Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(37): 13654-13661, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37681756

RESUMEN

Artificial grow lights, such as light-emitting diodes (LEDs) and fluorescent grow lights, are commonly used in modern day indoor farming, citing advantages in energy efficiency and a higher controlled environment. However, the use of LEDs poses a risk in mercury contaminations as a result of its production process, specifically LEDs with polyurethane encapsulates that were traditionally produced using mercury resins as a catalyst. A total of 10.0 ppm of mercury was detected in a curly kale sample harvested from an indoor hydroponic vegetable farm, exceeding Singapore Food Regulation's limit of 0.05 ppm. Vegetables, farming inputs, and surface swabs from the affected farm were analyzed using wet acid digestion followed by cold vapor atomic absorption spectroscopy analysis. The investigation found high concentrations of mercury in the LED encapsulant, and the encapsulant material was identified to be polyurethane by Fourier transform infrared spectroscopy and pyrolysis-gas chromatography-mass spectrometry analysis, indicating the source of mercury contamination to be the LED polyurethane encapsulant.


Asunto(s)
Mercurio , Verduras , Granjas , Iluminación , Poliuretanos , Agricultura , Inocuidad de los Alimentos
2.
Materials (Basel) ; 10(2)2017 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-28772524

RESUMEN

A UV-curable poly(butyl fumarate) (PBF)/poly(propylene fumarate)-diacrylate (PPF-DA) hybrid material with good performance for LED encapsulation is introduced in the paper. They have been prepared by radical polymerization using PBF and PPF-DA macromers with a UV curing system. PBF and PPF-DA were characterized by Fourier-transform infrared (FT-IR) and H-nuclear magnetic resonance (¹H NMR). The thermal behavior, optical and mechanical properties of the material were examined by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), ultraviolet-visible spectroscopy (UV-vis), and a material testing system mechanical testing machine, respectively. The results indicated that the hybrid material has a suitable refractive index (n = 1.537) and high transmittance (99.64% in visible range) before/after thermal aging. With the increasing of the double bond ratio from 0.5 to 2, the water absorption ratios of the prepared encapsulation material were 1.22%, 1.87% and 2.88%, respectively. The mechanical property experiments showed that bonding strength was in the range of 1.86-3.40 MPa, tensile-shear strength ranged from 0.84 MPa to 1.57 MPa, and compression strength was in the range of 5.10-27.65 MPa. The cured PBF/PPF-DA hybrid material can be used as a light-emitting diode (LED) encapsulant, owing to its suitable refractive index, high transparency, excellent thermal stability, lower water absorption, and good mechanical properties.

3.
ACS Appl Mater Interfaces ; 7(2): 1035-9, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25564875

RESUMEN

An ultraviolet (UV) transparent and stable methyl-siloxane hybrid material was prepared by a facile sol-gel method. The transparency and stability of a UV-LED encapsulant is an important issue because it affects UV light extraction efficiency and long-term reliability. We introduced a novel concept for UV-LED encapsulation using a thermally curable oligosiloxane resin. The encapsulant was fabricated by a hydrosilylation of hydrogen-methyl oligosiloxane resin and vinyl-methyl siloxane resin, and showed a comparable transmittance to polydimethylsiloxane (PDMS) in the UVB (∼300 nm) region. Most remarkably, the methyl-siloxane hybrid materials exhibited long-term UV stability under light soaking in UVB (∼300 nm) for 1000 h.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA