Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Mov Disord ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946200

RESUMEN

Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Neurodegener Dis ; 24(1): 6-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38861955

RESUMEN

INTRODUCTION: Sleep disturbances have been associated with essential tremor (ET). However, their pathophysiological underpinnings remain unknown. In this exploratory study, we examined the association between subjective sleep disturbances and the presence of Lewy pathology (LP) on postmortem brain examination in ET cases. METHODS: Fifty-two ET cases enrolled in a prospective, longitudinal study were assessed over an average period of 42 months. Cases completed the Pittsburgh Sleep Quality Index (PSQI), which yields seven component scores (e.g., sleep quality, sleep latency). For each component score, we calculated the difference between the last score and the baseline score. Brains were harvested at death. Each had a complete neuropathological assessment, including extensive α-synuclein immunostaining. We examined the associations between baseline PSQI scores and the change in PSQI scores (last - first), and LP on postmortem brain examination. RESULTS: ET cases had a mean baseline age of 87.1 ± 4.8 years. LP was observed in 12 (23.1%) of 52 cases; in 7 of these 12, LP was observed in the locus coeruleus (LC). Change in time needed to fall asleep (last - first sleep latency component score) was associated with presence of LP on postmortem brain examination - greater increase in sleep latency was associated with higher odds of LP (odds ratio = 2.98, p = 0.02). The greatest increase in sleep latency was observed in cases with LP in the LC (p = 0.04). CONCLUSION: In ET cases, increases in sleep latency over time could be a marker of underlying LP, especially in the LC.


Asunto(s)
Encéfalo , Temblor Esencial , Trastornos del Sueño-Vigilia , Humanos , Temblor Esencial/patología , Femenino , Masculino , Trastornos del Sueño-Vigilia/patología , Trastornos del Sueño-Vigilia/epidemiología , Anciano de 80 o más Años , Estudios Longitudinales , Anciano , Encéfalo/patología , Estudios Prospectivos , Cuerpos de Lewy/patología , Estudios de Cohortes , alfa-Sinucleína/metabolismo
3.
Can J Neurol Sci ; : 1-7, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37793895

RESUMEN

BACKGROUND: The homeless population experience significant inequalities in health, and there is an increasing appreciation of the potential of lifestyle factors in the development of neurodegenerative diseases, including Parkinson's disease. We performed a study on the prevalence and distribution of pathological alpha-synuclein deposition throughout the central and peripheral nervous systems in a homeless population. METHODS: Forty-four homeless individuals consecutively available for autopsy were recruited. Immunohistochemistry was performed using 5G4 antibody recognizing disease-associated forms of alpha-synuclein, complemented by phospho-synuclein antibody on autopsy tissues collected from 18 regions of the brain and spinal cord, as well as the right and left olfactory bulb, the cauda equina, the extramedullary portion of the vagus nerve, and 27 sites of peripheral organs. RESULTS: The study cohort consisted of 38 males and 6 females, median age 58 years (range 32-67). Lewy-related pathology was present in the brains of three male cases. One showed Braak stage 2 (60 years old), and two stage 4 (56 and 59 years old). One of the Braak stage 4 cases had Lewy-related pathology in the spinal cord, the cauda equina, and the extramedullary portion of the vagus nerve. Examination of 27 sites of peripheral organs found that all three cases with Lewy-related pathology present in the brain were devoid of peripheral organ alpha-synuclein pathology. Multiple system-type alpha-synuclein pathology was not found. CONCLUSION: Our study, representing a snapshot of the homeless population that came to autopsy, suggests that alpha-synuclein pathology is prevalent in the homeless supporting further study of this vulnerable population.

4.
Neurobiol Dis ; 168: 105687, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35283326

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and motor dysfunction has been attributed to loss of dopaminergic neurons. However, motor dysfunction is only one of many symptoms experienced by patients. A neuropathological hallmark of PD is intraneuronal protein aggregates called Lewy pathology (LP). Neuropathological staging studies have shown that dopaminergic neurons are only one of the many cell types prone to manifest LP. Progressive appearance of LP in multiple brain regions, as well as peripheral nerves, has led to the popular hypothesis that LP and misfolded forms of one of its major components - α-synuclein (aSYN) - can spread through synaptically connected circuits. However, not all brain regions or neurons within connected circuits develop LP, suggesting that cell autonomous factors modulate the development of pathology. Here, we review studies about how LP develops and progressively engages additional brain regions. We focus on how connectivity constrains progression and discuss cell autonomous factors that drive pathology development. We propose a mixed model of cell autonomous factors and trans-synaptic spread as mediators of pathology progression and put forward this model as a framework for future experiments exploring PD pathophysiology.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Neuronas Dopaminérgicas/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Fenotipo , alfa-Sinucleína/metabolismo
5.
Neuropathology ; 42(2): 147-154, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35112739

RESUMEN

Alzheimer's disease (AD) and frontotemporal dementia (FTD) are progressive neurodegenerative diseases associated with several cognitive and behavioral symptoms. It is sometimes difficult to distinguish AD from FTD in a patient because both of them can exhibit clinical overlap. In the present study, we report a case of a patient who showed sychiatric symptoms mimicking the behavioral variant of FTD (bvFTD) and combined AD amygdala-predominant Lewy pathologies on autopsy. The patient was a Japanese man who developed personality changes in his late 50s, presenting with obsessive-compulsive stereotypical behavior, stereotypy of speech, behavioral disinhibition, inertia, loss of empathy or sympathy, change in eating habits, and stimulus-bound behavior. He also frequently left during medical examinations. Eventually, he was clinically diagnosed as having possible bvFTD, according to the International Consensus Criteria for bvFTD. The patient died of systemic metastasis of gastric cancer at 69 years of age. Postmortem neuropathological examination revealed severe AD pathology (Braak Amyloid stage C, Consortium to Establish a Registry for Alzheimer's Disease [CERAD] stage C, Thal phase 5, and Braak AT8 stage IV) along with Lewy pathology and argyrophilic grains, predominantly in the amygdala. Furthermore, no transactivation response DNA-binding protein of 43 kDa (TDP-43) pathology was observed. Our results suggest that a combination of these pathologies causes bvFTD-like cognitive and behavioral symptoms. This case is very insightful when considering the lesions responsible for the psychiatric symptoms characteristic of bvFTD.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedad de Pick , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Amígdala del Cerebelo/patología , Autopsia , Demencia Frontotemporal/patología , Humanos , Masculino
6.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36499619

RESUMEN

Alpha-synuclein (aSyn) is a 14 kD protein encoded by the SNCA gene that is expressed in vertebrates and normally localizes to presynaptic terminals and the nucleus. aSyn forms pathological intracellular aggregates that typify a group of important neurodegenerative diseases called synucleinopathies. Previous work in human tissue and model systems indicates that some of these aggregates can be intranuclear, but the significance of aSyn aggregation within the nucleus is not clear. We used a mouse model that develops aggregated aSyn nuclear inclusions. Using aSyn preformed fibril injections in GFP-tagged aSyn transgenic mice, we were able to induce the formation of nuclear aSyn inclusions and study their properties in fixed tissue and in vivo using multiphoton microscopy. In addition, we analyzed human synucleinopathy patient tissue to better understand this pathology. Our data demonstrate that nuclear aSyn inclusions may form through the transmission of aSyn between neurons, and these intranuclear aggregates bear the hallmarks of cytoplasmic Lewy pathology. Neuronal nuclear aSyn inclusions can form rod-like structures that do not contain actin, excluding them from being previously described nuclear actin rods. Longitudinal, in vivo multiphoton imaging indicates that certain morphologies of neuronal nuclear aSyn inclusions predict cell death within 14 days. Human multiple system atrophy cases contain neurons and glia with similar nuclear inclusions, but we were unable to detect such inclusions in Lewy body dementia cases. This study suggests that the dysregulation of a nuclear aSyn function associated with nuclear inclusion formation could play a role in the forms of neurodegeneration associated with synucleinopathy.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Atrofia de Múltiples Sistemas , Sinucleinopatías , Animales , Ratones , Humanos , alfa-Sinucleína/metabolismo , Actinas , Atrofia de Múltiples Sistemas/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Modelos Animales de Enfermedad , Ratones Transgénicos , Muerte Celular
7.
Neurobiol Dis ; 134: 104623, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31628991

RESUMEN

In Parkinson's disease, some of the first alpha-synuclein aggregates appear in the olfactory system and the dorsal motor nucleus of the vagus nerve before spreading to connected brain regions. We previously demonstrated that injection of alpha-synuclein fibrils unilaterally into the olfactory bulb of wild type mice leads to widespread synucleinopathy in brain regions directly and indirectly connected to the injection site, consistently, over the course of periods longer than 6 months. Our previously reported observations support the idea that alpha-synuclein inclusions propagates between brain region through neuronal networks. In the present study, we further defined the pattern of propagation of alpha-synuclein inclusions and developed a mathematical model based on known mouse brain connectivity. Using this model, we first predicted the pattern of alpha-synuclein inclusions propagation following an injection of fibrils into the olfactory bulb. We then analyzed the fitting of these predictions to our published histological data. Our results demonstrate that the pattern of propagation we observed in vivo is consistent with axonal transport of alpha-synuclein aggregate seeds, followed by transsynaptic transmission. By contrast, simple diffusion of alpha-synuclein fits very poorly our in vivo data. We also found that the spread of alpha-synuclein inclusions appeared to primarily follow neural connections retrogradely until 9 months after injection into the olfactory bulb. Thereafter, the pattern of spreading was consistent with anterograde propagation mathematical models. Finally, we applied our mathematical model to a different, previously published, dataset involving alpha-synuclein fibril injections into the striatum, instead of the olfactory bulb. We found that the mathematical model accurately predicts the reported progressive increase in alpha-synuclein neuropathology also in that paradigm. In conclusion, our findings support that the progressive spread of alpha-synuclein inclusions after injection of protein fibrils follows neural networks in the mouse connectome.


Asunto(s)
Transporte Axonal/fisiología , Modelos Teóricos , Vías Nerviosas/patología , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Animales , Modelos Animales de Enfermedad , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Ratones , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/metabolismo
8.
J Neural Transm (Vienna) ; 127(7): 1031-1039, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32367182

RESUMEN

Cognitive impairment (CI), previously considered an exclusion criterium for the diagnosis of multiple system atrophy (MSA) according to the second consensus criteria, is not uncommon in MSA. Mild cognitive impairment (MCI) has been reported in up to 47% of MSA patients, while severe dementia is rare. We related clinical CI with neuropathological findings in 48 autopsy-proven cases of MSA. This retrospective study included 33 parkinsonism predominant MSA (MSA-P), and 15 cerebellar ataxia-predominant MSA (MSA-C) cases (mean age at death 60.5 ± 7.8; range 46-82 years). Cognitive state was assessed from hospital charts, however, without comprehensive neuropsychological testing. Neuropathological examination, in addition to grading of the MSA pathologies, included semiquantitative assessment of Lewy and Alzheimer-related co-pathologies. Their incidence was compared with 143 age-matched controls (mean age 60.5 ± 7.6 years). MCI reported in ten cases (20.8%) was associated with moderate cortical tau pathology in only three; moderate CI in seven patients (14.5%) was associated with cortical amyloid plaques and moderate cortical tau pathology in six each, and one with probable primary age-related tauopathy (PART); a female aged 82 years with severe dementia showed fully developed Alzheimer disease. Cortical amyloid plaques, observed in eight cases, three of them without tau pathology, were associated with clinical MCI, as was cortical Lewy pathology in five. Two cases with cortical Lewy pathology and neuritic Braak stages II and III, and three with Braak stage IV, without cortical Lewy bodies, had shown moderate CI. Cortical Lewy pathology observed in four cases was not associated with clinical CI. 77.1% of the MSA cases were free of Alzheimer-type lesions, compared to 42% of controls; while Lewy pathology in the MSA cohort (22.9%) was significantly higher than in the control group (8.4%) both p < 0.001. Mild-to-moderate CI, reported in 35.3% of MSA patients, being significantly older than those without CI, were frequently associated with cortical Alzheimer (Braak stages III and IV) and Lewy pathologies, while only one with severe dementia had fully developed Alzheimer disease. In view of these findings in a limited series of MSA patients, further studies to elucidate the pathological basis of cognitive impairment in MSA are warranted.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad por Cuerpos de Lewy , Atrofia de Múltiples Sistemas , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/epidemiología , Disfunción Cognitiva/epidemiología , Femenino , Humanos , Recién Nacido , Enfermedad por Cuerpos de Lewy/complicaciones , Enfermedad por Cuerpos de Lewy/epidemiología , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/complicaciones , Atrofia de Múltiples Sistemas/epidemiología , Estudios Retrospectivos
9.
J Neurochem ; 150(5): 475-486, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31269263

RESUMEN

The protein α-synuclein has a central role in the pathogenesis of Parkinson's disease (PD). In this review, we discuss recent results concerning its primary function, which appears to be on cell membranes. The pre-synaptic location of synuclein has suggested a role in neurotransmitter release and it apparently associates with synaptic vesicles because of their high curvature. Indeed, synuclein over-expression inhibits synaptic vesicle exocytosis. However, loss of synuclein has not yet been shown to have a major effect on synaptic transmission. Consistent with work showing that synuclein can promote as well as sense membrane curvature, recent analysis of synuclein triple knockout mice now shows that synuclein accelerates dilation of the exocytic fusion pore. This form of regulation affects primarily the release of slowly discharged lumenal cargo such as neural peptides, but presumably also contributes to maintenance of the release site. This article is part of the Special Issue "Synuclein".


Asunto(s)
Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/fisiología , Animales , Axones/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Exocitosis/fisiología , Humanos , Fusión de Membrana/fisiología , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/patología , Mutación Missense , Terminales Presinápticos/química , Dominios Proteicos , Pliegue de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiología , Proteínas Recombinantes/metabolismo , Vesículas Secretoras/metabolismo , Vesículas Secretoras/ultraestructura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , alfa-Sinucleína/química , alfa-Sinucleína/deficiencia , alfa-Sinucleína/genética
10.
Mov Disord ; 34(2): 228-235, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30597605

RESUMEN

BACKGROUND: Organochlorine pesticides are associated with an increased risk of Parkinson's disease. A preliminary analysis from the Honolulu-Asia Aging Study suggested that heptachlor epoxide, a metabolite from an organochlorine pesticide extensively used in Hawaii, may be especially important. This was a cross sectional analysis to evaluate the association of heptachlor epoxide and other organochlorine compounds with Lewy pathology in an expanded survey of brain organochlorine residues from the longitudinal Honolulu-Asia Aging Study. METHODS: Organochlorines were measured in frozen occipital or temporal lobes in 705 brains using gas chromatography with mass spectrometry. Lewy pathology was identified using hematoxylin and eosin- and α-synuclein immunochemistry-stained sections from multiple brain regions. RESULTS: The prevalence of Lewy pathology was nearly doubled in the presence versus the absence of heptachlor epoxide (30.1% versus 16.3%, P < 0.001). Although associations with other compounds were weaker, hexachlorobenzene (P = 0.003) and α-chlordane (P = 0.007) were also related to Lewy pathology. Most of the latter associations, however, were a result of confounding from heptachlor epoxide. Neither compound was significantly related to Lewy pathology after adjustment for heptachlor epoxide. In contrast, the association of heptachlor epoxide with Lewy pathology remained significant after adjustments for hexachlorobenzene (P = 0.013) or α-chlordane (P = 0.005). Findings were unchanged after removal of cases of PD and adjustment for age and other characteristics. CONCLUSIONS: Organochlorine pesticides are associated with the presence of Lewy pathology in the brain, even after exclusion of PD cases. Although most of the association is through heptachlor epoxide, the role of other organochlorine compounds is in need of clarification. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Encéfalo/efectos de los fármacos , Epóxido de Heptaclor/farmacología , Hidrocarburos Clorados/farmacología , Enfermedad por Cuerpos de Lewy/etiología , Plaguicidas/farmacología , Anciano , Encéfalo/patología , Estudios Transversales , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Hidrocarburos Clorados/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/patología
11.
J Neural Transm (Vienna) ; 126(4): 423-431, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29943229

RESUMEN

Braak et al. proposed that cases with Lewy pathology in the peripheral nervous sytem, spinal cord and brain stem are prodromal Parkinson's disease (PD), suggesting a hypothesized progression of PD pathology. However, the putative potential of peripheral α-synuclein to promote brain pathology has been questioned recently. The Braak staging is a matter of vigorous debate, since < 100% of cases with Lewy pathology fitting the proposed PD staging scheme; however, most studies assessing typical PD cases show that the vast majority (80-100%) fit the Braak staging scheme. Incidental Lewy body disease and PD can show Lewy pathology in substantia nigra or other brain areas without involvement of dorsal motor nucleus of the vagus nerve. The Braak staging system is valid for PD patients with young onset, long duration with motor symptoms, but not for others, e.g., late onset and rapid course PD. The validity of Braak staging and its relationship to various subtypes of PD warrants further studies.


Asunto(s)
Encéfalo/patología , Cuerpos de Lewy/patología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/patología , Progresión de la Enfermedad , Humanos
12.
J Neurosci ; 37(1): 47-57, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28053029

RESUMEN

α-Synuclein overexpression (ASOX) drives the formation of toxic aggregates in neurons vulnerable in Parkinson's disease (PD), including dopaminergic neurons of the substantia nigra (SN) and cholinergic neurons of the dorsal motor nucleus of the vagus (DMV). Just as these populations differ in when they exhibit α-synucleinopathies during PD pathogenesis, they could also differ in their physiological responses to ASOX. An ASOX-mediated hyperactivity of SN dopamine neurons, which was caused by oxidative dysfunction of Kv4.3 potassium channels, was recently identified in transgenic (A53T-SNCA) mice overexpressing mutated human α-synuclein. Noting that DMV neurons display extensive α-synucleinopathies earlier than SN dopamine neurons while exhibiting milder cell loss in PD, we aimed to define the electrophysiological properties of DMV neurons in A53T-SNCA mice. We found that DMV neurons maintain normal firing rates in response to ASOX. Moreover, Kv4.3 channels in DMV neurons exhibit no oxidative dysfunction in the A53T-SNCA mice, which could only be recapitulated in wild-type mice by glutathione dialysis. Two-photon imaging of redox-sensitive GFP corroborated the finding that mitochondrial oxidative stress was diminished in DMV neurons in the A53T-SNCA mice. This reduction in oxidative stress resulted from a transcriptional downregulation of voltage-activated (Cav) calcium channels in DMV neurons, which led to a reduction in activity-dependent calcium influx via Cav channels. Thus, ASOX induces a homeostatic remodeling with improved redox signaling in DMV neurons, which could explain the differential vulnerability of SN dopamine and DMV neurons in PD and could promote neuroprotective strategies that emulate endogenous homeostatic responses to ASOX (e.g., stressless pacemaking) in DMV neurons. SIGNIFICANCE STATEMENT: Overexpression of mutant α-synuclein causes Parkinson's disease, presumably by driving neurodegeneration in vulnerable neuronal target populations. However, the extent of α-synuclein pathology (e.g., Lewy bodies) is not directly related to the degree of neurodegeneration across various vulnerable neuronal populations. Here, we show that, in contrast to dopamine neurons in the substantia nigra, vagal motoneurons do not enhance their excitability and oxidative load in response to chronic mutant α-synuclein overexpression. Rather, by downregulating their voltage-activated calcium channels, vagal motoneurons acquire a stressless form of pacemaking that diminishes mitochondrial and cytosolic oxidative stress. Emulating this endogenous adaptive response to α-synuclein overexpression could lead to novel strategies to protect dopamine neurons and perhaps delay the onset of Parkinson's disease.


Asunto(s)
Relojes Biológicos , Neuronas Motoras , Enfermedad de Parkinson/fisiopatología , Nervio Vago/fisiología , alfa-Sinucleína/biosíntesis , alfa-Sinucleína/genética , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio/genética , Neuronas Dopaminérgicas/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Estrés Oxidativo , Canales de Potasio Shal/metabolismo , Transducción de Señal/genética , Sustancia Negra/citología , Sustancia Negra/fisiología , Nervio Vago/citología
13.
J Virol ; 91(2)2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27852849

RESUMEN

Misfolded α-synuclein (αS) is hypothesized to spread throughout the central nervous system (CNS) by neuronal connectivity leading to widespread pathology. Increasing evidence indicates that it also has the potential to invade the CNS via peripheral nerves in a prion-like manner. On the basis of the effectiveness following peripheral routes of prion administration, we extend our previous studies of CNS neuroinvasion in M83 αS transgenic mice following hind limb muscle (intramuscular [i.m.]) injection of αS fibrils by comparing various peripheral sites of inoculations with different αS protein preparations. Following intravenous injection in the tail veins of homozygous M83 transgenic (M83+/+) mice, robust αS pathology was observed in the CNS without the development of motor impairments within the time frame examined. Intraperitoneal (i.p.) injections of αS fibrils in hemizygous M83 transgenic (M83+/-) mice resulted in CNS αS pathology associated with paralysis. Interestingly, injection with soluble, nonaggregated αS resulted in paralysis and pathology in only a subset of mice, whereas soluble Δ71-82 αS, human ßS, and keyhole limpet hemocyanin (KLH) control proteins induced no symptoms or pathology. Intraperitoneal injection of αS fibrils also induced CNS αS pathology in another αS transgenic mouse line (M20), albeit less robustly in these mice. In comparison, i.m. injection of αS fibrils was more efficient in inducing CNS αS pathology in M83 mice than i.p. or tail vein injections. Furthermore, i.m. injection of soluble, nonaggregated αS in M83+/- mice also induced paralysis and CNS αS pathology, although less efficiently. These results further demonstrate the prion-like characteristics of αS and reveal its efficiency to invade the CNS via multiple routes of peripheral administration. IMPORTANCE: The misfolding and accumulation of α-synuclein (αS) inclusions are found in a number of neurodegenerative disorders and is a hallmark feature of Parkinson's disease (PD) and PD-related diseases. Similar characteristics have been observed between the infectious prion protein and αS, including its ability to spread from the peripheral nervous system and along neuroanatomical tracts within the central nervous system. In this study, we extend our previous results and investigate the efficiency of intravenous (i.v.), intraperitoneal (i.p.), and intramuscular (i.m.) routes of injection of αS fibrils and other protein controls. Our data reveal that injection of αS fibrils via these peripheral routes in αS-overexpressing mice are capable of inducing a robust αS pathology and in some cases cause paralysis. Furthermore, soluble, nonaggregated αS also induced αS pathology, albeit with much less efficiency. These findings further support and extend the idea of αS neuroinvasion from peripheral exposures.


Asunto(s)
Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/patología , alfa-Sinucleína/administración & dosificación , Animales , Encéfalo/metabolismo , Encéfalo/patología , Enfermedades del Sistema Nervioso Central/mortalidad , Enfermedades del Sistema Nervioso Central/fisiopatología , Modelos Animales de Enfermedad , Cuerpos de Inclusión/metabolismo , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fenotipo , Agregado de Proteínas , Agregación Patológica de Proteínas , Médula Espinal/metabolismo , Médula Espinal/patología , alfa-Sinucleína/metabolismo
14.
Acta Neuropathol ; 135(6): 855-875, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29502200

RESUMEN

The accumulation of misfolded α-synuclein (aSyn) and neuron loss define several neurodegenerative disorders including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the precise relationship between pathology and neurotoxicity and why these processes disproportionately affect certain neuron subpopulations are poorly understood. We show here that Math2-expressing neurons in the hippocampal Cornu ammonis (CA), a region significantly affected by aSyn pathology in advanced PD and DLB, are highly susceptible to pathological seeding with pre-formed fibrils (PFFs), in contrast to dentate gyrus neurons, which are relatively spared. Math2+ neurons also exhibited more rapid and severe cell loss in both in vitro and in vivo models of synucleinopathy. Toxicity resulting from PFF exposure was dependent on endogenous aSyn and could be attenuated by N-acetyl-cysteine through a glutathione-dependent process. Moreover, aSyn expression levels strongly correlate with relative vulnerability among hippocampal neuron subtypes of which Math2+ neurons contained the highest amount. Consistent with this, antisense oligonucleotide (ASO)-mediated knockdown of aSyn reduced the neuronal pathology in a time-dependent manner. However, significant neuroprotection was observed only with early ASO intervention and a substantial reduction of aSyn pathology, indicating toxicity occurs after a critical threshold of pathological burden is exceeded in vulnerable neurons. Together, our findings reveal considerable heterogeneity in endogenous aSyn levels among hippocampal neurons and suggest that this may contribute to the selective vulnerability observed in the context of synucleinopathies.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Muerte Celular/fisiología , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Hipocampo/patología , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Cultivo Primario de Células , Agregación Patológica de Proteínas/patología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , alfa-Sinucleína/genética
15.
Neuropathol Appl Neurobiol ; 43(7): 604-620, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28386933

RESUMEN

AIMS: The aim of this study was to test the hypothesis that different conformations of misfolded α-synuclein (α-syn) are present in Parkinson's disease (PD) brain. METHODS: Using two previously characterized conformations of α-syn fibrils, we generated new conformation-selective α-syn monoclonal antibodies (mAbs). We then interrogated multiple brain regions in a well-characterized autopsy cohort of PD patients (n = 49) with these mAbs, Syn7015 and Syn9029. RESULTS: Syn7015 detects Lewy bodies (LBs) and Lewy neurites (LNs) formed by pathological α-syn in all brain regions tested, and is particularly sensitive to LNs and small Lewy dots, inclusions believed to form early in the disease. Further, we observed colocalization between Syn7015 and an early marker of α-syn pathology formation, phospho-Ser129-α-syn, and a lack of extensive colocalization with markers of more mature pathology. In comparison, Syn9029 detects Lewy pathology in all regions examined, but indicates significantly fewer LNs than Syn7015. In addition, colocalization of Syn9029 with later markers of α-syn pathology maturation (ubiquitin and P62) suggests that the pathology detected by Syn9029 is older. Semiquantitative scoring of both LN and LB pathology in nine brain regions further established this trend, with Syn7015 LN scores consistently higher than Syn9029 LN scores. CONCLUSIONS: Our data indicate that different conformations of α-syn pathology are present in PD brain and correspond to different stages of maturity for Lewy pathology. Regional analysis of Syn7015 and Syn9029 immunostaining also provides support for the Braak hypothesis that α-syn pathology advances through the brain.


Asunto(s)
Cuerpos de Lewy/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/administración & dosificación , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Humanos , Cuerpos de Lewy/metabolismo , Masculino , Neuritas/metabolismo , Neuritas/patología , Cultivo Primario de Células , Conformación Proteica , alfa-Sinucleína/inmunología
16.
Curr Neurol Neurosci Rep ; 17(4): 31, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28324300

RESUMEN

Mutations in the SNCA gene, which encodes the α-synuclein protein, were the first discovered genetic causes of familial parkinsonism with Lewy pathology. To date, six different SNCA missense mutations as well as multiplications are known to cause parkinsonism. For this review, we performed a literature search to identify all published cases of SNCA-related parkinsonism to provide an updated summary of the clinical and neuropathological features of parkinsonism due to SNCA mutations. Familial parkinsonism associated with SNCA is rare, but α-synuclein aggregation is a core feature of sporadic parkinsonism, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Research into α-synuclein and parkinsonism has impacted how we define the pathology and understand the pathogenesis of Parkinson's disease and related neurodegenerative disorders. We briefly discuss some of the lessons we have learned from research into the physiological role of α-synuclein and its pathological links to neurodegeneration and parkinsonism.


Asunto(s)
Trastornos Parkinsonianos/genética , alfa-Sinucleína/genética , Humanos , Cuerpos de Lewy/genética , Cuerpos de Lewy/metabolismo , Mutación , Trastornos Parkinsonianos/metabolismo , Fenotipo , alfa-Sinucleína/metabolismo
17.
Neuropathol Appl Neurobiol ; 42(1): 33-50, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26662475

RESUMEN

The development of α-synuclein immunoreactive aggregates in selectively vulnerable neuronal types of the human central, peripheral, and enteric nervous systems is crucial for the pathogenesis of sporadic Parkinson's disease. The presence of these lesions persists into the end phase of the disease, a process that is not subject to remission. The initial induction of α-synuclein misfolding and subsequent aggregation probably occurs in the olfactory bulb and/or the enteric nervous system. Each of these sites is exposed to potentially hostile environmental factors. Once formed, the aggregates appear to be capable of propagating trans-synaptically from nerve cell to nerve cell in a virtually self-promoting pathological process. A regional distribution pattern of aggregated α-synuclein emerges that entails the involvement of only a few types of susceptible and axonally interconnected projection neurons within the human nervous system. One major route of disease progression may originate in the enteric nervous system and retrogradely reach the dorsal motor nucleus of the vagal nerve in the lower brainstem. From there, the disease process proceeds chiefly in a caudo-rostral direction through visceromotor and somatomotor brainstem centres to the midbrain, forebrain, and cerebral cortex. Spinal cord centres may become involved by means of descending projections from involved lower brainstem nuclei as well as by sympathetic projections connecting the enteric nervous system with postganglionic peripheral ganglia and preganglionic nuclei of the spinal cord. The development of experimental cellular and animal models is helping to explain the mechanisms of how abnormal α-synuclein can undergo aggregation and how transmission along axonal connectivities can occur, thereby encouraging the initiation of potential disease-modifying therapeutic strategies for sporadic Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Animales , Progresión de la Enfermedad , Sistema Nervioso Entérico/patología , Humanos
19.
J Parkinsons Dis ; 14(3): 383-397, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640172

RESUMEN

The question whether Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are expressions of the same underlying disease has been vigorously debated for decades. The recently proposed biological definitions of Lewy body disease, which do not assign any particular importance to the dopamine system over other degenerating neurotransmitter systems, has once more brought the discussion about different types of Lewy body disease to the forefront. Here, we briefly compare PDD and DLB in terms of their symptoms, imaging findings, and neuropathology, ultimately finding them to be indistinguishable. We then present a conceptual framework to demonstrate how one can view different clinical syndromes as manifestations of a shared underlying Lewy body disease. Early Parkinson's disease, isolated RBD, pure autonomic failure and other autonomic symptoms, and perhaps even psychiatric symptoms, represent diverse manifestations of the initial clinical stages of Lewy body disease. They are characterized by heterogeneous and comparatively limited neuronal dysfunction and damage. In contrast, Lewy body dementia, an encompassing term for both PDD and DLB, represents a more uniform and advanced stage of the disease. Patients in this category display extensive and severe Lewy pathology, frequently accompanied by co-existing pathologies, as well as multi-system neuronal dysfunction and degeneration. Thus, we propose that Lewy body disease should be viewed as a single encompassing disease entity. Phenotypic variance is caused by the presence of individual risk factors, disease mechanisms, and co-pathologies. Distinct subtypes of Lewy body disease can therefore be defined by subtype-specific disease mechanisms or biomarkers.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Diagnóstico Diferencial
20.
Mol Neurodegener ; 19(1): 69, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379975

RESUMEN

BACKGROUND: Pathological accumulation of aggregated α-synuclein (aSYN) is a common feature of Parkinson's disease (PD). However, the mechanisms by which intracellular aSYN pathology contributes to dysfunction and degeneration of neurons in the brain are still unclear. A potentially relevant target of aSYN is the mitochondrion. To test this hypothesis, genetic and physiological methods were used to monitor mitochondrial function in substantia nigra pars compacta (SNc) dopaminergic and pedunculopontine nucleus (PPN) cholinergic neurons after stereotaxic injection of aSYN pre-formed fibrils (PFFs) into the mouse brain. METHODS: aSYN PFFs were stereotaxically injected into the SNc or PPN of mice. Twelve weeks later, mice were studied using a combination of approaches, including immunocytochemical analysis, cell-type specific transcriptomic profiling, electron microscopy, electrophysiology and two-photon-laser-scanning microscopy of genetically encoded sensors for bioenergetic and redox status. RESULTS: In addition to inducing a significant neuronal loss, SNc injection of PFFs induced the formation of intracellular, phosphorylated aSYN aggregates selectively in dopaminergic neurons. In these neurons, PFF-exposure decreased mitochondrial gene expression, reduced the number of mitochondria, increased oxidant stress, and profoundly disrupted mitochondrial adenosine triphosphate production. Consistent with an aSYN-induced bioenergetic deficit, the autonomous spiking of dopaminergic neurons slowed or stopped. PFFs also up-regulated lysosomal gene expression and increased lysosomal abundance, leading to the formation of Lewy-like inclusions. Similar changes were observed in PPN cholinergic neurons following aSYN PFF exposure. CONCLUSIONS: Taken together, our findings suggest that disruption of mitochondrial function, and the subsequent bioenergetic deficit, is a proximal step in the cascade of events induced by aSYN pathology leading to dysfunction and degeneration of neurons at-risk in PD.


Asunto(s)
Neuronas Colinérgicas , Neuronas Dopaminérgicas , Mitocondrias , Enfermedad de Parkinson , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA