESUMEN

Tumor metastasis is the leading cause of death in cancer patients. Identifying metastatic biomarkers in tumor cells would help cancer diagnoses and the development of therapeutic targets. Yes-associated protein (YAP) plays an important role in organ development and has gained much attention in tumorigenesis. However, the role of YAP and the underlying mechanism in tumor metastasis of colorectal cancer (CRC) is still unclear. In this study, we generated metastatic 116-LM cells from the HCT116 CRC cell line. We found that the capacity for tumor aggressiveness was elevated in 116-LM cells and identified that YAP and its mRNA level were upregulated in 116-LM cells. Moreover, expression of YAP was found to correlate with epithelial-mesenchymal transition (EMT) marker expressions, whereas suppression of YAP decreased EMT marker expressions and impeded tumor migration and invasion. Additionally, upregulation of YAP was identified in colon cancer patients, and it was correlated with EMT gene expressions. Furthermore, we identified LBH589, a histone deacetylase inhibitor, that was capable of inhibiting tumor growth and aggressiveness in both HCT116 and 116-LM cells. LBH589 potentially inhibited YAP and its mRNA expression, accompanied by diminished expressions of YAP downstream genes and EMT markers. Together, YAP plays a crucial role in aggressiveness and metastasis of CRC, and YAP may be an attractive therapeutic target.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal , Fosfoproteínas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Células HCT116 , Humanos , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Panobinostat , ARN Interferente Pequeño/genética , Factores de Transcripción , Regulación hacia Arriba , Proteínas Señalizadoras YAP
13.
Cell Biochem Funct ; 36(8): 398-407, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30484863

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a common malignancy without effective therapy. Histone deacetylase inhibitors (HDACIs) have been demonstrated as an emerging class of anticancer drugs for a range of haematological and solid tumours. However, the effect of HDACIs has not yet been investigated on ESCC cells. In this study, HDACIs were initially considered to have anticancer activity for ESCC, due to the high expression of HDAC genes in ESCC cell lines by analysing expression data of 27 ESCC cell lines from the Broad-Novartis Cancer Cell Line Encyclopedia. Next, we used five ESCC cell lines and one normal immortalized esophageal epithelial cell line to screen three HDACIs, panobinostat (LBH589), vorinostat (SAHA), and trichostatin A (TSA), for the ability to inhibit growth. Here, we report that LBH589 more effectively suppressed cell proliferation of ESCC cell lines, in a dose-dependent manner, than TSA and SAHA, as well as had lower toxicity against the SHEE normal immortalized esophageal epithelial cell line. Further experiments indicated that LBH589 treatment significantly inhibited TP53 (mutated TP53) expression, both at the mRNA and protein level, and simultaneously increased p21 and decreased cyclin D1 expression. Taken together, we propose that LBH589 inhibits ESCC cell proliferation mainly through inducing cell cycle arrest by increasing p21 and decreasing cyclin D1 in a p53-independent manner. SIGNIFICANCE OF THE STUDY: In this study, the antitumor activity of HDACIs LBH589, SAHA, and TSA on ESCC was characterized, with LBH589 displaying the most potent anti-proliferative activity while not harming normal immortalized esophageal epithelial cells. Furthermore, we propose that LBH589 exerts its anti-proliferative effect by inducing cell cycle arrest. The ability to specifically target cancer cells indicates therapeutic potential for use of LBH589 in the treatment of ESCC.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Panobinostat/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Humanos , Ácidos Hidroxámicos/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos
14.
Mol Pharm ; 12(7): 2469-76, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26030093

RESUMEN

Histone deacetylases (HDACs) are overexpressed in various cancers. In vivo imaging to measure the expression and functions of HDACs in tumor plays an important role for tumor diagnosis and HDAC-targeted therapy evaluation. The development of stable and highly sensitive HDAC targeting probe is highly desirable. Near-infrared (NIR) fluorescence optical imaging is a powerful technology for visualizing disease at the molecular level in vivo with high sensitivity and no ionizing radiation. We report here the design, synthesis, and bioactivity evaluation of LBH589-Cy5.5 for in vivo NIR fluorescence imaging of HDACs. The IC50 value of the resulting NIR probe to HDACs was determined to be 9.6 nM. In vitro fluorescence microscopic studies using a triple-negative breast cancer cell line, MDA-MB-231, established the binding specificity of LBH589-Cy5.5 to HDACs. An in vivo imaging study performed in MDA-MB-231 tumor xenografts demonstrated accumulation of the probe in tumor with good contrast from 2 h to 48 h postinjection. Furthermore, the fluorescent signal of LBH589-Cy5.5 in tumor was successfully blocked by coinjection of nonfluorescent LBH589 with the probe. In a following therapy evaluation study, the administration of SAHA, a clinically used HDAC inhibitor, decreased LBH589-Cy5.5 accumulation in tumor, demonstrating the potential application of LBH589-Cy5.5 for evaluating therapeutic response of HDAC inhibitors in cancer treatment.


Asunto(s)
Carbocianinas/administración & dosificación , Carbocianinas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Diagnóstico por Imagen/métodos , Femenino , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/química , Humanos , Ratones , Ratones Desnudos , Espectroscopía Infrarroja Corta/métodos
15.
Sci Rep ; 14(1): 21751, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294296

RESUMEN

Gastric cancer (GC) is a prevalent malignancy with high mortality rates. Immunogenic cell death (ICD) is a unique form of programmed cell death that is closely linked to antitumor immunity and plays a critical role in modulating the tumor microenvironment (TME). Nevertheless, elucidating the precise effect of ICD on GC remains a challenging endeavour. ICD-related genes were identified in single-cell sequencing datasets and bulk transcriptome sequencing datasets via the AddModuleScore function, weighted gene co-expression network (WGCNA), and differential expression analysis. A robust signature associated with ICD was constructed using a machine learning computational framework incorporating 101 algorithms. Furthermore, multiomics analysis, including single-cell sequencing analysis, bulk transcriptomic analysis, and proteomics analysis, was conducted to verify the correlation of these hub genes with the immune microenvironment features of GC and with GC invasion and metastasis. We screened 59 genes associated with ICD and developed a robust ICD-related gene signature (ICDRS) via a machine learning computational framework that integrates 101 different algorithms. Furthermore, we identified five key hub genes (SMAP2, TNFAIP8, LBH, TXNIP, and PIK3IP1) from the ICDRS. Through single-cell analysis of GC tumor s, we confirmed the strong correlations of the hub genes with immune microenvironment features. Among these five genes, LBH exhibited the most significant associations with a poor prognosis and with the invasion and metastasis of GC. Finally, our findings were validated through immunohistochemical staining of a large clinical sample set, and the results further supported that LBH promotes GC cell invasion by activating the epithelial-mesenchymal transition (EMT) pathway.


Asunto(s)
Muerte Celular Inmunogénica , Aprendizaje Automático , Análisis de la Célula Individual , Neoplasias Gástricas , Microambiente Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/mortalidad , Humanos , Análisis de la Célula Individual/métodos , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Proteómica/métodos , Transcriptoma , Biología Computacional/métodos , Redes Reguladoras de Genes , Multiómica
16.
Comput Struct Biotechnol J ; 23: 3315-3326, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39310280

RESUMEN

Prostate cancer (PCa) is a multifocal disease characterized by genomic and phenotypic heterogeneity within a single gland. In this study, Visium spatial transcriptomics (ST) analysis was applied to PCa tissues with different histological structures to infer the molecular events involved in Gleason score (GS) progression. The spots in tissue sections were classified into various groups using Principal Component Analysis (PCA) and Louvain clustering analysis based on transcriptome data. Anotation of the spots according to GS revealed notable similarities between transcriptomic profiles and histologically identifiable structures. The accuracy of macroscopic GS determination was bioinformatically verified through malignancy-related feature analysis, specifically inferred copy number variation (inferCNV), as well as developmental trajectory analyses, such as diffusion pseudotime (DPT) and partition-based graph abstraction (PAGA). Genes related to GS progression were identified from the differentially expressed genes (DEGs) through pairwise comparisons of groups along a GS gradient. The proteins encoded by the representative oncogenes UQCRB and LBH were found to be highly expressed in advanced-stage PCa tissues. Knockdown of their mRNAs significantly suppressed PCa cell proliferation and invasion. These findings were validated using The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset, as well as through histological and cytological experiments. The results presented here establish a foundation for ST-based evaluation of GS progression and provide valuable insights into the GS progression-related genes UQCRB and LBH.

17.
Genesis ; 51(7): 491-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23495064

RESUMEN

Limb bud and heart (LBH) is a developmentally expressed, tissue-specific transcription cofactor in vertebrates that acts in the WNT signaling pathway, a genetic program critical for embryogenesis and adult tissue homeostasis. Aberrant gain-of-function of LBH is implicated in both human congenital disease and cancer. The normal physiological function of LBH has remained elusive owing to a lack of genetic loss-of-function models. Here, we have generated mice with a conditional null allele of Lbh by flanking exon 2 with loxP sites (Lbh(flox)). Homozygous Lbh(flox) and Lbh(loxP) mice, in which the Neo cassette was removed through FLPe-mediated recombination, were viable and fertile, indicating that these conditional Lbh alleles are fully functional. Lbh(loxP) mice were then crossed with a Rosa26-Cre line, resulting in ubiquitous deletion of exon 2 and abolishment of LBH protein expression. Mice homozygous for the Lbh null allele (Lbh(Δ)(2)) displayed normal embryonic development and postnatal growth with morphologies indistinguishable from wild-type littermates. However, mammary gland development, which occurs primarily after birth, was perturbed. Thus, the conditional Lbh allele will be a valuable tool to uncover the currently unknown tissue-specific roles of LBH in postnatal development and disease.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Glándulas Mamarias Animales/crecimiento & desarrollo , Proteínas Nucleares/genética , Alelos , Animales , Proteínas de Ciclo Celular , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/fisiología , Factores de Transcripción
18.
BMC Pharmacol Toxicol ; 24(1): 45, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740231

RESUMEN

PURPOSE: The study aims to investigate the apoptotic effects of combining LBH589 and AM1241 (a selective CB2 receptor agonist) on cervical cancer cells and elucidating the mechanism of this combined therapy, which may provide innovative strategies for treating this disease. METHODS: The viability of the cervical cancer cells was measured by cell counting kit-8 (CCK-8) assay, and the synergistic effect was analyzed using SynergyFinder. Cell proliferation was tested by cell cloning. The apoptosis and reactive oxygen species (ROS) production in cervical cancer cells were analyzed by flow cytometry. Western blot and quantitative real-time PCR (qRT-PCR) were employed to determine changes in protein and gene levels of pathway-related factors. RESULTS: By the results of cytotoxicity assay, SiHa cells were selected and treated with 0.1 µM LBH589 and 4 µM AM1241 for 24 h for subsequent experiments. The combination of both was synergistic as determined by bliss, ZIP, HSA and LOEWE synergy score. Plate cloning results showed that LBH589 combined with AM1241 inhibited the proliferation of cervical cancer cells compared to individual drug. Additionally, compared with LBH589 alone, the combination of LBH589 and AM1241 induced autophagy by increasing LC3II/LC3I and decreasing P62/GAPDH, leading to a significantly higher rate of apoptosis. Pharmacological inhibition of also inhibited apoptosis. Consistently, we found that the endoplasmic reticulum, DNA damage repair pathway were induced after co-administration. Furthermore, cellular ROS increased after co-administration, and apoptosis was inhibited by the addition of ROS scavenger. CONCLUSION: LBH589 combined with AM1241 activated the endoplasmic reticulum emergency pathway, DNA damage repair signaling pathway, oxidative stress and autophagy pathway, ultimately promoting the apoptosis of cervical cancer cells. These findings suggest that the co-administration of LBH589 and AM1241 may be a new treatment plan for the treatment of cervical cancer.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Panobinostat/farmacología , Especies Reactivas de Oxígeno , Apoptosis , Autofagia
19.
FEBS Open Bio ; 12(1): 211-220, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34739189

RESUMEN

Glioma is the predominant brain malignancy and is correlated with high mortality and severe morbidity. The transcription factor limb-bud and heart (LBH) has been reported to be involved in the development of several cancers, although its role in glioma development remains elusive. Here, we examined the effect of LBH on glioma progression. The expression of LBH was increased in glioma samples from The Cancer Genome Atlas database, and upregulation of LBH was observed to be correlated with the poor survival of glioma patients. We also report that expression of LBH was elevated in clinical glioma tissues compared to adjacent normal tissues, and was also enhanced in glioma cell lines. LBH promotes proliferation and inhibits cell cycle arrest and apoptosis in glioma cells. In addition, LBH increased the migration and invasion of glioma cells in vitro. Moreover, tumorigenicity analysis revealed that LBH could promote the tumor growth of glioma cells in vivo. In conclusion, our findings suggest that LBH contributes to glioma progression in vitro and in vivo. Our findings provide new insights into the mechanism by which LBH promotes the development of glioma, improving our understanding of the correlation between LBH with cancer. LBH may have potential as a target for glioma therapy.


Asunto(s)
Glioma , Línea Celular Tumoral , Regulación de la Expresión Génica , Glioma/genética , Humanos , Factores de Transcripción/metabolismo , Regulación hacia Arriba
20.
Int J Biol Sci ; 18(1): 242-260, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34975330

RESUMEN

The limb-bud and heart (LBH) gene was reported to suppress nasopharyngeal carcinoma (NPC) progression in our previous study. Distant metastasis predominantly accounts for the unsatisfactory prognosis of NPC treatment, in which epithelial-mesenchymal transition (EMT) and tumor angiogenesis are of great significance. The roles of exosomes in mediating NPC progression have been highlighted in recent researches, and attempts have been made to explore the clinical application of NPC exosomes. Here we investigated the function of the LBH gene in NPC exosomes, and its potential mechanism. NPC xenografts were constructed, showing that vascular endothelial growth factor A (VEGFA) expression and neovascularity were attenuated by LBH overexpression, together with diminished EMT progression. NPC-derived exosomes were isolated, identified and applied for in vitro/in vivo experiments, and the exosomal distribution of LBH was elevated in exosomes derived from LBH-upregulated cells. Ectopic LBH, αB-crystallin (CRYAB) and VEGFA expression was induced by lentiviral infection or plasmid transfection to explore their functions in modulating EMT and angiogenesis in NPC. The addition of LBH+ NPC exosomes during a Matrigel plug assay in mice suppressed in vivo angiogenesis, and the treatment of human umbilical vein endothelial cells (HUVECs) with LBH+ NPC exosomes inhibited cellular proliferation, migration and tube formation. The interactions among LBH, CRYAB and VEGFA were confirmed by colocalization and fluorescence resonance energy transfer (FRET) assays, and extracellular VEGFA secretion from both HUVECs and NPC cells under the treatment with LBH+ NPC exosomes was diminished according to ELISA results. We concluded that exosomal LBH inhibits EMT progression and angiogenesis in the NPC microenvironment, and that its effects are partially implemented by modulation of VEGFA expression, secretion and related signaling. Thus, LBH could serve as a promising therapeutic target in VEGFA-focused NPC treatment.


Asunto(s)
Inductores de la Angiogénesis/metabolismo , Transición Epitelial-Mesenquimal , Exosomas/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación hacia Abajo , Exosomas/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Factores de Transcripción/genética , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA